EP0529441A1 - Pyrolysis furnace for the thermal cracking of hydrocarbons - Google Patents
Pyrolysis furnace for the thermal cracking of hydrocarbons Download PDFInfo
- Publication number
- EP0529441A1 EP0529441A1 EP92113909A EP92113909A EP0529441A1 EP 0529441 A1 EP0529441 A1 EP 0529441A1 EP 92113909 A EP92113909 A EP 92113909A EP 92113909 A EP92113909 A EP 92113909A EP 0529441 A1 EP0529441 A1 EP 0529441A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube
- tubes
- radiation zone
- group
- pyrolysis furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/14—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
- C10G9/18—Apparatus
- C10G9/20—Tube furnaces
Definitions
- the invention relates to a pyrolysis furnace for the thermal splitting of hydrocarbons with a radiation zone, burners and cracking tubes installed therein, the cracking tubes in the radiation zone consisting of parallel, vertically extending straight pipe sections and connecting pipe elbows located in the lower region of the radiation zone, at least in each case Four canned tubes are combined into groups arranged in the same way in the radiation zone, the canned tubes of a group in the lower and upper region of the radiation zone being combined in an outlet tube via tube collecting pieces, the straight tube pieces and the tube collecting pieces of the individual groups being single-row in the transverse direction of the pyrolysis furnace, ie are arranged in one plane.
- the thermal cracking of hydrocarbons usually takes place in pyrolysis furnaces.
- a conventional pyrolysis furnace has a radiation zone heated by burners.
- the thermal splitting of the hydrocarbons is carried out in canned tubes in the radiation zone.
- the splitting of the hydrocarbons can be facilitated in that the hydrocarbons are preheated in a convection zone of the pyrolysis furnace before being introduced into the radiation zone.
- FIG. 1 shows an example of the arrangement of the can in the radiation zone of such a pyrolysis furnace.
- 16 canned tubes are grouped into groups A, B and C.
- the areas of the individual groups are indicated by dash-dotted lines.
- the hydrocarbons to be split are fed into the split tubes in the radiation zone from above in the direction of the arrow.
- the canned pipes run parallel and straight (Z direction) to the lower area of the radiation zone, where two canned pipes are combined via a pipe collecting piece. Pipe bends are connected to the resulting eight canned pipes in the group.
- Straight, parallel and vertical pipe sections arranged in the Z direction lead from the pipe elbows to the upper region of the radiation zone. There, four pieces of pipe are combined in pipe collectors to form two canned pipes. These two canned tubes are brought together in a further tube collecting piece to form the outlet tube of the respective group.
- the split hydrocarbons are passed through the three outlet tubes of the groups from the radiation zone of the pyrolysis furnace.
- the straight pipe sections and the pipe collecting sections of the individual groups are arranged in a single row. They are all on the same level (X / Z level). Only the elbows in the lower area of the radiation zone have projections and protrude from this level.
- the can is usually suspended in the radiation zone of the pyrolysis furnace. Length extensions caused by temperature changes make it necessary to hang up the can. However, the mechanical loading of the canned tubes is considerable in this case due to their own weight. For this reason, voltage overruns occur especially in the elbows, especially at high temperatures.
- the invention is therefore based on the object of demonstrating a pyrolysis furnace of the type mentioned at the outset which in a simple manner prevents excess voltages in the can.
- the arrangement of the canned tubes in the pyrolysis furnace according to the invention requires that the straight pipe sections through which the two halves of a group flow from top to bottom surround the pipe sections through which flow flows from bottom to top laterally in the arrangement plane of the canned pipes in the radiation zone.
- the radius of curvature of the pipe elbows is considerably reduced, as a result of which the stresses that occur are substantially reduced.
- the projections of the pipe elbows are also smaller, ie the pipe elbows protrude considerably less from the arrangement level of the can. This also leads to a Reduction of the stresses on the can.
- the heat distribution over the can of the individual groups is also more uniform.
- the canned tubes are staggered in steps before entering the radiation zone and a split gas cooler is located above each outlet tube of a group outside the radiation zone in a straight extension of the outlet tubes.
- the canned tubes are guided around the cracked gas cooler in one step (two 90 ° bends) before entering the radiation zone. This enables a particularly advantageous vertical arrangement of the cracked gas coolers.
- the canned tubes prefferably be combined into a canned tube with a comparatively enlarged diameter by means of tube collecting pieces. As a result, the pressure loss in the can is kept small.
- FIG. 2 shows a canned tube arrangement of a pyrolysis furnace according to the invention, which illustrates the invention in a modification of the conventional canned tube arrangement from FIG. 1 according to the prior art.
- three groups of canned tubes A, B and C are also shown.
- the hydrocarbons to be split are shown in the direction of the arrow introduced into the pipes at the top.
- the three groups of canned tubes are staggered (two 90 ° bends) around three cracked gas coolers (not shown) before they run into the radiation zone of the pyrolysis furnace.
- the cracked gas coolers are located in the extension of the three outlet pipes (arrows pointing in the Z direction).
- the dashed line symbolizes the upper end of the radiation zone of the pyrolysis furnace.
- Straight, vertical (Z-direction) pipe sections of the canned tubes extend to the lower area of the radiation zone.
- two canned tubes are combined to form a tube via a tube collecting piece.
- the resulting eight canned tubes per group merge into eight elbows, four of which each have approximately the same direction of curvature. A certain deviation in the direction of curvature is caused by the protrusions of the elbows.
- the arrangement of the pipe elbows enables the eight straight pipe sections of each group, into which the pipe elbows open, to flow from bottom to top, to lie in the plane of arrangement of the can between the straight pipe sections flowing from top to bottom.
- the straight pipe sections of the groups lie in the arrangement level of the can (X / Z plane).
- the eight straight pipe sections of each group through which flow flows from bottom to top, are first combined into two split pipes via pipe collectors and into an outlet pipe via a further pipe collector piece. Above the three outlet pipes are the cracked gas coolers, not shown, in a straight extension of the outlet pipes.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Die Erfindung betrifft einen Pyrolyseofen zum thermischen Spalten von Kohlenwasserstoffen mit einer Strahlungszone, darin eingebauten Brennern und Spaltrohren, wobei die Spaltrohre in der Strahlungszone aus parallel angeordneten, vertikal verlaufenden geraden Rohrstücken und diese verbindende, im unteren Bereich der Strahlungszone befindlichen Rohrkrümmern bestehen, wobei jeweils zumindest vier Spaltrohre zu gleichartig in der Strahlungszone angeordneten Gruppen zusammengefaßt sind, wobei die Spaltrohre einer Gruppe im unteren und oberen Bereich der Strahlungszone über Rohrsammelstücke jeweils in einem Austrittsrohr vereinigt sind, wobei die geraden Rohrstücke und die Rohrsammelstücke der einzelnen Gruppen in Querrichtung des Pyrolyseofens einreihig, d.h. in einer Ebene, angeordnet sind.The invention relates to a pyrolysis furnace for the thermal splitting of hydrocarbons with a radiation zone, burners and cracking tubes installed therein, the cracking tubes in the radiation zone consisting of parallel, vertically extending straight pipe sections and connecting pipe elbows located in the lower region of the radiation zone, at least in each case Four canned tubes are combined into groups arranged in the same way in the radiation zone, the canned tubes of a group in the lower and upper region of the radiation zone being combined in an outlet tube via tube collecting pieces, the straight tube pieces and the tube collecting pieces of the individual groups being single-row in the transverse direction of the pyrolysis furnace, ie are arranged in one plane.
Die thermische Spaltung (Cracken) von Kohlenwasserstoffen erfolgt üblicherweise in Pyrolyseöfen. Ein herkömmlicher Pyrolyseofen weist eine mit Brennern beheizte Strahlungszone auf. Die thermische Spaltung der Kohlenwasserstoffe wird in Spaltrohren in der Strahlungszone durchgeführt. Die Spaltung der Kohlenwasserstoffe kann dadurch erleichtert werden, daß die Kohlenwasserstoffe vor der Einleitung in die Strahlungszone in einer Konvektionszone des Pyrolyseofens vorgewärmt werden.The thermal cracking of hydrocarbons usually takes place in pyrolysis furnaces. A conventional pyrolysis furnace has a radiation zone heated by burners. The thermal splitting of the hydrocarbons is carried out in canned tubes in the radiation zone. The splitting of the hydrocarbons can be facilitated in that the hydrocarbons are preheated in a convection zone of the pyrolysis furnace before being introduced into the radiation zone.
Unter der Vielzahl der zwischenzeitlich entwickelten Pyrolyseöfen hat sich der eingangs beschriebene Pyrolyseofen besonders bewährt. In Figur 1 ist die Anordnung der Spaltrohre in der Strahlungszone eines derartigen Pyrolyseofens beispielhaft dargestellt. Im gezeigten Beispiel sind jeweils 16 Spaltrohre zu den Gruppen A, B und C zusammengefasst. Die Bereiche der einzelnen Gruppen sind durch strichpunktierte Linien angedeutet. Die zu spaltenden Kohlenwasserstoffe werden entsprechend der Pfeilrichtung von oben in die Spaltrohre in der Strahlungszone geleitet. Die Spaltrohre verlaufen parallel und gerade (Z-Richtung) bis zum unteren Bereich der Strahlungszone, wo jeweils zwei Spaltrohre über ein Rohrsammelstück vereinigt werden. An die resultierenden acht Spaltrohre der Gruppe schließen sich Rohrkrümmer an. Von den Rohrkrümmern führen gerade, parallel und vertikal (in Z-Richtung) angeordnete Rohrstücke zum oberen Bereich der Strahlungszone. Dort werden jeweils vier Rohrstücke in Rohrsammelstücken zu zwei Spaltrohren vereinigt. Diese zwei Spaltrohre sind in einem weiteren Rohrsammelstück zu dem Auslaßrohr der jeweiligen Gruppe zusammengeführt. Die gespaltenen Kohlenwasserstoffe werden durch die drei Auslaßrohre der Gruppen aus der Strahlungszone des Pyrolyseofens geleitet. Die geraden Rohrstücke und die Rohrsammelstücke der einzelnen Gruppen sind einreihig angeordnet. Sie liegen alle in derselben Ebene (X/Z-Ebene). Lediglich die Rohrkrümmer im unteren Bereich der Strahlungszone weisen Auskragungen auf und ragen aus dieser Ebene heraus.Among the large number of pyrolysis furnaces developed in the meantime, the pyrolysis furnace described at the outset has proven particularly successful. FIG. 1 shows an example of the arrangement of the can in the radiation zone of such a pyrolysis furnace. In the example shown, 16 canned tubes are grouped into groups A, B and C. The areas of the individual groups are indicated by dash-dotted lines. The hydrocarbons to be split are fed into the split tubes in the radiation zone from above in the direction of the arrow. The canned pipes run parallel and straight (Z direction) to the lower area of the radiation zone, where two canned pipes are combined via a pipe collecting piece. Pipe bends are connected to the resulting eight canned pipes in the group. Straight, parallel and vertical pipe sections arranged in the Z direction lead from the pipe elbows to the upper region of the radiation zone. There, four pieces of pipe are combined in pipe collectors to form two canned pipes. These two canned tubes are brought together in a further tube collecting piece to form the outlet tube of the respective group. The split hydrocarbons are passed through the three outlet tubes of the groups from the radiation zone of the pyrolysis furnace. The straight pipe sections and the pipe collecting sections of the individual groups are arranged in a single row. They are all on the same level (X / Z level). Only the elbows in the lower area of the radiation zone have projections and protrude from this level.
Die Spaltrohre sind in der Strahlungszone des Pyrolyseofens üblicherweise aufgehängt. Durch Temperaturänderungen verursachte Längenausdehnungen machen das Aufhängen der Spaltrohre erforderlich. Allerdings ist die mechanische Belastung der Spaltrohre aufgrund ihres Eigengewichtes in diesem Fall erheblich. Daher treten insbesondere in den Rohrkrümmern Spannungsüberschreitungen vor allem bei hohen Temperaturen auf.The can is usually suspended in the radiation zone of the pyrolysis furnace. Length extensions caused by temperature changes make it necessary to hang up the can. However, the mechanical loading of the canned tubes is considerable in this case due to their own weight. For this reason, voltage overruns occur especially in the elbows, especially at high temperatures.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Pyrolyseofen der eingangs genannten Art aufzuzeigen, welcher auf einfache Art und Weise Spannungsüberschreitungen in den Spaltrohren verhindert.The invention is therefore based on the object of demonstrating a pyrolysis furnace of the type mentioned at the outset which in a simple manner prevents excess voltages in the can.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Rohrstücke einer Gruppe am Eintritt in die Strahlungszone jeweils zur Hälfte rechts- und linksseitig um das Austrittsrohr der Gruppe angeordnet sind und daß die Rohrkrümmer der einen Hälfte der Gruppe in die entgegengesetzte Richtung weisend wie die Rohrkrümmer der zweiten Hälfte der Gruppe angebracht sind.This object is achieved in that the pipe sections of a group at the entrance to the radiation zone are arranged on the right and left side around the outlet pipe of the group and that the pipe elbows of one half of the group pointing in the opposite direction as the pipe elbows of the second Half of the group are attached.
Die Anordnung der Spaltrohre im erfindungsgemäßen Pyrolyseofen bedingt, daß die von oben nach unten durchströmten, geraden Rohrstücke der beiden Hälften einer Gruppe die von unten nach oben durchströmten Rohrstücke seitlich in der Anordnungsebene der Spaltrohre in der Strahlungszone umgeben. Im erfindungsgemäßen Pyrolyseofen verkleinert sich der Krümmungsradius der Rohrkrümmer erheblich, wodurch die auftretenden Spannungsbelastungen wesentlich verringert werden. Im erfindungsgemäßen Pyrolyseofen sind auch die Auskragungen der Rohrkrümmer geringer, d.h. die Rohrkrümmer ragen wesentlich weniger aus der Anordnungsebene der Spaltrohre heraus. Damit kommt es ebenfalls zu einer Reduzierung der Spannungsbelastungen der Spaltrohre. Im erfindungsgemäßen Pyrolyseofen ist ferner die Wärmeverteilung auf die Spaltrohre der einzelnen Gruppen gleichmäßiger.The arrangement of the canned tubes in the pyrolysis furnace according to the invention requires that the straight pipe sections through which the two halves of a group flow from top to bottom surround the pipe sections through which flow flows from bottom to top laterally in the arrangement plane of the canned pipes in the radiation zone. In the pyrolysis furnace according to the invention, the radius of curvature of the pipe elbows is considerably reduced, as a result of which the stresses that occur are substantially reduced. In the pyrolysis furnace according to the invention, the projections of the pipe elbows are also smaller, ie the pipe elbows protrude considerably less from the arrangement level of the can. This also leads to a Reduction of the stresses on the can. In the pyrolysis furnace according to the invention, the heat distribution over the can of the individual groups is also more uniform.
In Weiterbildung der Erfindung sind die Spaltrohre vor dem Eintritt in die Strahlungszone stufenförmig versetzt angeordnet und ein Spaltgaskühler befindet sich über jedem Austrittsrohr einer Gruppe außerhalb der Strahlungszone in gerader Verlängerung der Auslaßrohre. Die Spaltrohre werden dabei vor dem Eintritt in die Strahlungszone in einer Stufe (zwei 90°-Krümmungen) um die Spaltgaskühler geführt. Somit wird eine besonders vorteilhafte vertikale Anordnung der Spaltgaskühler ermöglicht.In a further development of the invention, the canned tubes are staggered in steps before entering the radiation zone and a split gas cooler is located above each outlet tube of a group outside the radiation zone in a straight extension of the outlet tubes. The canned tubes are guided around the cracked gas cooler in one step (two 90 ° bends) before entering the radiation zone. This enables a particularly advantageous vertical arrangement of the cracked gas coolers.
Mit besonderem Vorteil sind die Spaltrohre über Rohrsammelstücke jeweils in ein Spaltrohr mit vergleichsweise vergrößertem Durchmesser vereinigt. Dadurch wird der Druckverlust in den Spaltrohren klein gehalten.It is particularly advantageous for the canned tubes to be combined into a canned tube with a comparatively enlarged diameter by means of tube collecting pieces. As a result, the pressure loss in the can is kept small.
Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles näher erläutert.The invention is explained in more detail below using an exemplary embodiment.
Hierbei zeigt:
- Figur 2:
- die Anordnung der Spaltrohre eines erfindungsgemäßen Pyrolyseofens.
- Figure 2:
- the arrangement of the can of a pyrolysis furnace according to the invention.
In Figur 2 ist eine Spaltrohranordnung eines erfindungsgemäßen Pyrolyseofens dargestellt, der die Erfindung in Abwandlung der herkömmlichen Spaltrohranordnung aus Figur 1 nach dem Stand der Technik verdeutlicht. In Figur 2 sind ebenfalls drei Gruppen von Spaltrohren A, B und C aufgezeigt. Die zu spaltenden Kohlenwasserstoffe werden entsprechend der Pfeilrichtung von
oben in die Rohre eingeleitet. Die drei Gruppen der Spaltrohre sind stufenförmig versetzt (zwei 90°-Krümmungen) um drei nicht dargestellte Spaltgaskühler angeordnet, bevor sie in die Strahlungszone des Pyrolyseofens hineinlaufen. Die Spaltgaskühler befinden sich in Verlängerung der drei Auslaßrohre (in Z-Richtung weisende Pfeile). Die gestrichelte Linie symbolisiert das obere Ende der Strahlungszone des Pyrolyseofens. Gerade, vertikal (Z-Richtung) angeordnete Rohrstücke der Spaltrohre reichen bis zum unteren Bereich der Strahlungszone. Dort sind jeweils zwei Spaltrohre über ein Rohrsammelstück zu einem Rohr vereinigt. Die resultierenden acht Spaltrohre pro Gruppe gehen in acht Rohrkrümmer über, von denen jeweils vier eine in etwa gleiche Krümmungsrichtung aufweisen. Eine gewisse Abweichung in der Krümmungsrichtung ist durch die Auskragungen der Rohrkrümmer bedingt. Die Anordnung der Rohrkrümmer ermöglicht, daß die von unten nach oben durchströmten acht geraden Rohrstücke jeder Gruppe, in die die Rohrkrümmer münden, in der Anordnungsebene der Spaltrohre zwischen den von oben nach unten durchströmten geraden Rohrstücken liegen. Die geraden Rohrstücke der Gruppen liegen in der Anordnungsebene der Spaltrohre (X/Z-Ebene). Die acht von unten nach oben durchströmten, geraden Rohrstücke jeder Gruppe werden über Rohrsammelstücke zunächst zu zwei Spaltrohren und über ein weiteres Rohrsammelstück zu einem Auslaßrohr vereinigt. Über den drei Auslaßrohren befinden sich die nicht dargstellten Spaltgaskühler in gerader Verlängerung der Auslaßrohre.FIG. 2 shows a canned tube arrangement of a pyrolysis furnace according to the invention, which illustrates the invention in a modification of the conventional canned tube arrangement from FIG. 1 according to the prior art. In Figure 2, three groups of canned tubes A, B and C are also shown. The hydrocarbons to be split are shown in the direction of the arrow
introduced into the pipes at the top. The three groups of canned tubes are staggered (two 90 ° bends) around three cracked gas coolers (not shown) before they run into the radiation zone of the pyrolysis furnace. The cracked gas coolers are located in the extension of the three outlet pipes (arrows pointing in the Z direction). The dashed line symbolizes the upper end of the radiation zone of the pyrolysis furnace. Straight, vertical (Z-direction) pipe sections of the canned tubes extend to the lower area of the radiation zone. There, two canned tubes are combined to form a tube via a tube collecting piece. The resulting eight canned tubes per group merge into eight elbows, four of which each have approximately the same direction of curvature. A certain deviation in the direction of curvature is caused by the protrusions of the elbows. The arrangement of the pipe elbows enables the eight straight pipe sections of each group, into which the pipe elbows open, to flow from bottom to top, to lie in the plane of arrangement of the can between the straight pipe sections flowing from top to bottom. The straight pipe sections of the groups lie in the arrangement level of the can (X / Z plane). The eight straight pipe sections of each group, through which flow flows from bottom to top, are first combined into two split pipes via pipe collectors and into an outlet pipe via a further pipe collector piece. Above the three outlet pipes are the cracked gas coolers, not shown, in a straight extension of the outlet pipes.
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4128521 | 1991-08-28 | ||
DE4128521A DE4128521A1 (en) | 1991-08-28 | 1991-08-28 | PYROLYSIS OVEN FOR THERMAL CLEANING OF HYDROCARBONS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0529441A1 true EP0529441A1 (en) | 1993-03-03 |
EP0529441B1 EP0529441B1 (en) | 1995-05-03 |
Family
ID=6439313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92113909A Expired - Lifetime EP0529441B1 (en) | 1991-08-28 | 1992-08-14 | Pyrolysis furnace for the thermal cracking of hydrocarbons |
Country Status (4)
Country | Link |
---|---|
US (1) | US5271809A (en) |
EP (1) | EP0529441B1 (en) |
DE (2) | DE4128521A1 (en) |
ES (1) | ES2073218T3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998056872A1 (en) * | 1997-06-10 | 1998-12-17 | Exxon Chemical Patents Inc. | Pyrolysis furnace with an internally finned u-shaped radiant coil |
EP1146105A2 (en) * | 2000-04-12 | 2001-10-17 | Linde Aktiengesellschaft | Pyrolysis furnace for the thermal cracking of hydrocarbons |
CN110835547A (en) * | 2018-08-16 | 2020-02-25 | 中国石化工程建设有限公司 | Ethylene cracking furnace |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4334256C2 (en) * | 1993-10-07 | 2002-10-31 | Linde Ag | Process for obtaining a C¶2¶H¶4¶-rich product fraction from a hydrocarbon-containing feed fraction |
US5636580A (en) * | 1995-11-22 | 1997-06-10 | Kanis; Douglas R. | Pyrolysis system and a method of pyrolyzing |
JP4768091B2 (en) * | 1997-05-13 | 2011-09-07 | ストーン アンド ウェブスター プロセス テクノロジー,インコーポレイテッド | A cracking furnace in which an inlet side tube and an outlet side tube of a radiation heating type tube are arranged adjacent to each other in a heating chamber |
US6644358B2 (en) | 2001-07-27 | 2003-11-11 | Manoir Industries, Inc. | Centrifugally-cast tube and related method and apparatus for making same |
US7004085B2 (en) | 2002-04-10 | 2006-02-28 | Abb Lummus Global Inc. | Cracking furnace with more uniform heating |
US20090022635A1 (en) * | 2007-07-20 | 2009-01-22 | Selas Fluid Processing Corporation | High-performance cracker |
US8376034B2 (en) * | 2007-09-26 | 2013-02-19 | General Electric Company | Radiant coolers and methods for assembling same |
US8671658B2 (en) | 2007-10-23 | 2014-03-18 | Ener-Core Power, Inc. | Oxidizing fuel |
US8393160B2 (en) | 2007-10-23 | 2013-03-12 | Flex Power Generation, Inc. | Managing leaks in a gas turbine system |
US7954544B2 (en) * | 2007-11-28 | 2011-06-07 | Uop Llc | Heat transfer unit for high reynolds number flow |
CN101723784B (en) * | 2008-10-16 | 2012-12-26 | 中国石油化工股份有限公司 | Ethylene cracking furnace |
US8701413B2 (en) | 2008-12-08 | 2014-04-22 | Ener-Core Power, Inc. | Oxidizing fuel in multiple operating modes |
US8621869B2 (en) | 2009-05-01 | 2014-01-07 | Ener-Core Power, Inc. | Heating a reaction chamber |
US8893468B2 (en) | 2010-03-15 | 2014-11-25 | Ener-Core Power, Inc. | Processing fuel and water |
US9057028B2 (en) | 2011-05-25 | 2015-06-16 | Ener-Core Power, Inc. | Gasifier power plant and management of wastes |
US9273606B2 (en) | 2011-11-04 | 2016-03-01 | Ener-Core Power, Inc. | Controls for multi-combustor turbine |
US9279364B2 (en) | 2011-11-04 | 2016-03-08 | Ener-Core Power, Inc. | Multi-combustor turbine |
US9534780B2 (en) | 2012-03-09 | 2017-01-03 | Ener-Core Power, Inc. | Hybrid gradual oxidation |
US9234660B2 (en) | 2012-03-09 | 2016-01-12 | Ener-Core Power, Inc. | Gradual oxidation with heat transfer |
US9353946B2 (en) | 2012-03-09 | 2016-05-31 | Ener-Core Power, Inc. | Gradual oxidation with heat transfer |
US8807989B2 (en) | 2012-03-09 | 2014-08-19 | Ener-Core Power, Inc. | Staged gradual oxidation |
US8844473B2 (en) | 2012-03-09 | 2014-09-30 | Ener-Core Power, Inc. | Gradual oxidation with reciprocating engine |
US8671917B2 (en) | 2012-03-09 | 2014-03-18 | Ener-Core Power, Inc. | Gradual oxidation with reciprocating engine |
US9206980B2 (en) | 2012-03-09 | 2015-12-08 | Ener-Core Power, Inc. | Gradual oxidation and autoignition temperature controls |
US9726374B2 (en) | 2012-03-09 | 2017-08-08 | Ener-Core Power, Inc. | Gradual oxidation with flue gas |
US9359948B2 (en) | 2012-03-09 | 2016-06-07 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9359947B2 (en) | 2012-03-09 | 2016-06-07 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9017618B2 (en) | 2012-03-09 | 2015-04-28 | Ener-Core Power, Inc. | Gradual oxidation with heat exchange media |
US9273608B2 (en) | 2012-03-09 | 2016-03-01 | Ener-Core Power, Inc. | Gradual oxidation and autoignition temperature controls |
US9347664B2 (en) | 2012-03-09 | 2016-05-24 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9267432B2 (en) | 2012-03-09 | 2016-02-23 | Ener-Core Power, Inc. | Staged gradual oxidation |
US9328916B2 (en) | 2012-03-09 | 2016-05-03 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9371993B2 (en) | 2012-03-09 | 2016-06-21 | Ener-Core Power, Inc. | Gradual oxidation below flameout temperature |
US9328660B2 (en) | 2012-03-09 | 2016-05-03 | Ener-Core Power, Inc. | Gradual oxidation and multiple flow paths |
US9381484B2 (en) | 2012-03-09 | 2016-07-05 | Ener-Core Power, Inc. | Gradual oxidation with adiabatic temperature above flameout temperature |
US8980192B2 (en) | 2012-03-09 | 2015-03-17 | Ener-Core Power, Inc. | Gradual oxidation below flameout temperature |
US9567903B2 (en) | 2012-03-09 | 2017-02-14 | Ener-Core Power, Inc. | Gradual oxidation with heat transfer |
US8926917B2 (en) | 2012-03-09 | 2015-01-06 | Ener-Core Power, Inc. | Gradual oxidation with adiabatic temperature above flameout temperature |
US8980193B2 (en) | 2012-03-09 | 2015-03-17 | Ener-Core Power, Inc. | Gradual oxidation and multiple flow paths |
CN107497239B (en) * | 2017-09-22 | 2024-03-29 | 江门展艺电脑机械有限公司 | Waste gas pyrolysis furnace |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3237610A (en) * | 1964-10-06 | 1966-03-01 | Alcorn Comb Co | Double fired multi-path process heater |
US3407789A (en) * | 1966-06-13 | 1968-10-29 | Stone & Webster Eng Corp | Heating apparatus and process |
US4160701A (en) * | 1973-04-25 | 1979-07-10 | Linde Aktiengesellschaft | Tube furnace for the cracking of organic feed stock |
DE3701214A1 (en) * | 1986-01-16 | 1987-08-06 | Babcock Hitachi Kk | PYROLYSIS OVEN FOR OLEFINE PRODUCTION |
WO1990012851A1 (en) * | 1989-04-14 | 1990-11-01 | Procedes Petroliers Et Petrochimiques | Process and apparatus for decoking a steam-craking installation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1961233A (en) * | 1929-07-03 | 1934-06-05 | Siemens Ag | Steam generating apparatus |
US5151158A (en) * | 1991-07-16 | 1992-09-29 | Stone & Webster Engineering Corporation | Thermal cracking furnace |
-
1991
- 1991-08-28 DE DE4128521A patent/DE4128521A1/en not_active Withdrawn
-
1992
- 1992-08-14 EP EP92113909A patent/EP0529441B1/en not_active Expired - Lifetime
- 1992-08-14 DE DE59202073T patent/DE59202073D1/en not_active Expired - Fee Related
- 1992-08-14 ES ES92113909T patent/ES2073218T3/en not_active Expired - Lifetime
- 1992-08-28 US US07/935,780 patent/US5271809A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3237610A (en) * | 1964-10-06 | 1966-03-01 | Alcorn Comb Co | Double fired multi-path process heater |
US3407789A (en) * | 1966-06-13 | 1968-10-29 | Stone & Webster Eng Corp | Heating apparatus and process |
US4160701A (en) * | 1973-04-25 | 1979-07-10 | Linde Aktiengesellschaft | Tube furnace for the cracking of organic feed stock |
DE3701214A1 (en) * | 1986-01-16 | 1987-08-06 | Babcock Hitachi Kk | PYROLYSIS OVEN FOR OLEFINE PRODUCTION |
WO1990012851A1 (en) * | 1989-04-14 | 1990-11-01 | Procedes Petroliers Et Petrochimiques | Process and apparatus for decoking a steam-craking installation |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998056872A1 (en) * | 1997-06-10 | 1998-12-17 | Exxon Chemical Patents Inc. | Pyrolysis furnace with an internally finned u-shaped radiant coil |
EP1136541A1 (en) * | 1997-06-10 | 2001-09-26 | ExxonMobil Chemical Patents Inc. | Pyrolysis furnace with an internally finned u-shaped radiant coil |
EP1146105A2 (en) * | 2000-04-12 | 2001-10-17 | Linde Aktiengesellschaft | Pyrolysis furnace for the thermal cracking of hydrocarbons |
EP1146105A3 (en) * | 2000-04-12 | 2002-03-06 | Linde Aktiengesellschaft | Pyrolysis furnace for the thermal cracking of hydrocarbons |
CN110835547A (en) * | 2018-08-16 | 2020-02-25 | 中国石化工程建设有限公司 | Ethylene cracking furnace |
Also Published As
Publication number | Publication date |
---|---|
DE4128521A1 (en) | 1993-03-04 |
US5271809A (en) | 1993-12-21 |
DE59202073D1 (en) | 1995-06-08 |
EP0529441B1 (en) | 1995-05-03 |
ES2073218T3 (en) | 1995-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0529441B1 (en) | Pyrolysis furnace for the thermal cracking of hydrocarbons | |
DE69826873T2 (en) | CRACK OVEN WITH HEAT-BEAMED TUBES | |
EP0638525A2 (en) | Method for melting glass in a tank furnace and tank furnace used therefor | |
EP1146105B1 (en) | Pyrolysis furnace for the thermal cracking of hydrocarbons | |
DE2323234C2 (en) | Tube furnace | |
DE60221476T2 (en) | Pyrolysis furnace with novel heat input and method for cracking at high temperatures with the same | |
DE3208467A1 (en) | CONVECTION HEATER FOR HEATING FLUIDA, E.g. A SLAVE OR THE LIKE | |
DE2459472C2 (en) | GAS HEATED STEAM GENERATOR, IN PARTICULAR FOR NUCLEAR REACTOR PLANTS | |
EP0064092A1 (en) | Fluidized-bed steam generator | |
DE2539050C2 (en) | Oven for heating a flowable medium | |
DE3538515C2 (en) | ||
DE2413752C3 (en) | Vertical tube furnace for the production of ethylene by cracking | |
CH645713A5 (en) | HEAT EXCHANGER. | |
DE2920860A1 (en) | STEAM PYROLYSIS OF HYDROCARBONS AND CRACK RADIATORS FOR THEIR PROCESSING | |
DE7515596U (en) | HEATING DEVICE | |
EP0352488A1 (en) | Once-through steam generator | |
DE2936199C2 (en) | Process for superheating gaseous media | |
EP0848207A2 (en) | Once-through steam generator with a gas pass connected to a hot gas producing apparatus | |
EP0579210B1 (en) | Process for the reconstruction of cracking furnaces | |
DE473959C (en) | Regenerative coke oven with vertical heating elements | |
AT229335B (en) | Heat exchanger | |
DE1442740C (en) | Tube furnace for carrying out endothermic catalytic reactions | |
DE3530715A1 (en) | Steam generator, which consists of a plurality of mutually independent subsystems, for a small high-temperature reactor | |
DD142792A3 (en) | MULTI-ROAD OVEN | |
EP3181218A1 (en) | Product gas collecting conduit system for a steam reformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19921030 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19940419 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950503 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19950503 |
|
REF | Corresponds to: |
Ref document number: 59202073 Country of ref document: DE Date of ref document: 19950608 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2073218 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950803 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 19950503 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060803 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060808 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060810 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060921 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20061018 Year of fee payment: 15 |
|
BERE | Be: lapsed |
Owner name: *SELAS-KIRCHNER G.M.B.H. Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080301 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20080301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070816 |