[go: up one dir, main page]

EP0515270A1 - Procédé d'hydrocraquage de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H-Y - Google Patents

Procédé d'hydrocraquage de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H-Y Download PDF

Info

Publication number
EP0515270A1
EP0515270A1 EP92401371A EP92401371A EP0515270A1 EP 0515270 A1 EP0515270 A1 EP 0515270A1 EP 92401371 A EP92401371 A EP 92401371A EP 92401371 A EP92401371 A EP 92401371A EP 0515270 A1 EP0515270 A1 EP 0515270A1
Authority
EP
European Patent Office
Prior art keywords
weight
catalyst
metal
zeolite
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92401371A
Other languages
German (de)
English (en)
Other versions
EP0515270B1 (fr
Inventor
Pierre-Henri Bigeard
Alain Billon
Pierre Dufresne
Samuel Mignard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0515270A1 publication Critical patent/EP0515270A1/fr
Application granted granted Critical
Publication of EP0515270B1 publication Critical patent/EP0515270B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/10Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only cracking steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/929Special chemical considerations
    • Y10S585/946Product is waxy polymer

Definitions

  • the present invention relates to a process for converting paraffins from the Fischer-Tropsch process.
  • it uses bifunctional zeolitic catalysts for the hydrocracking of paraffins originating from the Fischer-Tropsch process, making it possible to obtain highly recoverable products such as kerosene, diesel oil and especially base oils.
  • the present invention relates to a process for converting paraffins from the Fischer-Tropsch process using a bifunctional catalyst containing a faujasite-type zeolite which can be specially modified, dispersed in a matrix generally based on alumina, silica, silica-alumina, alumina-boron oxide, magnesia, silica-magnesia, zirconia, titanium oxide or based on a combination of at least two of the preceding oxides, or based on a clay, or d 'a combination of the preceding oxides with clay.
  • the role of this matrix is in particular to help shape the zeolite, in other words to produce it in the form of agglomerates, beads, extrudates, pellets, etc., which can be placed in an industrial reactor.
  • the proportion of matrix in the catalyst is between 20 and 97% by weight and preferably between 50 and 97% by weight.
  • the synthesis gas (CO + H2) is catalytically transformed into oxygenated products and hydrocarbons, essentially linear, in gaseous, liquid or solid form.
  • These products are free of heteroatomic impurities such as for example sulfur, nitrogen or metals.
  • these products cannot be used as such, in particular because of their cold resistance properties which are not very compatible with the usual uses of petroleum fractions.
  • the pour point of a linear hydrocarbon containing 20 carbon atoms per molecule (boiling point equal to approximately 344 ° C, that is to say included in the diesel cut) is +37 ° C approximately when the customs specifications require a pour point below -7 ° C for commercial gas oils.
  • These hydrocarbons from the Fischer-Tropsch process must then be transformed into more recoverable products such as kerosene and diesel after having undergone catalytic hydrocracking reactions.
  • the catalysts used in hydrocracking are all of the bifunctional type combining an acid function with a hydrogenating function.
  • the acid function is provided by supports of large surfaces (generally, 150 to 800 m2.g ⁇ 1) having a surface acidity, such as halogenated aluminas (chlorinated or fluorinated in particular), combinations of oxides of boron and aluminum, amorphous silica-aluminas and zeolites.
  • the hydrogenating function is provided either by one or more metals from group VIII of the periodic table of elements, such as iron, cobalt, nickel, ruthenium, rhodium, palladium osmium, iridium and platinum, or by a combination of at least one metal of group VI of the periodic table such as chromium, molybdenum and tungsten and of at least one metal of group VIII.
  • group VIII of the periodic table of elements such as iron, cobalt, nickel, ruthenium, rhodium, palladium osmium, iridium and platinum
  • at least one metal of group VI of the periodic table such as chromium, molybdenum and tungsten and of at least one metal of group VIII.
  • the balance between the two acid and hydrogenating functions is the fundamental parameter which governs the activity and the selectivity of the catalyst.
  • a weak acid function and a strong hydrogenating function give catalysts which are not very active and selective towards isomerization whereas a strong acid function and a weak hydrogenating function give very active and selective catalysts towards cracking. It is therefore possible, by judiciously choosing each of the functions, to adjust the activity / selectivity pair of the catalyst.
  • the acid supports there are, in order of increasing acidity, aluminas, halogenated aluminas, amorphous silica-aluminas and zeolites.
  • Patent EP-A.147873 describes a catalyst comprising an element of group VIII on a support during a process carrying out the Fischer-Tropsch synthesis reaction then hydrocracking.
  • Patent application EP.B.356560 describes the preparation of a very specific Y zeolite which can be used in a catalyst of the Fischer-Tropsch reaction or in a hydrocracking catalyst.
  • the catalyst of the present invention contains a Y zeolite with a faujasite structure (Zeolite Molecular Sieves Structure, chemistry and use, DW Breck, J. Willey and Sons, 1973).
  • Y zeolites that can be used, one will preferably use a stabilized Y zeolite, commonly called ultrastable or USY, either in the form partially exchanged with rare earth cations of atomic number. 57 to 71 inclusive so that its rare earth content expressed in% by weight of rare earth oxides is less than 10% by weight, preferably less than 6% by weight, or in hydrogen form.
  • the zeolite used in the catalyst of the present invention is preferably an acidic zeolite HY characterized by different specifications: a SiO2 / Al2O3 molar ratio greater than 4.5 and preferably between 8 and 70; a sodium content of less than 1% by weight and preferably less than 0.5% by weight, determined on the zeolite calcined at 1100 ° C; a crystalline parameter a o of the elementary mesh less than 24.70 x 10 ⁇ 10 meter and preferably between 24.24 x 10 ⁇ 10 meter and 24.55 x 10 ⁇ 10 meter; a specific surface area determined by the BET method greater than 400m2 / g and preferably greater than 550m2 / g.
  • This zeolite is known from the prior art (French patent 2,561,946).
  • the NaY zeolite generally used as raw material has more than 5% by weight of sodium and has a SiO2 / Al2O3 molar ratio of between 4 and 6. It is not used as such, but it must be subjected to a series of treatments stabilization aimed at increasing its acidity and thermal resistance.
  • the stabilizations of zeolite Y are most commonly carried out, either by the introduction of rare earth cations or group IIA metal cations, or by hydrothermal treatments. All these treatments are described in French patent FR 2 561 946.
  • the HY or NH4Y zeolite thus obtained or any HY or NH4Y zeolite having these characteristics can be introduced at this stage, into the matrix described above in the form of an alumina gel.
  • the catalyst thus obtained comprises, by weight, from 20 to 97% of matrix, 3 to 80% of zeolite and at least one hydro-dehydrogenation component.
  • One of the preferred methods in the present invention, for the introduction of the zeolite into the matrix consists in co-kneading the zeolite and the gel and then passing the dough thus obtained through a die to form extrudates of diameter between 0.4 and 4 millimeters.
  • the hydro-dehydrogenation component of the catalyst of the present invention is for example at least one compound, for example an oxide, of a metal from group VIII of the periodic table of the elements, (in particular nickel, palladium or platinum ), or a combination of at least one compound of a group VI metal (especially molybdenum or tungsten) and at least one compound of a group VIII metal (especially cobalt or nickel) of the periodic classification of the elements.
  • the concentrations of the metal compounds are the following: between 0.01 and 5% by weight of group VIII metals, and preferably between 0.03 and 3% by weight, in the case where it is they are only noble metals of the palladium or platinum type; between 0.01 and 15% by weight of group VIII metals, and preferably between 0.05 and 10% by weight, in the case of non-noble metals of group VIII of the nickel type for example; when at least one metal or group VIII metal compound and at least one group VI metal compound are used, between 5 and 40% by weight of a combination of at least one compound is used (oxide in particular) of a group VI metal (molybdenum or tungsten in particular) and at least one metal or compound of group VIII metal (cobalt or nickel in particular) and preferably between 12 and 30% by weight, with a weight ratio (expressed as metal oxides) metals of group VIII to metals of group VI between 0.05 and 0.8 and preferably between 0.13 and 0.5.
  • This catalyst may advantageously contain phosphorus; in fact, it is known in the prior art that this compound brings two advantages to hydrotreatment catalysts: ease of preparation during in particular the impregnation of nickel and molybdenum solutions, and better hydrogenation activity.
  • the phosphorus content expressed as a concentration of phosphorus oxide P2O5, will be less than 15% by weight and preferably less than 10% by weight.
  • the hydrogenating function as defined above can be introduced into the catalyst at various levels of the preparation and in various ways as described in French patent FR 2 561 946.
  • the NH4Y or HY zeolite catalysts as described above undergo, if necessary, a final calcination step in order to finally obtain a Y zeolite catalyst in hydrogen form.
  • the catalysts thus finally obtained are used for the hydrocracking of paraffin feeds from the Fischer-Tropsch process under the following conditions: hydrogen is reacted with the feed in contact with a catalyst 1 contained in the reactor R1 (or first reaction zone R1) whose role is to eliminate unsaturated and oxygenated hydrocarbon molecules produced during Fischer-Tropsch synthesis.
  • the effluent from reactor R1 is brought into contact with a second catalyst 2 contained in reactor R2 (or second reaction zone R2) whose role is to ensure the hydrocracking reaction.
  • the effluent from reactor 2 is divided into various conventional petroleum fractions such as gas, light petrol, heavy petrol, kerosene, diesel and "residue”; the fraction called “residue” represents the heaviest fraction obtained during fractionation.
  • the choice of temperatures during the effluent fractionation step from reactor 2 can vary very greatly depending on the specific needs of the refiner. The adjustment of the reaction temperature makes it possible to obtain variable yields from each cut.
  • the catalyst 1 of the first stage consists of an alumina-based matrix, preferably not containing a zeolite, and of at least one metal having a hydrodehydrogenating function.
  • Said matrix can also contain silica-alumina, boron oxide, magnesia, zirconia, titanium oxide, clay or a combination of these oxides.
  • the hydro-dehydrogenating function is provided by at least one metal or group VIII metal compound such as nickel and cobalt in particular. It is possible to use a combination of at least one metal or compound of group VI metal (in particular molybdenum or tungsten) and of at least one metal or compound of group VIII metal (in particular cobalt or nickel).
  • the total concentration of metals of groups VI and VIII, expressed in metal oxides, is between 5 and 40% by weight and preferably between 7 and 30% by weight and the weight ratio expressed in metal oxide metal (or metals) of the group VI on metal (or metals) of group VIII is between 1.25 and 20 and preferably between 2 and 10.
  • this catalyst may contain phosphorus.
  • the phosphorus content, expressed as a concentration of phosphorus oxide P2O5, will be less than 15% by weight and preferably less than 10% by weight.
  • the catalyst contained in the R2 repeater is the catalyst described in the main part of the text. It especially comprises at least one HY zeolite characterized by a SiO2 / Al2O3 molar ratio greater than 4.5 and preferably between 8 and 70; a sodium content of less than 1% by weight and preferably less than 0.5% by weight determined on the zeolite calcined at 1100 ° C; a crystalline parameter a o of the elementary mesh less than 24.70 x 10 ⁇ 10 meter and preferably between 24.24 x 10 ⁇ 10 meter and 24.55 x 10 ⁇ 10 meter; a specific surface area determined by the BET method greater than 400m2.g ⁇ 1 and preferably greater than 550m2.g ⁇ 1.
  • the alumina gel used is supplied by the company Condisputeda under the reference SB3. After mixing, the dough obtained is extruded through a die with a diameter of 1.4mm. The extrudates are calcined and then impregnated to dryness with a solution of mixture of ammonium heptamolybdate, nickel nitrate and orthophosphoric acid, and finally calcined in air at 550 ° C.
  • the weight contents, expressed in active oxides, are as follows (relative to the catalyst):
  • the NaY zeolite is subjected to two exchanges in ammonium chloride solutions so that the sodium level is 2.6% by weight.
  • the product is then introduced into a cold oven and calcined in air up to 400 ° C. At this temperature, a flow of water corresponding to a partial pressure of 50.7 kPa is introduced into the calcination atmosphere. The temperature is then brought to 565 ° C for two hours.
  • the product is then subjected to an exchange with an ammonium chloride solution followed by a very gentle acid treatment under the following conditions: volume of hydrochloric acid 0.4 N on weight of solid of 10, duration of 3 hours.
  • the sodium level then drops to 0.6% by weight, the SiO2 / Al2O3 ratio is 7.2.
  • This product is then subjected to a brutal calcination in a static atmosphere at 780 ° C. for 3 hours, then again taken up in acid solution with hydrochloric acid of normality 2 and a ratio volume of solution to weight of zeolite of 10.
  • the crystalline parameter is 24.28 x 10 ⁇ 10 meter, the specific surface of 825m2 / g, the water recovery capacity is 11.7, the sodium ion recovery capacity is 1.0 expressed by weight of sodium per 100 grams of dealuminated zeolite .
  • the zeolite thus obtained is kneaded with alumina of the SB3 type supplied by the company Condisputeda. The kneaded dough is then extruded through a die with a diameter of 1.4 mm.
  • the extrudates are then calcined then impregnated to dryness with a solution of a mixture of ammonium heptamolybdate, nickel nitrate and orthophosphoric acid, and finally calcined in air at 550 ° C.
  • the weight contents, expressed in active oxides, are as follows (relative to the catalyst):
  • silica-alumina prepared in the laboratory containing 25% by weight of SiO2 and 75% by weight of Al2O3. 3% by weight of pure nitric acid is added to 67% relative to the dry weight of silica-alumina powder in order to obtain the peptization of the powder.
  • the dough obtained is extruded through a die with a diameter of 1.4mm.
  • the extrudates are calcined then impregnated to dryness with a solution of a salt of platinum chloride tetramine Pt (NH3) 4Cl2 and finally calcined in air at 550 ° C.
  • the platinum content of the final catalyst is 0.6% by weight.
  • the catalytic test unit comprises a single reactor in a fixed bed, with upward flow of charge ("up-flow"), into which 80 ml of catalyst is introduced.
  • Catalysts A, B and C are sulfurized by an n-hexane / DMDS + aniline mixture up to 320 ° C.
  • Catalyst D undergoes a reduction under hydrogen in situ in the reactor.
  • the total pressure is 5 MPa
  • the hydrogen flow rate is 1000 liters of gaseous hydrogen per liter of charge injected
  • the hourly volume speed is 0.5.
  • the catalytic performances are expressed by the temperature which makes it possible to reach a net conversion level of 50% and by the gross selectivity. These catalytic performances are measured on the catalyst after a stabilization period, generally at least 48 hours, has been observed.
  • the gross selectivity SB is taken equal to:
  • Example 3 In the case of Example 3, a yield of 32% by weight of oil relative to the residue is obtained by dewaxing, said oil having an IV of 152.
  • zeolite makes it possible to decrease the net conversion temperature CN substantially, since a gain of approximately 100 ° C. is observed between the catalyst without zeolite (catalyst of Example 1) and the catalysts in container (catalysts of Examples 2 and 3). Likewise, a gain of approximately 78 ° C. is observed between the silica-alumina-based catalyst (catalyst of Example 4) and the catalysts containing it (catalysts of Examples 2 and 3).
  • Example 3 Compared to a zeolite which has not undergone extensive dealumination like that of Example 2, the use of a dealuminated zeolite such as that used in Example 3 makes it possible to improve the selectivity clearly.
  • the selectivity varies greatly with the conversion.
  • the selectivity is higher the lower the conversion.
  • Example 6 Evaluation of catalysts A, B, C and D in a hydrocracking test with recycling of the "residue" fraction
  • the charge and the test conditions are identical to those of Example 5.
  • the term conversion by pass is used which represents the conversion actually carried out at the level of the catalyst.
  • CP (weight 380 ⁇ effluents ) (weight 380 ⁇ charge ) + (weight 380 + charge ) * 100
  • the gross selectivity SB is taken equal to:
  • Example 5 the use of a zeolite makes it possible to reduce the iso-conversion temperature substantially. Compared to a zeolite that has not undergone extensive dealumination like that of Example 2, the use of a dealuminated zeolite such as that used in Example 3 makes it possible to very clearly improve the selectivity .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé d'hydrocraquage de charges issues du procédé Fischer-Tropsch dans lequel :
  • a) on fait réagir de 10 hydrogène avec la charge au contact d'un catalyseur 1 dans une première zone de réaction, ledit catalyseur 1 comprenant au moins une matrice à base d'alumine et au moins un composant d'hydrodéshydrogénation.
  • b) on met l'effluent issu de la première zone de réaction au contact d'un catalyseur 2 dans une seconde zone de réaction, ledit catalyseur 2 comprenant :
    • de 20 à 97% en poids d'au moins une matrice
    • de 3 à 80% en poids d'au moins une zéolithe Y sous forme hydrogène, ladite zéolithe étant caractérisée par un rapport molaire SiO₂/Al₂O₃ supérieur à 4,5; une teneur en sodium inférieure à 1% en poids déterminée sur la zéolithe calcinée à 1100°C; un paramètre cristallin ao de la maille élémentaire inférieure à 24,70.10⁻¹⁰ m; une surface spécifique déterminée par la méthode BET supérieure à 400 m².g⁻¹.
    • au moins un composant d'hydro-deshydrogénation.

Description

  • La présente invention concerne un procédé de conversion de paraffines issues du procédé Fischer-Tropsch. En particulier, elle utilise des catalyseurs zéolithiques bifonctionnels pour l'hydrocraquage des paraffines issues du procédé Fischer-Tropsch permettant l'obtention de produits hautement valorisables tels que kérosène, gas-oil et surtout huiles de base.
  • La présente invention concerne un procédé de conversion de paraffines issues du procédé Fischer-Tropsch utilisant un catalyseur bifonctionnel contenant une zéolithe de type faujasite pouvant être spécialement modifiée, dispersée dans une matrice généralement à base d'alumine, de silice, de silice-alumine, d'alumine-oxyde de bore, de magnésie, de silice-magnésie, de zircone, d'oxyde de titane ou à base d'une combinaison de deux au moins des oxydes précédents, ou encore à base d'une argile, ou d'une combinaison des oxydes précédents avec de l'argile. Cette matrice a notamment pour rôle d'aider à mettre en forme la zéolithe, autrement dit à la produire sous forme d'agglomérats, billes, extrudés, pastilles etc., qui pourront être placés dans un réacteur industriel. La proportion de matrice dans le catalyseur est comprise entre 20 et 97% en poids et de préférence entre 50 et 97% en poids.
  • Dans le procédé Fischer-Tropsch, le gaz de synthèse (CO+H₂) est transformé catalytiquement en produits oxygénés et en hydrocarbures, essentiellement linéaires, sous forme gazeuse, liquide ou solide. Ces produits sont exempts d'impuretés hétéroatomiques telles que par exemple le soufre, l'azote ou des métaux. Cependant, ces produits ne peuvent être utilisés tels quels notamment à cause de leurs propriétés de tenue à froid peu compatibles avec les utilisations habituelles des coupes pétrolières. Par exemple, le point d'écoulement d'un hydrocarbure linéaire contenant 20 atomes de carbone par molécule (température d'ébullition égale à 344°C environ c'est-à-dire comprise dans la coupe gas-oil) est de +37°C environ alors que les spécifications douanières exigent un point d'écoulement inférieur à -7°C pour les gas-oils commerciaux. Ces hydrocarbures issus du procédé Fischer-Tropsch doivent alors être transformés en produits plus valorisables tels que kérosène et gas-oil après avoir subi des réactions catalytiques d'hydrocraquage.
  • Les catalyseurs utilisés en hydrocraquage sont tous du type bifonctionnels associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports de grandes surfaces (généralement, 150 à 800 m².g⁻¹) présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment) , les combinaisons d'oxydes de bore et d'aluminium, les silices-alumines amorphes et les zéolithes. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIII de la classification périodique des éléments, tels que fer, cobalt, nickel, ruthénium, rhodium, palladium osmium, iridium et platine, soit par une association d'au moins un métal du groupe VI de la classification périodique tels que chrome, molybdène et tungstène et d'au moins un métal du groupe VIII.
  • L'équilibre entre les deux fonctions acide et hydrogénante est le paramètre fondamental qui régit l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Il est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur.
  • Parmi les supports acides, on trouve par ordre d'acidité croissante les alumines, les alumines halogénées, les silices-alumines amorphes et les zéolithes.
  • Le brevet EP-A.147873 décrit un catalyseur comprenant un élément du groupe VIII sur un support lors d'un procédé réalisant la réaction de synthèse Fischer-Tropsch puis l'hydrocraquage. La demande de brevet EP.B.356560 décrit la préparation d'une zéolithe Y très spécifique qui peut être utilisée dans un catalyseur de la réaction Fischer-Tropsch ou dans un catalyseur d'hydrocraquage.
  • Le catalyseur de la présente invention renferme une zéolithe Y de structure faujasite (Zeolite Molecular Sieves Structure, chemistry and use, D.W. Breck, J. Willey and Sons, 1973). Parmi les zéolithes Y que l'on peut utiliser, on emploiera de préférence une zéolithe Y stabilisée, couramment appelée ultrastable ou USY, soit sous forme partiellement échangée avec des cations de terres rares de numéro atomique 57 à 71 inclus de façon à ce que sa teneur en terres rares exprimée en % poids d'oxydes de terres rares soit inférieure à 10% en poids, de préférence inférieure à 6% en poids, soit sous forme hydrogène.
  • Les importants travaux de recherche effectués par le demandeur sur de nombreuses zéolithes l'ont conduit à découvrir que, de façon surprenante, l'utilisation d'un catalyseur comprenant une zéolithe Y permet de convertir les charges issues du procédé Fischer-Tropsch pour obtenir des produits plus valorisables.
  • La zéolithe utilisée dans le catalyseur de la présente invention est de préférence une zéolithe acide HY caractérisée par différentes spécifications : un rapport molaire SiO₂/Al₂O₃ supérieur à 4.5 et de préférence compris entre 8 et 70; une teneur en sodium inférieure à 1% en poids et de préférence inférieure à 0.5% en poids, déterminée sur la zéolithe calcinée à 1100°C; un paramètre cristallin ao de la maille élementaire inférieur à 24.70 x 10⁻¹⁰ mètre et de préférence compris entre 24.24 x 10⁻¹⁰ mètre et 24.55 x 10⁻¹⁰ mètre; une surface spécifique déterminée par la méthode B.E.T. supérieure à 400m²/g et de préférence supérieure à 550m²/g.
  • Les différentes caractéristiques sont mesurées par les méthodes précisées ci-après :
    • le rapport molaire SiO₂/Al₂O₃ est mesuré par fluorescence X. Quand les quantités d'aluminium deviennent faibles, par exemple inférieures à 2% en poids, il est opportun d'utiliser une méthode de dosage par spectrométrie d'adsorption atomique pour plus de précision.
    • le paramètre de maille est calculé à partir du diagramme de diffraction aux rayons X, selon la méthode décrite dans la fiche ASTM D3.942-80.
    • la surface spécifique est déterminée par mesure de l'isotherme d'adsorption diazote à la température de l'azote liquide et calculée selon la méthode classique B.E.T.. Les échantillons sont prétraités, avant la mesure, à 500°C sous balayage d'azote sec.
  • Cette zéolithe est connue de l'art antérieur (brevet français 2 561 946). La zéolithe NaY servant généralement de matière première posséde plus de 5% en poids de sodium et a un rapport molaire SiO₂/Al₂O₃ compris entre 4 et 6. Elle n'est pas utilisée telle quelle, mais il faut lui faire subir une série de traitements de stabilisation visant à augmenter son acidité et sa résistance thermique.
  • Elle peut être stabilisée par différentes méthodes.
  • Les stabilisations de zéolithe Y s'effectuent le plus couramment, soit grâce à l'introduction de cations de terres rares ou de cations de métaux du groupe IIA, soit grâce à des traitements hydrothermiques. Tous ces traitements sont décrits dans le brevet français FR 2 561 946.
  • Il existe cependant d'autres méthodes de stabilisation connues de l'art antérieur. Citons l'extraction de l'aluminium par des agents chélatants, comme l'éthylène diammine tétraacétique ou l'acétylacétone. Il est également possible de procéder à des substitutions partielles d'atomes d'aluminium du réseau cristallin par des atomes de silicium exogènes. C'est le principe des traitements effectués à haute température avec le tétrachlorure de silicium, décrits dans la référence suivante : H.R. BEYER et al., Catalysis by zéolites, Ed. B. Imelik et al., Elsevier, Amsterdam -1980- p. 203. C'est également le principe de traitements effectués en phase liquide avec l'acide fluorosilicique, ou des sels de cet acide, méthode décrite dans les brevets suivante :US-A-3 594 331, US-A-3 933 983 et EP-B-002211.
  • Il est possible après tous ces traitements stabilisants d'effectuer des échanges avec des cations des métaux du groupe IIA, avec des cations de terres rares, ou encore des cations du chrome et du zinc, ou avec tout autre élément utile à améliorer le catalyseur.
  • La zéolithe HY ou NH₄Y ainsi obtenue ou toute zéolithe HY ou NH₄Y présentant ces caractéristiques peut être introduite à ce stade, dans la matrice décrite précédemment à l'état d'un gel d'alumine. Le catalyseur ainsi obtenu comprend, en poids, de 20 à 97% de matrice, 3 à 80% de zéolithe et au moins un composant d'hydro-deshydrogénation. Une des méthodes préférées dans la présente invention, pour l'introduction de la zéolithe dans la matrice, consiste à co-malaxer la zéolithe et le gel puis à passer la pâte ainsi obtenue à travers une filière pour former des extrudés de diamètre compris entre 0.4 et 4 millimètres.
  • Le composant d'hydro-déshydrogénation du catalyseur de la présente invention est par exemple au moins un composé, par exemple un oxyde, d'un métal du groupe VIII de la classification périodique des éléments, (notamment le nickel, le palladium ou le platine), ou une combinaison d'au moins un composé d'un métal du groupe VI (notamment le molybdène ou le tungstène) et d'au moins un composé d'un métal du groupe VIII (notamment le cobalt ou le nickel) de la classification périodique des éléments.
  • Les concentrations des composés métalliques, exprimées en poids de métal par rapport au catalyseur fini, sont les suivantes : entre 0.01 et 5 % en poids de métaux du groupe VIII, et de préférence entre 0.03 et 3 % en poids, dans le cas où il s'agit uniquement de métaux nobles du type palladium ou platine; entre 0.01 et 15 % en poids de métaux du groupe VIII, et de préférence entre 0.05 et 10 % en poids, dans le cas où il s'agit de métaux non nobles du groupe VIII du type nickel par exemple; lorsqu'on utilise à la fois au moins un métal ou composé de métal du groupe VIII et au moins un composé d'un métal du groupe VI, on emploie entre 5 et 40 % en poids d'une combinaison d'au moins un composé (oxyde notamment) d'un métal du groupe VI (molybdène ou tungstène notamment) et d'au moins un métal ou composé de métal du groupe VIII (cobalt ou nickel notamment) et de préférence entre 12 et 30 % en poids, avec un rapport pondéral (exprimé en oxydes métalliques) métaux du groupe VIII sur métaux du groupe VI compris entre 0.05 et 0.8 et de préférence entre 0.13 et 0.5. Ce catalyseur pourra contenir avantageusement du phosphore; en effet, il est connu dans l'art antérieur que ce composé apporte deux avantages aux catalyseurs d'hydrotraitement : une facilité de préparation lors notamment de l'imprégnation des solutions de nickel et de molybdène, et une meilleure activité d'hydrogénation. La teneur en phosphore, exprimée en concentration en oxyde de phosphore P₂O₅, sera inférieure à 15% en poids et de préférence inférieure à 10% en poids. La fonction hydrogénante telle qu'elle a été définie ci-dessus peut être introduite dans le catalyseur à divers niveaux de la préparation et de diverses manières comme cela est décrit dans le brevet français FR 2 561 946.
  • Les catalyseurs à base de zéolithe NH₄Y ou HY tels que décrits précédemment subissent si nécessaire une ultime étape de calcination afin d'obtenir finalement un catalyseur à base de zéolithe Y sous forme hydrogène. Les catalyseurs ainsi obtenus finalement sont utilisés pour l'hydrocraquage de charges de paraffines issues du procédé Fischer-Tropsch dans les conditions suivantes : on fait réagir de l'hydrogène avec la charge au contact d'un catalyseur 1 contenu dans le réacteur R1 (ou première zone de réaction R1) dont le rôle est d'éliminer les molécules hydrocarbonées insaturées et oxygénées produites lors de la synthèse Fischer-Tropsch. L'effluent issu du réacteur R1 est mis au contact d'un second catalyseur 2 contenu dans le réacteur R2 (ou deuxième zone de réaction R2) dont le rôle est d'assurer la réaction d'hydrocraquage. L'effluent issu du réacteur 2 est fractionné en différentes coupes pétrolières classiques telles que gaz, essence légère, essence lourde, kérosène, gas-oil et "résidu"; la fraction appelée "résidu" représente la fraction la plus lourde obtenue lors du fractionnement. Le choix des températures lors de l'étape de fractionnement des effluents issus du réacteur 2 peut varier très fortement en fonction des besoins spécifiques du raffineur. L'ajustement de la température de réaction permet d'obtenir des rendements variables de chaque coupe.
  • Diverses modifications peuvent être faites. Il est possible de recycler au réacteur 1 ou de préférence au réacteur 2 l'une au moins de ces fractions; si un seul réacteur comprenant les deux catalyseurs est utilisé c'est à dire si un seul réacteur comprend les deux zones de réaction, il est possible de recycler à l'entrée du réacteur. Enfin, il est possible de n'utiliser que le réacteur 2 si les teneurs en produits non saturés de la charge n'entraînent pas une désactivation trop importante du système catalytique. La fraction appelée "résidu" peut également subir des opérations de déparaffinage afin de récupérer de l'huile de base.
  • L'utilisation d'un tel procédé présente plusieurs caractéristiques :
    • le but principal recherché est la conversion hydrocraquante de la charge c'est-à-dire la transformation de la charge en produits plus légers. Cette conversion hydrocraquante est souvent comprise entre 20 et 100% en poids et de préférence entre 25 et 98% en poids.
    • la pression partielle d'hydrogène est comprise entre 5 et 200 bars et de préférence entre 30 et 150 bars.
    • les conditions opératoires sont, au niveau de la zone R2, une Vitesse Volumique Horaire (VVH) comprise entre 0.2 et 10 M³ de charge/m³ de catalyseur/heure et de préférence entre 0.3 et 2, une température de réaction comprise entre 150°C et 450°C et de préférence entre 250°C et 420°C. Les conditions opératoires appliquées au niveau de la zone R1 peuvent être très variables suivant la charge et ont pour but de diminuer les concentrations en composés insaturés et/ou hétéroatomiques à des valeurs convenables. Dans ces conditions opératoires, la durée de cycle du système catalytique est d'au moins un an et de préférence égale à 2 ans et la désactivation du catalyseur, c'est-à-dire l'augmentation de température que doit subir le système catalytique pour que la conversion soit constante, est inférieure à 5°C/mois et de préférence inférieure à 2.5°C/mois.
    • les distillats moyens et les huiles de base obtenus grâce au procédé de l'invention présentent de très bonnes caractéristiques, du fait de leur caractère très paraffinique. Par exemple, il est possible d'obtenir une coupe kérosène d'intervalle de distillation compris entre 150°C et 250°C ayant un point de fumée supérieur à 50 millimètres, une coupe gas-oil d'intervalle de distillation compris entre 250°c et 380°C d'indice de cétane égal ou supérieur à 65; le VI de l'huile obtenue, après déparaffinage au solvant MEK/toluène de la coupe 380⁺, est égal ou supérieur à 135 et le point d'écoulement obtenu est inférieur ou égal à -12°C. Le rendement en huile par rapport au résidu dépend de la conversion globale de la charge. Dans le cas du catalyseur zéolithique, ce rendement est compris entre 5 et 70% en poids environ et de préférence entre 10 et 60% en poids.
  • Le catalyseur 1 de la première étape est constitué d'une matrice à base d'alumine, de préférence ne contenant pas de zéolithe, et d'au moins un métal ayant une fonction hydrodéshydrogénante. Ladite matrice peut également renfermer de la silice-alumine, de l'oxyde de bore, de la magnésie, de la zircone, de l'oxyde de titane, de l'argile ou une combinaison de ces oxydes. La fonction hydro-déshydrogénante est assurée par au moins un métal ou composé de métal du groupe VIII tels que le nickel et le cobalt notamment. On peut utiliser une combinaison d'au moins un métal ou composé de métal du groupe VI (notamment le molybdène ou le tungstène) et d'au moins un métal ou composé de métal du groupe VIII (notamment le cobalt ou le nickel). La concentration totale en métaux des groupes VI et VIII, exprimée en oxydes de métaux, est comprise entre 5 et 40% en poids et de préférence entre 7 et 30% en poids et le rapport pondéral exprimé en oxyde métallique métal (ou métaux) du groupe VI sur métal (ou métaux) du groupe VIII est compris entre 1.25 et 20 et de préférence entre 2 et 10. De plus, ce catalyseur peut contenir du phosphore. La teneur en phosphore, exprimée en concentration en oxyde de phosphore P₂O₅, sera inférieure à 15% en poids et de préférence inférieure à 10% en poids.
  • Le catalyseur contenu dans le réateur R2 est le catalyseur décrit dans la partie principale du texte. Il comprend notamment au moins une zéolithe HY caractérisée par un rapport molaire SiO₂/Al₂O₃ supérieur à 4.5 et de préférence compris entre 8 et 70; une teneur en sodium inférieure à 1% en poids et de préférence inférieure à 0.5% en poids déterminée sur la zéolithe calcinée à 1100°C; un paramètre cristallin ao de la maille élementaire inférieur à 24.70 x 10⁻¹⁰ mètre et de préférence compris entre 24.24 x 10⁻¹⁰ mètre et 24.55 x 10⁻¹⁰ mètre; une surface spécifique déterminée par la méthode B.E.T. supérieure à 400m².g⁻¹ et de préférence supérieure à 550m².g⁻¹.
  • Les exemples présentés ci-après illustrent les caractéristiques de la présente invention sans toutefois en limiter la portée.
  • Exemple 1 Préparation du catalyseur A (non conforme à l'invention)
  • Le gel d'alumine utilisé est fourni par la société Condéa sous le référence SB3. Après malaxage, la pâte obtenue est extrudée à travers une filière de diamètre 1.4mm. Les extrudés sont calcinés puis imprégnés à sec par une solution d'un mélange d'heptamolybdate d'ammonium, de nitrate de nickel et d'acide orthophosphorique, et enfin calcinés sous air à 550°C. Les teneurs pondérales, exprimées en oxydes actifs, sont les suivantes (par rapport au catalyseur):
    Figure imgb0001
  • Exemple 2 Préparation du catalyseur B (conforme à l'invention)
  • On utilise une zéolithe HY de formule H AlO₂ (SiO₂)3.3 fournie par la société Contéka sous la référence CBV500. Cette zéolithe dont les caractéristiques sont :
  • rapport SiO₂/Al₂O₃ molaire
    6.6
    paramètre cristallin
    24.55 x 10⁻¹⁰ mètre
    surface spécifique
    690 m²/g

    est malaxée avec de l'alumine de type SB3 fournie par la société Condéa. La pâte malaxée est ensuite extrudée à travers une filière de diamètre 1.4 min. Les extrudés sont ensuite calcinés puis imprégnés à sec par une solution d'un mélange d'heptamolybdate d'ammonium, de nitrate de nickel et d'acide orthophosphorique, et enfin calcinés sous air à 550°C. Les teneurs pondérales, exprimées en oxydes actifs, sont les suivantes (par rapport au catalyseur):
    Figure imgb0002
    Figure imgb0003
    Exemple 3 Préparation du catalyseur C (conforme à l'invention)
  • La zéolithe NaY est soumise à deux échanges dans des solutions de chlorure d'ammonium de façon à ce que le taux de sodium soit de 2.6% en poids. Le produit est ensuite introduit dans un four froid et calciné sous air jusqu'à 400°C. A cette température, on introduit dans l'atmosphère de calcination un débit d'eau correspondant, après vaporisation, à une pression partielle de 50.7 kPa. La température est alors portée à 565°C pendant deux heures. Le produit est ensuite soumis à un échange avec une solution de chlorure d'ammonium suivie d'un traitement acide très ménagé aux conditions suivantes : volume d'acide chlorhydrique 0.4 N sur poids de solide de 10, durée de 3 heures. Le taux de sodium baisse alors jusqu'à 0.6% en poids, le rapport SiO₂/Al₂O₃ est de 7.2. Ce produit est alors soumis à une calcination brutale en atmosphère statique à 780°C pendant 3 heures, puis à nouveau repris en solution acide par de l'acide chlorhydrique de normalité 2 et un rapport volume de solution sur poids de zéolithe de 10. Le paramètre cristallin est de 24.28 x 10⁻¹⁰ mètre, la surface spécifique de 825m²/g, la capacité de reprise en eau est de 11.7, la capacité de reprise en ions sodium est de 1.0 exprimée en poids de sodium pour 100 grammes de zéolithe désaluminée.
    La zéolithe ainsi obtenue est malaxée avec de l'alumine de type SB3 fournie par la société Condéa. La pâte malaxée est ensuite extrudée à travers une filière de diamètre 1.4 mm. Les extrudés sont ensuite calcinés puis imprégnés à sec par une solution d'un mélange d'heptamolybdate d'ammonium, de nitrate de nickel et d'acide orthophosphorique, et enfin calcinés sous air à 550°C. Les teneurs pondérales, exprimées en oxydes actifs, sont les suivantes (par rapport au catalyseur):
    Figure imgb0004
  • Exemple 4 Préparation du catalyseur D (non conforme à l'invention)
  • on utilise une silice-alumine préparée au laboratoire contenant 25% en poids de SiO₂ et 75% en poids de Al₂O₃. On ajoute 3% en poids d'acide nitrique pur à 67% par rapport au poids sec de poudre de silice-alumine afin d'obtenir la peptisation de la poudre. Après malaxage, la pâte obtenue est extrudée à travers une filière de diamètre 1.4mm. Les extrudés sont calcinés puis imprégnés à sec par une solution d'un sel de chlorure de platine tétramine Pt(NH₃)₄Cl₂ et enfin calcinés sous air à 550°C. La teneur en platine du catalyseur final est de 0.6% en poids.
  • Example 5 Evaluation des catalyseurs A, B, C et D dans un test d'hydrocraquage sans recyclage de la fraction "résidu"
  • Les catalyseurs dont les préparations sont décrites aux exemples précédents sont utilisés dans les conditions de l'hydrocraquage sur une charge de paraffines issues de la synthèse Fischer-Tropsch dont les principales caractéristiques sont les suivantes :
  • point initial
    114°C
    point 10%
    285°C
    point 50%
    473°C
    point 90%
    534°C
    point final
    602°C
    point d'écoulement
    +67°C
    densité (20/4)
    0.825
  • L'unité de test catalytique comprend un seul réacteur en lit fixe, à circulation ascendante de la charge ("up-flow"), dans lequel est introduit 80 ml de catalyseur. Les catalyseurs A, B et C sont sulfurés par un mélange n-hexane/DMDS+aniline jusqu'à 320°C. Le catalyseur D subit une réduction sous hydrogène in-situ dans le réacteur. La pression totale est de 5 MPa, le débit d'hydrogène est de 1000 litres d'hydrogène gazeux par litre de charge injectée, la vitesse volumique horaire est de 0.5.
  • Les performances catalytiques sont exprimées par la température qui permet d'atteindre un niveau de conversion nette de 50% et par la sélectivité brute. Ces performances catalytiques sont mesurées sur le catalyseur après qu'une période de stabilisation, généralement au moins 48 heures, ait été respectée.
  • La conversion nette CN est prise égale à :
    Figure imgb0005
  • La sélectivité brute SB est prise égale à :
    Figure imgb0006
    Figure imgb0007
  • Dans le cas de l'exemple 3, on obtient, par déparaffinage, un rendement de 32% en poids d'huile par rapport au résidu, ladite huile ayant un VI de 152.
  • L'utilisation d'une telle zéolithe permet de diminuer la température de conversion nette CN d'une façon substantielle puisqu'un gain de 100°C environ est observé entre le catalyseur sans zéolithe (catalyseur de l'exemple 1) et les catalyseurs en contenant (catalyseurs des exemples 2 et 3). De même, un gain de 78°C environ est observé entre le catalyseur à base de silice-alumine (catalyseur de l'exemple 4) et les catalyseurs en contenant (catalyseurs des exemples 2 et 3).
  • Par rapport à une zéolithe n'ayant pas subi de désalumination poussée comme celle de l'exemple 2, l'utilisation d'une zéolithe désaluminée telle que celle utilisée dans l'exemple 3 permet d'améliorer d'une façon nette la sélectivité.
  • D'une façon générale, la sélectivité varie fortement avec la conversion. La sélectivité est d'autant plus élevée que la conversion est faible.
  • Exemple 6 : Evaluation des catalyseurs A, B,C et D dans un test d'hydrocraquage avec recyclage de la fraction "résidu"
  • La charge et les conditions de tests sont identiques à celles de l'exemple 5. L'utilisation du recyclage de la fraction 380⁺, à l'entrée du réacteur, permet d'obtenir une conversion totale de la charge. Dans ce cas, on utilise le terme de conversion par passe qui représente la conversion effectivement réalisée au niveau du catalyseur.
  • La conversion par passe CP est prise égale à : CP = (poids 380⁻ effluents ) (poids 380⁻ charge ) + (poids 380 ⁺ charge ) * 100
    Figure imgb0008
  • La sélectivité brute SB est prise égale à :
    Figure imgb0009
    Figure imgb0010
  • Comme dans le cas de l'exemple 5, l'utilisation d'une zéolithe permet de diminuer la température d'iso-conversion d'une façon substantielle. Par rapport à une zéolithe n'ayant pas subi de désalumination poussée comme celle de l'exemple 2, l'utilisation d'une zéolithe désaluminée telle que celle utilisée dans l'exemple 3 permet d'améliorer d'une façon très nette la sélectivité.

Claims (10)

1) Procédé d'hydrocraquage de charges issues du procédé Fischer-Tropsch dans lequel :
a) on fait réagir de l'hydrogène avec la charge au contact d'un catalyseur 1 dans une première zone de réaction, ledit catalyseur 1 comprenant au moins une matrice à base d'alumine et au moins un composant d'hydrodéshydrogénation
b) on met l'effluent issu de la première zone de réaction au contact d'un catalyseur 2 dans une seconde zone de réaction, ledit catalyseur 2 comprenant :
- de 20 à 97% en poids d'au moins une matrice,
- de 3 à 80% en poids d'au moins une zéolithe Y sous forme hydrogène, ladite zéolithe étant caractérisée par un rapport molaire SiO₂/Al₂O₃ supérieur à 4,5; une teneur en sodium inférieure à 1% en poids déterminée sur la zéolithe calcinée à 1100°C; un paramètre cristallin ao de la maille élémentaire inférieure à 24,70.10⁻¹⁰ m; une surface spécifique déterminée par la méthode BET supérieure à 400 m².g⁻¹.
- au moins un composant d'hydro-déshydrogénation.
2) Procédé selon la revendication 1 dans lequel la zéolithe Y est caractérisée par un rapport molaire SiO₂/Al₂O₃ compris entre 8 et 70; une teneur en sodium inférieure à 0,5% en poids déterminée sur la zéolithe calcinée à 1100°C; un paramètre cristallin ao de la maille élémentaire compris entre 24,24.10⁻¹⁰ et 24,55.10⁻¹⁰ m; une surface spécifique déterminée par la méthode BET supérieure à 550 m².g⁻¹.
3) Procédé selon l'une des revendications 1 et 2 dans lequel le composant d'hydro-deshydrogénation est la combinaison d'au moins un métal ou composé de métal du groupe VIII et d'au moins un métal ou composé de métal du groupe VI de la classification périodique des éléments.
4) Procédé selon la revendication 3 dans lequel, dans le cas du composant de l'étape b), on emploie entre 5 et 40% en poids de composés métalliques (par rapport au catalyseur fini), le rapport pondéral (exprimé en oxydes métalliques) métaux du groupe VIII sur métaux du groupe VI étant compris entre 0,05 et 0,8, et, dans le cas du composant de l'étape a), on emploie entre 5 et 40% en poids de composés métalliques (par rapport au catalyseur fini), le rapport pondéral (exprimé en oxydes métalliques) métaux du groupe VIII sur métaux du groupe VI étant compris entre 1,25 et 20.
5) Procédé selon l'une des revendications 1 et 2 dans lequel le composant d'hydro-deshydrogénation est au moins un métal ou composé de métal du groupe VIII de la classification périodique des éléments.
6) Procédé selon la revendication 5 dans lequel, dans le cas du composant de l'étape b), la concentration en métal du groupe VIII, exprimée en poids par rapport au catalyseur fini, est comprise entre 0,01 et 5% dans le cas d'un métal noble et entre 0,01 et 15% en poids dans le cas d'un métal non noble.
7) Procédé selon l'une des revendications 1 à 6 dans lequel le composant d'hydro-deshydrogénation comprend en outre du phosphore.
8) Procédé selon la revendication 7 dans lequel la teneur en phosphore, exprimée en poids d'oxyde de phosphore P₂O₅ par rapport au catalyseur fini, est inférieure à 15%.
9) Procédé selon l'une des revendications 1 à 8 dans lequel on effectue un recyclage d'au moins une des fractions de l'effluent issu de la seconde zone de réaction à l'entrée d'une des zones de réaction.
10) Procédé selon la revendication 9 dans lequel le recyclage s'effectue à l'entrée de la seconde zone de réaction.
EP92401371A 1991-05-21 1992-05-20 Procédé d'hydrocraquage de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H-Y Expired - Lifetime EP0515270B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9106141A FR2676750B1 (fr) 1991-05-21 1991-05-21 Procede d'hydrocraquage de paraffines issue du procede fischer-tropsch a l'aide de catalyseurs a base de zeolithe h-y.
FR9106141 1991-05-21

Publications (2)

Publication Number Publication Date
EP0515270A1 true EP0515270A1 (fr) 1992-11-25
EP0515270B1 EP0515270B1 (fr) 1994-08-03

Family

ID=9412986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401371A Expired - Lifetime EP0515270B1 (fr) 1991-05-21 1992-05-20 Procédé d'hydrocraquage de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H-Y

Country Status (8)

Country Link
US (1) US5345019A (fr)
EP (1) EP0515270B1 (fr)
DE (1) DE69200297T2 (fr)
DZ (1) DZ1581A1 (fr)
ES (1) ES2061325T3 (fr)
FR (1) FR2676750B1 (fr)
NO (1) NO305486B1 (fr)
ZA (1) ZA923659B (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674478A (en) * 1996-01-12 1997-10-07 The Procter & Gamble Company Hair conditioning compositions
US5750122A (en) * 1996-01-16 1998-05-12 The Procter & Gamble Company Compositions for treating hair or skin
US6054040A (en) * 1996-11-08 2000-04-25 Mol Magyar Olaj- Es Gazipari Reszvenytarsasag Catalyst for hydrocracking and method for catalytic hydrodewaxing of gas oil
US6106814A (en) * 1996-01-16 2000-08-22 The Procter & Gamble Company Hair conditioning compositions
EP0583836B2 (fr) 1992-08-18 2002-02-13 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de combustibles hydrocarbonés
US6607568B2 (en) 1995-10-17 2003-08-19 Exxonmobil Research And Engineering Company Synthetic diesel fuel and process for its production (law3 1 1)
US6765025B2 (en) 2002-01-17 2004-07-20 Dalian Institute Of Chemical Physics, Chinese Academy Of Science Process for direct synthesis of diesel distillates with high quality from synthesis gas through Fischer-Tropsch synthesis

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5689031A (en) 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US5766274A (en) 1997-02-07 1998-06-16 Exxon Research And Engineering Company Synthetic jet fuel and process for its production
FR2778345B1 (fr) * 1998-05-06 2000-11-24 Inst Francais Du Petrole Catalyseur a base de zeolithe y contenant du bore et/ou du silicium, utilisable en hydrocraquage
US6497812B1 (en) 1999-12-22 2002-12-24 Chevron U.S.A. Inc. Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons
MX2008013636A (es) * 2006-04-27 2009-01-12 Univ Wyoming Res Corp D B A We Proceso y catalizador para produccion de alcoholes mixtos a partir de gas de sintesis.
US8969236B2 (en) 2006-04-27 2015-03-03 University Of Wyoming Research Corporation Process and catalyst for production of mixed alcohols from synthesis gas
BRPI0705939A2 (pt) 2007-10-29 2009-06-23 Petroleo Brasileiro Sa processo para a produção de catalisadores hìbridos para a sìntese de fischer-tropsch e catalisador hìbrido produzido de acordo com o processo
BRPI0704436A2 (pt) * 2007-11-30 2009-07-28 Petroleo Brasileiro Sa processo de produção de hidrocarbonetos

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
EP0310165A1 (fr) * 1987-09-29 1989-04-05 Shell Internationale Researchmaatschappij B.V. Procédé d'hydrocraquage de matière première contenant des hydrocarbures

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147210A (en) * 1962-03-19 1964-09-01 Union Oil Co Two stage hydrogenation process
US3647678A (en) * 1970-03-17 1972-03-07 Chevron Res Process for producing high yields of low freeze point jet fuel
US3974061A (en) * 1974-12-16 1976-08-10 Texaco Inc. Isomerization of C5 and C6 isomerizable hydrocarbons
US4046831A (en) * 1975-09-18 1977-09-06 Mobil Oil Corporation Method for upgrading products of Fischer-Tropsch synthesis
US4041097A (en) * 1975-09-18 1977-08-09 Mobil Oil Corporation Method for altering the product distribution of Fischer-Tropsch synthesis product
US4080397A (en) * 1976-07-09 1978-03-21 Mobile Oil Corporation Method for upgrading synthetic oils boiling above gasoline boiling material
US4252736A (en) * 1979-06-01 1981-02-24 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures utilizing dual reactors
US4471145A (en) * 1982-12-01 1984-09-11 Mobil Oil Corporation Process for syngas conversions to liquid hydrocarbon products utilizing zeolite Beta
JPS60501862A (ja) * 1983-07-15 1985-10-31 ザ ブロ−クン ヒル プロプライエタリイ カンパニ− リミテツド 燃料、特にジエツトおよびデイ−ゼル燃料の製造方法およびその組成物
FR2561946B1 (fr) * 1984-03-30 1986-10-03 Pro Catalyse Nouveau catalyseur d'hydrocraquage destine a la production de distillats moyens
US4544792A (en) * 1984-12-13 1985-10-01 Mobil Oil Corporation Upgrading Fischer-Tropsch olefins
US4832819A (en) * 1987-12-18 1989-05-23 Exxon Research And Engineering Company Process for the hydroisomerization and hydrocracking of Fisher-Tropsch waxes to produce a syncrude and upgraded hydrocarbon products
US4919786A (en) * 1987-12-18 1990-04-24 Exxon Research And Engineering Company Process for the hydroisomerization of was to produce middle distillate products (OP-3403)
US4943672A (en) * 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
EP0310165A1 (fr) * 1987-09-29 1989-04-05 Shell Internationale Researchmaatschappij B.V. Procédé d'hydrocraquage de matière première contenant des hydrocarbures

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583836B2 (fr) 1992-08-18 2002-02-13 Shell Internationale Researchmaatschappij B.V. Procédé de préparation de combustibles hydrocarbonés
US6607568B2 (en) 1995-10-17 2003-08-19 Exxonmobil Research And Engineering Company Synthetic diesel fuel and process for its production (law3 1 1)
US5674478A (en) * 1996-01-12 1997-10-07 The Procter & Gamble Company Hair conditioning compositions
US5750122A (en) * 1996-01-16 1998-05-12 The Procter & Gamble Company Compositions for treating hair or skin
US6106814A (en) * 1996-01-16 2000-08-22 The Procter & Gamble Company Hair conditioning compositions
US6054040A (en) * 1996-11-08 2000-04-25 Mol Magyar Olaj- Es Gazipari Reszvenytarsasag Catalyst for hydrocracking and method for catalytic hydrodewaxing of gas oil
US6765025B2 (en) 2002-01-17 2004-07-20 Dalian Institute Of Chemical Physics, Chinese Academy Of Science Process for direct synthesis of diesel distillates with high quality from synthesis gas through Fischer-Tropsch synthesis

Also Published As

Publication number Publication date
US5345019A (en) 1994-09-06
EP0515270B1 (fr) 1994-08-03
ES2061325T3 (es) 1994-12-01
NO921981L (no) 1992-11-23
FR2676750B1 (fr) 1993-08-13
NO305486B1 (no) 1999-06-07
NO921981D0 (no) 1992-05-19
DZ1581A1 (fr) 2002-02-17
ZA923659B (en) 1993-11-22
FR2676750A1 (fr) 1992-11-27
DE69200297T2 (de) 1994-11-24
DE69200297D1 (de) 1994-09-08

Similar Documents

Publication Publication Date Title
EP0515256B1 (fr) Procédé d'hydromérisation de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H.Y
EP0515270B1 (fr) Procédé d'hydrocraquage de paraffines issues du procédé Fischer-Tropsch à l'aide de catalyseurs à base de zéolithe H-Y
EP0725810B1 (fr) Procede de traitement avec hydroisomerisation de charges issues du procede fischer-tropsch
EP1462167B1 (fr) Catalyseur comprenant au moins une zeolithe ZBM-30 et au moins une zeolithe y et procédé d'hydroconversion de charges hydrocarbonées utilisant un tel catalyseur
EP0214042B1 (fr) Zéolithe de structure oméga
FR2826974A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage en 2 etapes de charges issues du procede fischer-tropsch
EP1421157B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch
EP1406989B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
EP0242260A1 (fr) Procédé de réformage catalytique
WO2009106704A2 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage sequences d'un effluent produit par le procede fischer-tropsch
WO2003004583A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
EP0785021A1 (fr) Catalyseur comprenant une zéolithe de type faujasite et une zéolithe de type TON et procédé d'hydroconversion de charges pétrolières hydrocarbonées
EP1462168A1 (fr) Catalyseur et son utilistion pour l'amélioration du point d'écoulement de charges hydrocarbonnées
WO2000071641A1 (fr) Catalyseur comprenant une zeolithe y partiellement amorphe et son utilisation en hydroconversion de charges petrolieres hydrocarbonees
EP0278851B1 (fr) Catalyseur à base de zéolithe, sa préparation et son utilisation dans des procédés de conversion d'hydrocarbures
EP1198292B1 (fr) Catalyseur comprenant une zeolithe y partiellement amorphe, un element du groupe vb et son utilisation en hydroconversion et hydroraffinage de charges petrolieres hydrocarbonees
FR2765206A1 (fr) Zeolithe eu-1, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines
EP1462166B1 (fr) Catalyseur et son utilisation pour l'amélioration du point d'écoulement de charges hydrocarbonnées
FR2857020A1 (fr) Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch, utilisant un catalyseur a base d'un melange de zeolithes
CA1306231C (fr) Zeolithel decationisee, desaluminee et stabilisee et ses utilisations
FR2765236A1 (fr) Procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines avec un catalyseur a base de zeolithe nu-87 modifiee
WO2011045484A1 (fr) Procede de production de distillat moyen a partir de cires fischer tropsch utilisant un catalyseur a base de zeolithe modifiee
FR2950896A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch mettant en oeuvre un catalyseur a base de carbure de silicium
FR2857019A1 (fr) Procede d'amelioration du point d'ecoulement de charges hydrocarbonees issues du procede fischer-tropsch, utilisant un catalyseur a base de zeolithe zbm-30
FR2765207A1 (fr) Zeolithe nu-85, catalyseur et procede pour l'amelioration du point d'ecoulement de charges contenant des paraffines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT NL

17P Request for examination filed

Effective date: 19930331

17Q First examination report despatched

Effective date: 19931015

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940809

REF Corresponds to:

Ref document number: 69200297

Country of ref document: DE

Date of ref document: 19940908

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2061325

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000425

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000518

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000531

Year of fee payment: 9

Ref country code: ES

Payment date: 20000531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000605

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

BERE Be: lapsed

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20010531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010520

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050520