EP0518714A1 - Current source adapted to rapid variations in the output voltage - Google Patents
Current source adapted to rapid variations in the output voltage Download PDFInfo
- Publication number
- EP0518714A1 EP0518714A1 EP92401404A EP92401404A EP0518714A1 EP 0518714 A1 EP0518714 A1 EP 0518714A1 EP 92401404 A EP92401404 A EP 92401404A EP 92401404 A EP92401404 A EP 92401404A EP 0518714 A1 EP0518714 A1 EP 0518714A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- current source
- output
- transistor
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010586 diagram Methods 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241001080024 Telles Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000003503 early effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000001869 rapid Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is DC
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is DC
- G05F3/10—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/22—Regulating voltage or current wherein the variable is DC using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
Definitions
- the present invention relates to a current source which supports rapid voltage variations on its output without passing them on to the current output. This source owes this characteristic partly to its structure and partly to its production in NPN type transistors.
- a current source is by definition a circuit which must supply stable current to another electronic circuit. But in fact, during operation, it sometimes happens that this second circuit, by changes of states, undergoes rapid variations in current, which are reflected on the output of the current source.
- the current source has a low impedance, it can supply the necessary current, but due to the low impedance there is a reaction which destabilizes the output current. If, on the contrary, the current source is at high impedance, it is more stable but cannot respond to rapid variations.
- FIG. 1 The diagram of a current source according to the known art is given in FIG. 1. It is very simple and includes a current mirror formed by the transistors Q1 and Q2 and by the current source Q3: this is controlled at starting from a reference voltage which is established at the terminals of a resistor Rref, and controlled in temperature by the standard V BG and by the transistor Q ref The transistor Q4 is mounted in mirror with the transistor Q3.
- This architecture has the advantage of being very simple, of requiring only a few transistors and of having a low consumption. It is improved in that the current mirror Q1 + Q2, in NPN transistors, which ensures the amplification makes it possible to overcome variations in current gain in transistor Q3, which is a PNP.
- PNP transistors In fact, in fast bipolar technology, PNP transistors generally have more dispersion. gain than NPN transistors.
- PNP transistors such as Q3 and Q4 have much lower dynamic performance than NPN transistors such as Q1 and Q2, because the stray capacitances of a PNP are greater than those of an NPN. Under these conditions, a rapid variation of the output current I S (or of the voltage V S at output) is not transmitted instantaneously on the basis of PNP Q3, because of its parasitic collector base capacity, and Q3 does not react. fast enough to correct this variation.
- the invention relates to a current source adapted to rapid variations in voltage on its output, comprising a branch generating the output current formed by a first transistor in series with a first resistance, this current source being characterized in that it includes means keeping the potential difference across said resistance constant.
- FIG. 2 gives the electrical diagram of the source, of current according to the invention.
- the branch which supplies a reference current I ref is substantially the same as that of FIG. 1: a transistor Q ref and a resistor R ref , controlled by temperature by a voltage source V BG , control the current flowing through a transistor Q6, in series with a resistor R6 located between the emitter of Q6 and the collector of Q ref .
- the branch which constitutes the current source proper comprises a transistor Q5, connected to the + V DC power supply , in series with a resistor R5, the free end of which constitutes the output terminal of the circuit.
- the bases of the transistors Q5 and Q6 are joined together, and polarized from V CC by a resistor R8.
- the basis of the invention is to maintain a constant potential difference across the resistor R5, which ensures a constant flow current I S whatever the output potential V S.
- This is obtained by means of a differential amplifier, formed by the transistors Q7 and Q8.
- the transistor Q7 has its base joined at the low point V S , free end of the resistor R5 and its collector connected to the power supply.
- the transistor Q8 has its base joined at the low point V B of the resistor R6, and its collector joined at the point V H common to the resistor R8 and at the bases of the transistors Q5 and Q6.
- the transmitters of the differential amplifier Q7 + Q8 are connected to a bias source, which draws a current I pol towards the supply -V EE .
- the reference current source Q ref + R ref ensures a constant potential difference V H - V B across the resistor R6 (at a junction near), and, at equilibrium, the voltage at point V B is controlled by the output voltage at point V S , or voltage at the "low" point of R5.
- the curves of FIGS. 3 to 5 illustrate the advantage of the NPN transistors, and of the circuit according to the invention, compared with the known art.
- the curve of figure 3 represents the form of tension which one forces on the exit V S : it varies from 2 V in 1 ns, that is to say a variation of 2000 V / ⁇ S, better known under the name of "slew-rate"
- the current source reacts in the two cases of variation, rising edge and falling edge.
- the quasi-straight line 1 gives the reaction of the reference current I ref , amplified to be brought to the level of the output current I S.
- the current I ref is very constant, but the output current in curve 2 undergoes two rebounds, better known under the name of "overshoot", one on the rising edge, the other on the falling edge.
- the overshoot reaches 115%, and it takes 4.8 ns for the circuit to return to equilibrium + 5%.
- Curves 3 and 4 in FIG. 5 give the correspondents of the previous curves, but for the current source according to the invention.
- the reference current curve 3
- the output current curve 4
- the overshoot is limited to 9% and the disturbance lasts only 1.5 ns.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nonlinear Science (AREA)
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Abstract
Description
La présente invention concerne une source de courant qui supporte des variations rapides de tension sur sa sortie sans les repercuter sur le courant débité. Cette source doit cette caractéristique en partie à sa structure et en partie à sa réalisation en transistors de type NPN.The present invention relates to a current source which supports rapid voltage variations on its output without passing them on to the current output. This source owes this characteristic partly to its structure and partly to its production in NPN type transistors.
Une source de courant est par définition un circuit qui doit fournir un courant stable à un autre circuit électronique. Mais en fait, au cours du fonctionnement, il arrive que ce second circuit, par des changements d'états, subisse des variations rapides en courant, qui se répercutent sur la sortie de la source de courant.A current source is by definition a circuit which must supply stable current to another electronic circuit. But in fact, during operation, it sometimes happens that this second circuit, by changes of states, undergoes rapid variations in current, which are reflected on the output of the current source.
Si la source de courant a une basse impédance, elle peut fournir le courant nécessaire, mais en raison de la faible impédance il y a une réaction qui déstabilise le courant de sortie. Si au contraire la source de courant est à haute impédance, elle est plus stable mais ne peut pas répondre aux variations rapides.If the current source has a low impedance, it can supply the necessary current, but due to the low impedance there is a reaction which destabilizes the output current. If, on the contrary, the current source is at high impedance, it is more stable but cannot respond to rapid variations.
Le schéma d'une source de courant selon l'art connu est donné en figure 1. Il est très simple et comprend un miroir de courant formé par les transistors Q1 et Q2 et par la source de courant Q3 : celle-ci est pilotée à partir d'une tension de référence qui s'établit aux bornes d'une résistance Rref, et contrôlée en température par l'étalon VBG et par le transistor Qref Le transistor Q4 est monté en miroir avec le transistor Q3.The diagram of a current source according to the known art is given in FIG. 1. It is very simple and includes a current mirror formed by the transistors Q1 and Q2 and by the current source Q3: this is controlled at starting from a reference voltage which is established at the terminals of a resistor Rref, and controlled in temperature by the standard V BG and by the transistor Q ref The transistor Q4 is mounted in mirror with the transistor Q3.
Si R3 = R4 et si les transistors Q3 et Q4 ont mêmes géométries, ils débitent les mêmes courants et en particulier Q3 débite un courant égal à Iref. Si au contraire, le transistor Q1 a une géométrie "n" fois plus importante que celle de Q2, il débite "n" fois plus : par exemple si n = 5, le courant de sortie IS est 6 fois plus important que le courant de référence Iref (1Iref à travers Q2+5Iref à travers Q1).If R3 = R4 and if the transistors Q3 and Q4 have the same geometries, they debit the same currents and in particular Q3 debit a current equal to I ref . If on the contrary, the transistor Q1 has a geometry "n" times larger than that of Q2, it flow "n" times more: for example if n = 5, the output current I S is 6 times greater than the reference current I ref (1I ref through Q2 + 5I ref through Q1).
Cette architecture a l'avantage d'être très simple, de ne nécessiter que peu de transistors et d'avoir une consommation faible. Elle est améliorée en ce sens que le miroir de courant Q1 + Q2, en transistors NPN, qui assure l'amplification permet de s'affranchir des variations de gain en courant en transistor Q3, qui est un PNP.This architecture has the advantage of being very simple, of requiring only a few transistors and of having a low consumption. It is improved in that the current mirror Q1 + Q2, in NPN transistors, which ensures the amplification makes it possible to overcome variations in current gain in transistor Q3, which is a PNP.
En effet, en technologie bipolaire rapide, les transistors PNP ont, de façon générale, plus de dispersion. du gain que les transistors NPN.In fact, in fast bipolar technology, PNP transistors generally have more dispersion. gain than NPN transistors.
En outre, les transistors PNP tels que Q3 et Q4 ont des performances dynamiques très inférieures à celles des transistors NPN tels que Q1 et Q2, parce que les capacités parasites d'un PNP sont plus importantes que celles d'un NPN. Dans ces conditions, une variation rapide du courant de sortie IS (ou de la tension VS en sortie) n'est pas transmise instantanément sur la base du PNP Q3, à cause de sa capacité parasite collecteur base, et Q3 ne réagit pas assez vite pour corriger cette variation.In addition, PNP transistors such as Q3 and Q4 have much lower dynamic performance than NPN transistors such as Q1 and Q2, because the stray capacitances of a PNP are greater than those of an NPN. Under these conditions, a rapid variation of the output current I S (or of the voltage V S at output) is not transmitted instantaneously on the basis of PNP Q3, because of its parasitic collector base capacity, and Q3 does not react. fast enough to correct this variation.
Enfin, la modulation du courant collecteur IC en fonction de la tension collecteur-émetteur, connu sous l'appellation de tension "d" 'Early", est très faible pour un PNP, ce qui se traduit par une dépendance du courant de sortie IS avec la tension de sortie VS d'où une imprécision statique.Finally, the modulation of the collector current I C as a function of the collector-emitter voltage, known as the voltage "d"'Early", is very low for a PNP, which results in a dependence on the output current. I S with the output voltage V S hence a static imprecision.
Pour remédier à ces inconvénients, l'invention propose :
- de réaliser une source de courant en utilisant exclusivement des transistors NPN
- de modifier l'architecture de cette source de courant, notamment en remplaçant le miroir de courant par un amplificateur différentiel, qui fonctionne de telle façon qu'il maintient une différence de potentiel constante aux bornes d'une résistance, ce qui assure un courant débité constant, quel que soit le potentiel sur la sortie La conséquence en est que la source de courant selon l'invention peut supporter des variations rapides de tension sur sa section : elle ne les repercute pas et continue de fournir un courant de sortie IS stable.
- to realize a current source using exclusively NPN transistors
- to modify the architecture of this current source, in particular by replacing the current mirror with a differential amplifier, which operates in such a way that it maintains a constant potential difference across a resistance, which ensures a constant current flow, whatever the potential on the output The consequence is that the current source according to the invention can withstand rapid voltage variations on its section: it does not repercussion and continues to provide a stable output current I S.
De façon plus précise l'invention concerne une source de courant adaptée à des variations rapides de tension sur sa sortie, comportant une branche génératrice du courant de sortie formée par un premier transistor en série avec une première résistance cette source de courant étant caractérisée en ce qu'elle comporte des moyens maintenant constante la différence de potentiel aux bornes de ladite résistance.More precisely, the invention relates to a current source adapted to rapid variations in voltage on its output, comprising a branch generating the output current formed by a first transistor in series with a first resistance, this current source being characterized in that it includes means keeping the potential difference across said resistance constant.
L'invention sera mieux comprise par la description plus détaillée qui suit maintenant, en liaison avec les figures jointes en annexe, qui représentent :
- figure 1 : schéma électrique d'une source de courant selon l'art connu, exposé précédemment ;
- figure 2 : schéma électrique d'lune source de courant selon l'invention ;
- figures 3 à 5 : courbes de comparaison, pour une variation imposée (figure 3), entre la réponse de la source selon l'art connu (figure 4) et la réponse de la .source selon l'invention (figure 5).
- Figure 1: electrical diagram of a current source according to the known art, exposed above;
- Figure 2: electrical diagram of a current source according to the invention;
- Figures 3 to 5: comparison curves, for an imposed variation (Figure 3), between the response of the source according to known art (Figure 4) and the response of the source according to the invention (Figure 5).
La figure 2 donne le schéma électrique de la source, de courant selon l'invention.FIG. 2 gives the electrical diagram of the source, of current according to the invention.
Alimentée entre une tension +VCC positive et une tension - VEE négative, la branche qui fournit un courant de référence Iref est sensiblement la même que celle de la figure 1 : un transistor Qref et une résistance Rref, asservis en température par une source de tension VBG, contrôlent le courant qui traverse un transistor Q6, en série avec une résistance R6 située entre l'émetteur de Q6 et le collecteur de Qref.Fed between a positive voltage + V DC and a negative voltage - V EE , the branch which supplies a reference current I ref is substantially the same as that of FIG. 1: a transistor Q ref and a resistor R ref , controlled by temperature by a voltage source V BG , control the current flowing through a transistor Q6, in series with a resistor R6 located between the emitter of Q6 and the collector of Q ref .
La branche qui constitue la source de courant à proprement parler comprend un transistor Q5, connecté à l'alimentation + VCC , en série avec une résistance R5, dont l'extrémité libre constitue la borne de sortie du circuit. Les bases des transistors Q5 et Q6 sont réunies entre elles, et polarisées à partir de VCC par une résistance R8.The branch which constitutes the current source proper comprises a transistor Q5, connected to the + V DC power supply , in series with a resistor R5, the free end of which constitutes the output terminal of the circuit. The bases of the transistors Q5 and Q6 are joined together, and polarized from V CC by a resistor R8.
Le fondement de l'invention est de maintenir une différence de potentiel constante aux bornes de la résistance R5, ce qui assure un courant débité IS constant quel quel soit le potentiel de sortie VS. Ceci est obtenu au moyen d'un amplificateur différentiel, formé par les transistors Q7 et Q8 Le transistor Q7 a sa base réunie au point bas VS, extrémité libre de la résistance R5 et son collecteur branché sur l'alimentation. Le transistor Q8 a sa base réunie au point bas VB de la résistance R6, et son collecteur réuni au point VH commun à la résistance R8 et aux bases des transistors Q5 et Q6.The basis of the invention is to maintain a constant potential difference across the resistor R5, which ensures a constant flow current I S whatever the output potential V S. This is obtained by means of a differential amplifier, formed by the transistors Q7 and Q8. The transistor Q7 has its base joined at the low point V S , free end of the resistor R5 and its collector connected to the power supply. The transistor Q8 has its base joined at the low point V B of the resistor R6, and its collector joined at the point V H common to the resistor R8 and at the bases of the transistors Q5 and Q6.
Les émetteurs de l'amplificateur différentiel Q7 + Q8 sont branchés sur une source de polarisation, qui tire un courant Ipol vers l'alimentation -VEE.The transmitters of the differential amplifier Q7 + Q8 are connected to a bias source, which draws a current I pol towards the supply -V EE .
On peut observer la symétrie du schéma, mise à part la référence Qref + Rref, ainsi que l'alimentation de Q7 à partir de VCC et celle de Q8 à partir de VH. Mais la tension au point VH correspond, à une jonction émetteur/base de Q5 près, à la tension à une première extrémité "haute" de R5, et la tension au point VB correspond, à travers l'amplificateur différentiel, à la tension à une deuxième extrémité "basse" de R5, qui est en outre la tension de sortie VS.We can observe the symmetry of the diagram, apart from the reference Q ref + R ref , as well as the supply of Q7 from V CC and that of Q8 from V H. But the voltage at point V H corresponds, to an emitter / base junction of Q5 near, to the voltage at a first "high" end of R5, and the voltage at point V B corresponds, through the differential amplifier, to the voltage at a second "low" end of R5, which is also the output voltage V S.
Ce schéma pourrait fonctionner, avec adaptation, avec des transistors de type PNP, mais, pour atteindre l'objectif qui est que le courant IS reste constant si la tension VS fluctue, il est impératif de le réaliser exclusivement avec des transistors NPN, qui ont moins de capacité parasite de base.This scheme could work, with adaptation, with PNP type transistors, but, to achieve the objective which is that the current I S remains constant if the voltage V S fluctuates, it is imperative to carry it out exclusively with NPN transistors, that have less basic stray capacity.
En fonctionnement, la source de courant de référence Qref + Rref assure une différence de potentiel constante VH - VB aux bornes de la résistance R6 (à une jonction près), et, à l'équilibre, la tension au point VB est asservie à la tension de sortie au point VS, ou tension au point "bas" de R5.In operation, the reference current source Q ref + R ref ensures a constant potential difference V H - V B across the resistor R6 (at a junction near), and, at equilibrium, the voltage at point V B is controlled by the output voltage at point V S , or voltage at the "low" point of R5.
Mais simultanément, la tension au point "haut' VH de R5 (à une jonction près) est asservie au potentiel de sortie VS, à travers l'amplificateur différentiel rebouclé en gain unité. Ainsi, si la tension de sortie VS fluctue, par suite du fonctionnement, la tension en VH l'accompagne dans sa fluctuation, et comme la différence VH - VB est constante, la différence VH - VS est également constante, et le courant de sortie IS est constant.But simultaneously, the voltage at the high point V H of R5 (at a junction near) is slaved to the output potential V S , through the differential amplifier looped back in unity gain. Thus, if the output voltage V S fluctuates , as a result of operation, the voltage in V H accompanies it in its fluctuation, and as the difference V H - V B is constant, the difference V H - V S is also constant, and the output current I S is constant .
L'amplification en courant est obtenue par la géométrie des composants symétriques Q5 + R5 et Q6 + R6. Si le courant IS doit être égal à "n" fois le courant Iref les dimensions géométriques du transistor Q5 sont égales à "n" fois celles du transistor Q6, et la valeur de la résistance R5 est égale à "1/n" fois celle de la résistance R6. Ainsi, à titre purement explicatif, pour débiter 3 mA avec un courant de référence de 500 A, comme dans l'exemple de la figure 1, il faut que Q5 ait une géométrie égale à 6 fois celle de Q6, et que R5 = R6/6.The current amplification is obtained by the geometry of the symmetrical components Q5 + R5 and Q6 + R6. If the current I S must be equal to "n" times the current I ref the geometric dimensions of the transistor Q5 are equal to "n" times those of the transistor Q6, and the value of the resistance R5 is equal to "1 / n" times that of resistance R6. Thus, purely by way of explanation, to output 3 mA with a reference current of 500 A, as in the example in Figure 1, it is necessary that Q5 has a geometry equal to 6 times that of Q6, and that R5 = R6 / 6.
L'utilisation exclusive de transistors NPN qui ont moins de capacité parasite de base, entraîne deux types d'avantages :
- en dynamique, on s'affranchit des effets capacitifs de la base de Q7 sur la sortie VS. Seul subsiste un effet capacitif sur le transistor Qref, mais il n'intervient pas sur la sortie et il peut être réduit en diminuant la géométrie de Qref ;
- en statique, la variation de IS en fonction de VS depend de l'effet early du transistor Qref, qui est réduite parce qu'un transistor NPN a une tension d'early plus grande qu'un PNP, ainsi que de l'offset de l'amplificateur utilisé.
- in dynamics, one overcomes the capacitive effects of the base of Q7 on the output V S. Only a capacitive effect remains on the transistor Q ref , but it does not intervene on the output and it can be reduced by reducing the geometry of Q ref ;
- in static, the variation of I S as a function of V S depends on the early effect of the transistor Q ref , which is reduced because an NPN transistor has an early voltage higher than a PNP, as well as offset of the amplifier used.
Les courbes des figures 3 à 5 illustrent l'intérêt des transistors NPN, et du circuit selon l'invention, par rapport à l'art connu.The curves of FIGS. 3 to 5 illustrate the advantage of the NPN transistors, and of the circuit according to the invention, compared with the known art.
La courbe de la figure 3 représente la forme de tension qu'on force sur la sortie VS : elle varie de 2 V en 1 ns, soit une variation de 2000 V/ µS, mieux connue sous le nom de "slew-rate" On observe comment réagit la source de courant dans les deux cas de variation, front montant et front descendant.The curve of figure 3 represents the form of tension which one forces on the exit V S : it varies from 2 V in 1 ns, that is to say a variation of 2000 V / µS, better known under the name of "slew-rate" We observe how the current source reacts in the two cases of variation, rising edge and falling edge.
Dans le cas de l'art connu, en figure 4, la quasi-droite 1 donne la réaction du courant de référence Iref, amplifié pour être amené au niveau du courant de sortie IS. Le courant Iref est très constant, mais le courant de sortie en courbe 2 subit deux rebonds, mieux connus sous le nom d"overshoot", l'un au front montant, l'autre au front descendant. Pour une impulsion à 2000 V/ µS, l'overshoot atteint 115 %, et il faut 4,8 ns pour que le circuit revienne à l'équilibre + 5 %.In the case of the known art, in FIG. 4, the quasi-straight line 1 gives the reaction of the reference current I ref , amplified to be brought to the level of the output current I S. The current I ref is very constant, but the output current in
Les courbes 3 et 4 de la figure 5 donnent les correspondants des courbes précédentes, mais pour la source de courant selon l'invention. Pour une même impulsion de 2 V, avec un slew-rate de 2000 V/ µS, on voit que le courant de référence (courbe 3) subit une très légère perturbation, mais le courant de sortie (courbe 4) est de beaucoup moins perturbé que dans l'art connu. L'overshoot est limité à 9 % et la perturbation ne dure que 1,5 ns.
Cette très sensible amélioration est due à l'emploi exclusif dans la source de courant selon l'invention de transistors de type NPN, qui ont moins de capacités parasites. Une source de courant peut être modèlisée, sous la forme d'un générateur de courant (Id), en parallèle avec une résistance (RS) et avec une capacité (Cd). Pour un même courant généré Id = 3 mA, la source de courant de la figure 1 (art connu) a une résistance RS = 10 k ohm et une capacité parasite Cd = 2,3pF, tandis que la source de courant selon l'invention a :
ce qui revient à diviser par 15, 3 la capacité de la source, et donc à améliorer son temps de réponse, permettant ainsi que le courant débité soit indépendant des variations de la tension de sortie.This very significant improvement is due to the exclusive use in the current source according to the invention of NPN type transistors, which have less stray capacitances. A current source can be modeled, in the form of a current generator (I d ), in parallel with a resistor (R S ) and with a capacitance (C d ). For the same generated current I d = 3 mA, the current source of FIG. 1 (known art) has a resistance R S = 10 k ohm and a capacity parasitic C d = 2.3 pF, while the current source according to the invention has:
This amounts to dividing the capacity of the source by 15.3, and therefore improving its response time, thus allowing the current output to be independent of variations in the output voltage.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9107320 | 1991-06-14 | ||
FR9107320A FR2677781B1 (en) | 1991-06-14 | 1991-06-14 | CURRENT SOURCE SUITABLE FOR RAPID OUTPUT VOLTAGE VARIATIONS. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0518714A1 true EP0518714A1 (en) | 1992-12-16 |
EP0518714B1 EP0518714B1 (en) | 1996-06-26 |
Family
ID=9413872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92401404A Expired - Lifetime EP0518714B1 (en) | 1991-06-14 | 1992-05-22 | Current source adapted to rapid variations in the output voltage |
Country Status (4)
Country | Link |
---|---|
US (1) | US5391981A (en) |
EP (1) | EP0518714B1 (en) |
DE (1) | DE69211779T2 (en) |
FR (1) | FR2677781B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0569165A2 (en) * | 1992-05-08 | 1993-11-10 | Sony Corporation | Power supply circuit |
WO2015153087A1 (en) * | 2014-04-03 | 2015-10-08 | Qualcomm Incorporated | Power-efficient, low-noise, and process/voltage/temperature (pvt)-insensitive regulator for a voltage-controlled oscillator (vco) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07202593A (en) * | 1993-12-29 | 1995-08-04 | Matsushita Electric Ind Co Ltd | Voltage current conversion circuit |
US5483151A (en) * | 1994-09-27 | 1996-01-09 | Mitsubishi Denki Kabushiki Kaisha | Variable current source for variably controlling an output current in accordance with a control voltage |
WO1996010865A1 (en) * | 1994-10-03 | 1996-04-11 | Motorola Inc. | Method and apparatus for providing a low voltage level shift |
KR100735440B1 (en) * | 1998-02-13 | 2007-10-24 | 로무 가부시키가이샤 | Semiconductor device and magnetic disk device |
IT1302276B1 (en) * | 1998-09-25 | 2000-09-05 | St Microelectronics Srl | CURRENT MIRROR CIRCUIT WITH RECOVERY, HIGH OUTPUT IMPEDANCE |
US7265620B2 (en) * | 2005-07-06 | 2007-09-04 | Pericom Semiconductor Corp. | Wide-band high-gain limiting amplifier with parallel resistor-transistor source loads |
FR2917557A1 (en) | 2007-06-15 | 2008-12-19 | Commissariat Energie Atomique | DEVICE FOR DEMODULATING A SIGNAL COMPRISING INFORMATION TRANSLATING BY MODULATION OF THE PHASE OF A CARRIER |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319179A (en) * | 1980-08-25 | 1982-03-09 | Motorola, Inc. | Voltage regulator circuitry having low quiescent current drain and high line voltage withstanding capability |
EP0139425A1 (en) * | 1983-08-31 | 1985-05-02 | Kabushiki Kaisha Toshiba | A constant current source circuit |
EP0219682A2 (en) * | 1985-10-22 | 1987-04-29 | Motorola, Inc. | A current to voltage converter circuit |
US4733161A (en) * | 1986-02-25 | 1988-03-22 | Kabushiki Kaisha Toshiba | Constant current source circuit |
US4879524A (en) * | 1988-08-22 | 1989-11-07 | Texas Instruments Incorporated | Constant current drive circuit with reduced transient recovery time |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4628248A (en) * | 1985-07-31 | 1986-12-09 | Motorola, Inc. | NPN bandgap voltage generator |
US5049807A (en) * | 1991-01-03 | 1991-09-17 | Bell Communications Research, Inc. | All-NPN-transistor voltage regulator |
-
1991
- 1991-06-14 FR FR9107320A patent/FR2677781B1/en not_active Expired - Fee Related
-
1992
- 1992-05-22 DE DE69211779T patent/DE69211779T2/en not_active Expired - Fee Related
- 1992-05-22 EP EP92401404A patent/EP0518714B1/en not_active Expired - Lifetime
- 1992-06-12 US US07/897,819 patent/US5391981A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319179A (en) * | 1980-08-25 | 1982-03-09 | Motorola, Inc. | Voltage regulator circuitry having low quiescent current drain and high line voltage withstanding capability |
EP0139425A1 (en) * | 1983-08-31 | 1985-05-02 | Kabushiki Kaisha Toshiba | A constant current source circuit |
EP0219682A2 (en) * | 1985-10-22 | 1987-04-29 | Motorola, Inc. | A current to voltage converter circuit |
US4733161A (en) * | 1986-02-25 | 1988-03-22 | Kabushiki Kaisha Toshiba | Constant current source circuit |
US4879524A (en) * | 1988-08-22 | 1989-11-07 | Texas Instruments Incorporated | Constant current drive circuit with reduced transient recovery time |
Non-Patent Citations (1)
Title |
---|
I.B.M. TECHNICAL DISCLOSURE BULLETIN vol. 29, no. 3, Août 1986, NEW YORK, USA pages 1368 - 1369; 'pnp current source reference circuit' * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0569165A2 (en) * | 1992-05-08 | 1993-11-10 | Sony Corporation | Power supply circuit |
EP0569165A3 (en) * | 1992-05-08 | 1995-01-11 | Sony Corp | Power supply circuit. |
WO2015153087A1 (en) * | 2014-04-03 | 2015-10-08 | Qualcomm Incorporated | Power-efficient, low-noise, and process/voltage/temperature (pvt)-insensitive regulator for a voltage-controlled oscillator (vco) |
US9547324B2 (en) | 2014-04-03 | 2017-01-17 | Qualcomm Incorporated | Power-efficient, low-noise, and process/voltage/temperature (PVT)—insensitive regulator for a voltage-controlled oscillator (VCO) |
Also Published As
Publication number | Publication date |
---|---|
FR2677781B1 (en) | 1993-08-20 |
US5391981A (en) | 1995-02-21 |
DE69211779D1 (en) | 1996-08-01 |
FR2677781A1 (en) | 1992-12-18 |
EP0518714B1 (en) | 1996-06-26 |
DE69211779T2 (en) | 1996-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0680140B1 (en) | Differential amplifier with common mode control | |
EP0518714B1 (en) | Current source adapted to rapid variations in the output voltage | |
EP0675422B1 (en) | Regulator circuit generating a reference voltage independent of temperature or supply voltage | |
EP0619647B1 (en) | Amplifier architecture and application for a band gap voltage generator | |
FR2566146A1 (en) | IMPROVED PROHIBITED BAND VOLTAGE REFERENCE CIRCUIT | |
FR2638913A1 (en) | METHOD AND CIRCUIT FOR PRODUCING REFERENCE VOLTAGE | |
FR2561471A1 (en) | POWER TRANSISTOR SWITCHING CONTROL CIRCUIT | |
EP1647091B1 (en) | Low-consumption voltage amplifier | |
FR2493069A1 (en) | INTEGRATED AMPLIFIER IN CLASS AB IN CMOS TECHNOLOGY | |
EP0613241A1 (en) | Output common-mode voltage control device of a balanced amplifier | |
EP0524294B1 (en) | Amplification circuit with exponential gain control | |
EP1294095A2 (en) | Current limiting logic interface circuit | |
EP0292071B1 (en) | Current mirror with a high output voltage | |
FR2688905A1 (en) | CURRENT MIRROR CIRCUIT WITH ACCELERATED SWITCHING. | |
FR2579045A1 (en) | OPTOELECTRONIC TRANSDUCER | |
EP0533230B1 (en) | Differential amplifier and mixer oscillator incorporating the same | |
FR2694850A1 (en) | Amplifier stage with low thermal distortion. | |
FR2634604A1 (en) | ||
EP0353808B1 (en) | Current compensating circuit | |
EP0829796A1 (en) | Voltage controller with attenuated temperature sensitivity | |
EP0242304B1 (en) | Follower amplifier having a great slew rate | |
FR2681961A1 (en) | PRECISE CURRENT GENERATOR. | |
FR2519211A1 (en) | OUTPUT STAGE FOR INTEGRATED CIRCUIT WITH DOOR NETWORK OF ECL TECHNIQUE REGULATED WITH RESPECT TO VARIATIONS ASSOCIATED WITH OPERATING TEMPERATURES | |
EP0479377B1 (en) | Current source with a given ratio between input and output currents | |
FR2881850A1 (en) | GENERATING CIRCUIT FOR A FLOATING REFERENCE VOLTAGE, IN CMOS TECHNOLOGY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT NL |
|
17P | Request for examination filed |
Effective date: 19930113 |
|
17Q | First examination report despatched |
Effective date: 19940719 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THOMSON-CSF SEMICONDUCTEURS SPECIFIQUES |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69211779 Country of ref document: DE Date of ref document: 19960801 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960905 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19970416 Year of fee payment: 6 Ref country code: GB Payment date: 19970416 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970417 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980522 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19981201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050522 |