EP0507191A1 - Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine - Google Patents
Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine Download PDFInfo
- Publication number
- EP0507191A1 EP0507191A1 EP92105042A EP92105042A EP0507191A1 EP 0507191 A1 EP0507191 A1 EP 0507191A1 EP 92105042 A EP92105042 A EP 92105042A EP 92105042 A EP92105042 A EP 92105042A EP 0507191 A1 EP0507191 A1 EP 0507191A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- pressure
- reservoir
- pumps
- injectors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 267
- 238000002347 injection Methods 0.000 title claims abstract description 56
- 239000007924 injection Substances 0.000 title claims abstract description 56
- 238000007599 discharging Methods 0.000 claims description 2
- 230000001360 synchronised effect Effects 0.000 claims 1
- 230000000644 propagated effect Effects 0.000 description 7
- 238000010276 construction Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
- F02M55/025—Common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/04—Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M59/00—Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
- F02M59/20—Varying fuel delivery in quantity or timing
- F02M59/36—Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
- F02M59/366—Valves being actuated electrically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/20—Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
- F02M61/205—Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
Definitions
- the present invention relates to a fuel injection device of an engine.
- the period and amount of this pressure fluctuation depend on the diameter and length of the fuel injection pipe, and accordingly, if the diameter and length of the fuel injection pipes for each fuel injector are different from each other, the period and amount of pressure fluctuation generated in the fuel injector differ at each fuel injector, and thus a problem arises in that the amount of fuel injected by each fuel injector differs.
- the fuel injector disclosed in the abovementioned publication No. 2-112665, does not attempt to cope with this problem.
- An object of the present invention is to provide a fuel injection device capable of preventing irregularities in the amount of injected fuel.
- a fuel injection device of an engine comprising: a plurality of fuel injectors successively injecting fuel at each revolution of a crankshaft through a substantially fixed crankangle; a plurality of fuel pumps successively discharging fuel at each revolution of the crankshaft through the substantially fixed crankangle; a fuel reservoir common to all of the fuel injectors and fuel pumps; a plurality of fuel injection pipes connecting the corresponding fuel injectors to the fuel reservoir and having the same equivalent pipe length for the pressure wave Propagation; and a plurality of fuel feed pipes connecting the corresponding fuel pumps to the fuel reservoir and having the same equivalent pipe length for the pressure wave propagation.
- Figure 4 schematically illustrates a fuel injector 1 and a fuel pump 2.
- the fuel injector 1 comprises a needle 11 for controlling the opening of a nozzle opening 10.
- a back pressure chamber 12 is formed on the top face of the needle 11, and a pressure control chamber 13 is formed above the back pressure chamber 12.
- a check valve 14, permitting only an inflow of fuel to the back pressure chamber 12 from the pressure control chamber 13, is arranged between the back pressure chamber 12 and the pressure control chamber 13, and a restricted opening 15 is formed in the central portion of the check valve 14.
- the pressure control chamber 13 is selectively connected to an atmospheric pressure passage 18 or a fuel inlet 19 by a control valve 17 driven by a solenoid 16.
- the fuel inlet 19 and a fuel passage 20 connected to the nozzle opening 10 are connected to a fuel reservoir 22 via a fuel injection pipe 21.
- the fuel pump 2 comprises a plunger 30 and a pressure chamber 31 defined by the top face of the needle 30.
- a cam 32 driven by the engine is arranged beneath the plunger 30, and a roller 32 rolling on the cam 32 is rotatably mounted on the lower end portion of the plunger 30. Accordingly, when the cam 32 rotates, the plunger 30 is caused to move up and down.
- a fuel feed port 34 is open to the lower interior of the pressure chamber 31, and the upper interior of the pressure chamber 31 is connected to the fuel reservoir 22 via a check valve 36 and a fuel feed pipe 37.
- a control valve 39 driven by a solenoid 38 is arranged on the top face of the pressure chamber 31, and the pressure chamber 31 is connected to a fuel discharge passage 40 via the control valve 39.
- the cam 32 is rotated at a speed half that of the rotating speed of the crankshaft of the engine, and since the cam 32 has three projecting portions as illustrated in Fig. 4, the plunger 30 is caused to move upward at each revolution through a 240 crankangle of the crankshaft.
- the fuel feed port 34 is open to the pressure chamber 31, and at this time, fuel is fed into the pressure chamber 31 from the fuel feed port 34.
- a pressure sensor 3 for detecting the pressure of fuel in the fuel reservoir 22 is attached to the fuel reservoir 22.
- This pressure sensor 3, an engine speed sensor 4 for detecting the engine speed, and a load sensor 5 for detecting the depression of the accelerator pedal are connected to a control unit 6.
- the solenoid 16 of the fuel injector 1 is controlled by signals output from the control unit 6 so that the needle 11 opens the nozzle opening 10 for a fixed time, regardless of the engine speed and the engine load. Accordingly, the amount of fuel injected by the fuel injector 1 is controlled by controlling the pressure of fuel in the fuel reservoir 22.
- the target pressure of fuel in the fuel reservoir is stored in advance as a function of the engine load and the engine load, and the solenoid 38 of the fuel pump 2 is controlled by signals output from the control unit 6 so that the pressure of fuel in the fuel reservoir 22, which pressure is detected by the pressure sensor 3, becomes equal to the target pressure.
- the target pressure of fuel in the fuel reservoir 22 becomes high as the engine load becomes high.
- Figures 1 and 2 illustrate the fuel injectors and the fuel pump actually mounted on a Diesel engine 50.
- the fuel reservoir 22 is formed in a common rail 53 supported by an intake pipe 52 via a stay 51.
- the Diesel engine 50 has six cylinders, and fuel injectors 1a, 1b, 1c, 1d, 1e, 1f are provided for each cylinder. These fuel injectors 1a, 1b, 1c, 1d, 1e, 1f are connected to the fuel reservoir 22 via corresponding fuel injection pipes 21a, 21b, 21c, 21d, 21e, 21f.
- the fuel pump 2 comprises a first fuel pump 2a and a second fuel pump 2b connected to the fuel reservoir 22 via the corresponding fuel feed pipes 37a and 37b.
- Both the first fuel pump 2a and the second fuel pump 2b have the construction illustrated in Fig. 4, but the phase of the cam 32 of the first fuel pump 2a is deviated from the phase of the cam 32 of the second fuel pump 2b by 60 degrees, i.e., a 120° crankangle. Accordingly, fuel is discharged alternately from the first fuel pump 2a and the second fuel pump 2b. This procedure will be now described with reference to Figure 3.
- the fuel injection order of the Diesel engine illustrated in Figs. 1 and 2 is 1-5-3-6-4, and the cam 32 of the first fuel pump 2a is arranged so that the cam lift reaches a maximam height at the completion of an injection to every other injection cylinder #1, #3, #2, and the cam 32 of the second fuel pump 2b is arranged so that the cam lift reaches a maximum height at the completion of an injection to the remaining every other injection cylinder #5, #6, #4.
- the control valve 39 of the fuel pumps 2a, 2b is closed shortly before the cam lift reaches the maximum height, and the control valve 39 remains closed until the cam lift reaches the maximum height.
- all of the fuel injection pipes 21a to 21f have the same length and the same diameter, but the bends in the fuel injection pipes 21a, 21d, 21e are different from those in the fuel injection pipes 21b, 21c, 21f. From the point of view that the equivalent pipe lengths of all of the fuel injection pipes 21a to 21f can be easily made the same, preferably all of the fuel injection pipes 21a to 21f are formed such that they have the same bends therein.
- the fuel feed pipes 37a and 37b have the same equivalent pipe length, and when fuel is discharged from the fuel pumps 2a, 2b, the pressure wave is propagated in the fuel feed pipes 37a, 37b. Nevertheless, since the fuel feed pipes 37a and 37b have the same equivalent pipe length, fluctuations of the pressure in the same amount are produced in the fuel reservoir 22 for a time which is the same as the time of the discharge operations alternately carried out by the fuel pumps 2a, 2b. Accordingly, as illustrated in Fig. 3, the fluctuations of pressure in the same amount are produced in the fuel reservoir 22 in synchronization with the fuel injection timing of the fuel injectors 1a to 1f.
- the fluctuations of pressure in the same amount are produced in the fuel reservoir 22 at a crankangle distanced from the fuel injection timing of the fuel injectors 1a to 1f by the same crankangle. Accordingly, the fluctuations of pressure in the fuel reservoir 22 have the same influence on the pressure of fuel in the fuel injectors 1a to 1f, and thus the amount of fuel injected by the fuel injectors 1a to 1f becomes the same.
- the fuel feed pipes 37a, 37b not only have the same equivalent pipe length, but also have the same length, the same diameter and the same shape.
- the pressure drop of fuel between the fuel reservoir 22 and the fuel pumps 2a, 2b is substantially equal to the pressure drop between the fuel reservoir 22 and the fuel injectors 1a to 1f.
- a fuel injection device comprising a pair of fuel pumps, whereby fuel under high pressure discharged from the fuel pumps is fed to the fuel reservoir via the corresponding fuel feed pipes, fuel under high pressure in the fuel reservoir is fed to the fuel injectors via the corresponding fuel injection pipes, and fuel is discharged from the fuel pumps in sychronization with the injection timing of the fuel injectors.
- the fuel feed pipes have the same equivalent pipe length for the pressure wave propagation, and the fuel injection pipes have the same equivalent pipe length for the pressure wave propagation.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP71756/91 | 1991-04-04 | ||
JP7175691A JP2797745B2 (ja) | 1991-04-04 | 1991-04-04 | 内燃機関の燃料噴射装置 |
JP3075101A JP2718281B2 (ja) | 1991-04-08 | 1991-04-08 | 内燃機関の燃料噴射装置 |
JP75101/91 | 1991-04-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0507191A1 true EP0507191A1 (de) | 1992-10-07 |
EP0507191B1 EP0507191B1 (de) | 1994-09-21 |
Family
ID=26412850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19920105042 Expired - Lifetime EP0507191B1 (de) | 1991-04-04 | 1992-03-24 | Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0507191B1 (de) |
DE (1) | DE69200427T2 (de) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0753661A1 (de) * | 1995-07-14 | 1997-01-15 | Krupp MaK Maschinenbau GmbH | Einspritzeinrichtung für einen Motor |
WO1998014700A1 (de) | 1996-09-30 | 1998-04-09 | Robert Bosch Gmbh | Kraftstoffhochdruckspeicher |
WO1998021469A1 (de) | 1996-11-14 | 1998-05-22 | Robert Bosch Gmbh | Kraftstoffeinspritzsystem |
WO1998021470A1 (de) * | 1996-11-12 | 1998-05-22 | Robert Bosch Gmbh | Kraftstoffeinspritzsystem |
EP0898074A1 (de) * | 1997-08-22 | 1999-02-24 | Isuzu Motors Limited | Kraftstofförderpumpe für Common Rail Kraftstoffeinspritzsystem |
EP1079100A2 (de) * | 1999-08-27 | 2001-02-28 | Delphi Technologies, Inc. | Verbindungsanordnung |
EP1143140A1 (de) * | 2000-03-01 | 2001-10-10 | Wärtsilä Schweiz AG | Versorgungsvorrichtung für ein Common Rail System |
WO2002055868A1 (de) * | 2001-01-12 | 2002-07-18 | Robert Bosch Gmbh | Common-rail einheit |
EP1657430A1 (de) * | 2004-11-12 | 2006-05-17 | C.R.F. Società Consortile per Azioni | Ein Kraftstoffeinspritzsystem mit Akkumulatorvolumen für eine Brennkraftmaschine |
EP1608869B1 (de) * | 2003-03-28 | 2007-02-28 | DEUTZ Aktiengesellschaft | Brennkraftmaschine mit einem speichereinspritzsystem |
WO2007113038A1 (de) * | 2006-03-30 | 2007-10-11 | Robert Bosch Gmbh | Kraftstoffeinspritzeinrichtung für eine mehrzylindrige brennkraftmaschine |
WO2013001035A3 (de) * | 2011-06-30 | 2013-03-21 | Arens Gmbh Metallbau & Bauschlosserei | Kraftstoffverteilerblock |
EP2778385A4 (de) * | 2011-11-03 | 2015-07-29 | Beijing Inst Technology | Kraftstoffeinspritzsystem mit mehreren ventilen und kraftstoffeinspritzverfahren dafür |
US9341151B2 (en) | 2011-06-30 | 2016-05-17 | Arens Gmbh Metallbau & Bauschlosserei | Fuel pump |
US9371752B2 (en) | 2011-06-30 | 2016-06-21 | Arens Gmbh Metallbau & Bauschlosserei | Rotary disk valve arrangement |
EP2503132A3 (de) * | 2011-03-23 | 2018-03-21 | Hitachi, Ltd. | Verfahren und Vorrichtung zur Reduzierung des Geräusches einer direkteinspritzenden Brennkraftmaschine |
CN115013206A (zh) * | 2022-07-14 | 2022-09-06 | 东风汽车集团股份有限公司 | 一种用于点燃压燃发动机的油轨总成及发动机 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5273015A (en) * | 1989-09-29 | 1993-12-28 | Nippondenso Co., Ltd. | Fuel supplying device for an internal combustion engine having multiple cylinder |
GB2322920B (en) * | 1997-03-03 | 2002-02-27 | Usui Kokusi Sangyo Kaisha Ltd | Common rail and method of manufacturing the same |
AT3764U1 (de) * | 1998-11-12 | 2000-07-25 | Avl List Gmbh | Kraftstoffzuführsystem für brennkraftmaschinen |
DE19937444C1 (de) | 1999-08-07 | 2001-01-18 | Winkelmann & Pannhoff Gmbh | Vorrichtung zur Verteilung von Kraftstoff für Kraftstoffeinspritzanlagen von Verbrennungsmotoren |
DE10354687A1 (de) * | 2003-11-22 | 2005-06-16 | Mann + Hummel Gmbh | Ansaugeinrichtung für eine Brennkraftmaschine |
DE102004021040A1 (de) * | 2004-04-29 | 2005-11-24 | Fev Motorentechnik Gmbh | Einspritzeinrichtung für eine Brennkraftmaschine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1162601A (fr) * | 1956-08-01 | 1958-09-16 | Perfectionnements apportés aux dispositifs d'injection de combustible pour moteurs dans lesquels une pompe d'injection alimente successivement plusieurs injecteurs | |
FR2341752A1 (fr) * | 1976-02-17 | 1977-09-16 | Johnson Lloyd | Appareil et procede d'injection du carburant d'un moteur a combustion interne |
FR2548279A1 (fr) * | 1983-06-30 | 1985-01-04 | Daimler Benz Ag | Support de conduites d'injection pour un moteur a combustion interne multi-cylindrique |
EP0174261A1 (de) * | 1984-08-14 | 1986-03-12 | Ail Corporation | Fördermengensteuersystem |
EP0307947A2 (de) * | 1987-09-16 | 1989-03-22 | Nippondenso Co., Ltd. | Hochdruckverstellpumpe |
-
1992
- 1992-03-24 DE DE1992600427 patent/DE69200427T2/de not_active Expired - Fee Related
- 1992-03-24 EP EP19920105042 patent/EP0507191B1/de not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1162601A (fr) * | 1956-08-01 | 1958-09-16 | Perfectionnements apportés aux dispositifs d'injection de combustible pour moteurs dans lesquels une pompe d'injection alimente successivement plusieurs injecteurs | |
FR2341752A1 (fr) * | 1976-02-17 | 1977-09-16 | Johnson Lloyd | Appareil et procede d'injection du carburant d'un moteur a combustion interne |
FR2548279A1 (fr) * | 1983-06-30 | 1985-01-04 | Daimler Benz Ag | Support de conduites d'injection pour un moteur a combustion interne multi-cylindrique |
EP0174261A1 (de) * | 1984-08-14 | 1986-03-12 | Ail Corporation | Fördermengensteuersystem |
EP0307947A2 (de) * | 1987-09-16 | 1989-03-22 | Nippondenso Co., Ltd. | Hochdruckverstellpumpe |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0753661A1 (de) * | 1995-07-14 | 1997-01-15 | Krupp MaK Maschinenbau GmbH | Einspritzeinrichtung für einen Motor |
WO1998014700A1 (de) | 1996-09-30 | 1998-04-09 | Robert Bosch Gmbh | Kraftstoffhochdruckspeicher |
WO1998021470A1 (de) * | 1996-11-12 | 1998-05-22 | Robert Bosch Gmbh | Kraftstoffeinspritzsystem |
WO1998021469A1 (de) | 1996-11-14 | 1998-05-22 | Robert Bosch Gmbh | Kraftstoffeinspritzsystem |
EP0898074A1 (de) * | 1997-08-22 | 1999-02-24 | Isuzu Motors Limited | Kraftstofförderpumpe für Common Rail Kraftstoffeinspritzsystem |
EP1079100A2 (de) * | 1999-08-27 | 2001-02-28 | Delphi Technologies, Inc. | Verbindungsanordnung |
EP1079100A3 (de) * | 1999-08-27 | 2003-11-26 | Delphi Technologies, Inc. | Verbindungsanordnung |
EP1143140A1 (de) * | 2000-03-01 | 2001-10-10 | Wärtsilä Schweiz AG | Versorgungsvorrichtung für ein Common Rail System |
KR100754913B1 (ko) * | 2000-03-01 | 2007-09-04 | 베르트질레 슈바이츠 악티엔게젤샤프트 | 커먼 레일 시스템용 공급 장치 및 이를 구비한 대형 디젤 엔진 |
WO2002055868A1 (de) * | 2001-01-12 | 2002-07-18 | Robert Bosch Gmbh | Common-rail einheit |
EP1608869B1 (de) * | 2003-03-28 | 2007-02-28 | DEUTZ Aktiengesellschaft | Brennkraftmaschine mit einem speichereinspritzsystem |
US7377263B2 (en) | 2003-03-28 | 2008-05-27 | Deutz Aktiengesellschaft | Internal combustion engine provided with an accumulator injection system |
EP1657430A1 (de) * | 2004-11-12 | 2006-05-17 | C.R.F. Società Consortile per Azioni | Ein Kraftstoffeinspritzsystem mit Akkumulatorvolumen für eine Brennkraftmaschine |
US7444988B2 (en) | 2004-11-12 | 2008-11-04 | C.R.F. Societa Consortile Per Azioni | Accumulation-volume fuel injection system for an internal-combustion engine |
US7980223B2 (en) | 2004-11-12 | 2011-07-19 | C.R.F. Societa Consortile Per Azioni | Accumulation-volume fuel injection system for an internal-combustion engine |
WO2007113038A1 (de) * | 2006-03-30 | 2007-10-11 | Robert Bosch Gmbh | Kraftstoffeinspritzeinrichtung für eine mehrzylindrige brennkraftmaschine |
EP2503132A3 (de) * | 2011-03-23 | 2018-03-21 | Hitachi, Ltd. | Verfahren und Vorrichtung zur Reduzierung des Geräusches einer direkteinspritzenden Brennkraftmaschine |
WO2013001035A3 (de) * | 2011-06-30 | 2013-03-21 | Arens Gmbh Metallbau & Bauschlosserei | Kraftstoffverteilerblock |
US9328658B2 (en) | 2011-06-30 | 2016-05-03 | Arens Gmbh Metallbau & Bauschlosserei | Fuel distribution block |
US9341151B2 (en) | 2011-06-30 | 2016-05-17 | Arens Gmbh Metallbau & Bauschlosserei | Fuel pump |
US9371752B2 (en) | 2011-06-30 | 2016-06-21 | Arens Gmbh Metallbau & Bauschlosserei | Rotary disk valve arrangement |
EP2778385A4 (de) * | 2011-11-03 | 2015-07-29 | Beijing Inst Technology | Kraftstoffeinspritzsystem mit mehreren ventilen und kraftstoffeinspritzverfahren dafür |
CN115013206A (zh) * | 2022-07-14 | 2022-09-06 | 东风汽车集团股份有限公司 | 一种用于点燃压燃发动机的油轨总成及发动机 |
Also Published As
Publication number | Publication date |
---|---|
DE69200427D1 (de) | 1994-10-27 |
DE69200427T2 (de) | 1995-02-16 |
EP0507191B1 (de) | 1994-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0507191A1 (de) | Kraftstoffeinspritzvorrichtung einer Brennkraftmaschine | |
EP0780569B1 (de) | Speicherkraftstoffeinspritzvorrichtung | |
JP3404059B2 (ja) | 筒内直噴式エンジンの燃料噴射方法 | |
EP1443197B1 (de) | Regelsystem für die Direkteinspritzung des Kraftstoffs | |
JPH09209867A (ja) | 燃料噴射装置 | |
WO2002006652A3 (en) | Method and apparatus for delivering multiple fuel injections to the cylinder of an engine | |
JP2797745B2 (ja) | 内燃機関の燃料噴射装置 | |
EP1087130B1 (de) | Speicherkraftstoffeinspritzvorrichtung | |
JP2001512552A (ja) | 油圧作動式電子制御噴射燃料システムによるエンジンへの噴射燃料量制御の電子制御システムおよび方法 | |
KR100559128B1 (ko) | 촉매 변환기를 가진 4 행정 디젤 기관 | |
JP2001123871A (ja) | ディーゼルエンジンの制御装置 | |
JP2003507623A (ja) | 燃料噴射装置 | |
EP0107894A2 (de) | Verfahren und Gerät für die genaue Steuerung der Kraftstoffeinspritzung in einem Dieselmotor | |
EP1030047A3 (de) | Krafstoffdrucksteuervorrichtung und Verfahren für ein Hochdruckkraftstoffeinspritzsystem | |
CN1050878C (zh) | 柴油内燃机中的燃料喷射过程 | |
US7891341B2 (en) | Control device for internal combustion engine | |
JP2000274329A (ja) | 内燃機関の燃料噴射装置 | |
JP2857928B2 (ja) | ディーゼル機関の高圧燃料ポンプ | |
JP2718281B2 (ja) | 内燃機関の燃料噴射装置 | |
JP2000161171A (ja) | 蓄圧式燃料噴射装置 | |
JPH0689667B2 (ja) | エンジンの吸気装置 | |
JP3301450B2 (ja) | 内燃機関の燃料噴射装置 | |
JPH0429867B2 (de) | ||
JP2765328B2 (ja) | ディーゼル機関の燃料噴射制御装置 | |
JP2001123864A (ja) | エンジンの燃料噴射量制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19920324 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
17Q | First examination report despatched |
Effective date: 19930210 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REF | Corresponds to: |
Ref document number: 69200427 Country of ref document: DE Date of ref document: 19941027 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20010206 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090318 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090319 Year of fee payment: 18 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100324 |