EP0504776A1 - Low loss coaxial cable - Google Patents
Low loss coaxial cable Download PDFInfo
- Publication number
- EP0504776A1 EP0504776A1 EP92104511A EP92104511A EP0504776A1 EP 0504776 A1 EP0504776 A1 EP 0504776A1 EP 92104511 A EP92104511 A EP 92104511A EP 92104511 A EP92104511 A EP 92104511A EP 0504776 A1 EP0504776 A1 EP 0504776A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rod
- cable according
- density
- ptfe
- cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims abstract description 29
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 28
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims abstract description 20
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 5
- 239000003989 dielectric material Substances 0.000 claims abstract description 4
- 239000004033 plastic Substances 0.000 claims abstract description 3
- 229920003023 plastic Polymers 0.000 claims abstract description 3
- 239000012212 insulator Substances 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 238000001125 extrusion Methods 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims 1
- 230000008016 vaporization Effects 0.000 claims 1
- 238000009834 vaporization Methods 0.000 claims 1
- 238000009413 insulation Methods 0.000 abstract description 5
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 238000001465 metallisation Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 241000735470 Juncus Species 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1804—Construction of the space inside the hollow inner conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1808—Construction of the conductors
- H01B11/183—Co-axial cables with at least one helicoidally wound tape-conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/1834—Construction of the insulation between the conductors
- H01B11/1839—Construction of the insulation between the conductors of cellular structure
Definitions
- the present invention relates to a low loss coaxial cable, operating in particular at very high frequencies and at high temperatures.
- a low density dielectric is used as an intermediate insulator (with a minimum value approximately equal to 15% of that of the dielectric of a coaxial cable with a solid dielectric).
- Such a cable structure does not allow radii of curvature less than 4 to 5 times the outside diameter of the cable.
- a thickness of metal is sufficient, for the inner conductor, of the order of a hundredth of a millimeter (the minimum thickness e is a function of the frequency f according to the following formula: or is the permeability of the metal used and ⁇ its conductivity).
- the minimum thickness e is a function of the frequency f according to the following formula: or is the permeability of the metal used and ⁇ its conductivity.
- the object of the present invention is therefore to produce a cable with low losses capable of withstanding small radii of curvature and able to be used at very high frequencies and under high temperatures.
- the rod is produced by extruding solid PTFE on a support with a diameter of between 0.15 and 0.5 times the diameter of the rod.
- This support can be a metal strand, a metal wire or a wire made of an insulating material.
- the rod is made of solid PTFE with a density equal to 2.16 and the intermediate insulation is made of expanded PTFE with a density equal to 1.
- the metallic inner conductor can be obtained by helical short pitch taping without welding of a conductive tape around the rod.
- the recovery rate of the taping can then be between 20 and 60%.
- the inner conductor by depositing metal on the rod by vacuum spraying, sputtering or chemically.
- the thickness of the inner conductor thus produced is between 0.002 and 0.2 mm, depending on the frequency of use of the cable and the metallization technique used.
- the cable may further include an outer insulating sheath around the metallic outer conductor.
- the single figure shows in perspective a cable according to the invention.
- a cable 1 consists of a rod 2 made of solid PTFE with a density d J equal to 2.16 and a diameter of 0.93 mm.
- the rod 2 is produced by extruding PTFE on a copper wire 7 with a diameter of 0.28 mm. It is covered with a conductive copper tape 3 constituting the conductive core 4 of the cable 1. More specifically, the core 4 is produced using helical tape, with very short pitch and covering at 49% of the turns of the tape 3 not welded. This gives a metallization thickness of 0.1 mm, which allows the cable to operate at 40 MHz and more.
- the intermediate dielectric 5 is banded made of expanded PTFE with a density d I equal to 1.
- the diameter of the intermediate insulator 5 thus obtained is 2.95 mm.
- the external conductor 6 is added, which is a metal tube with a diameter of 3.58 mm. Cable 1 therefore has an outside diameter of 3.58 mm. It is not necessary to provide cable 1 with an external insulator.
- the outer conductor 6 is then possibly tinned or silver.
- the ratio d I / d J is equal to 0.46; it is included in the range defined above, that is to say between 0.15 and 0.75.
- the use of PTFE to form the rod support allows the cable to operate at high temperatures, and generally above 125 ° C.
- the structure of the conductive core is flexible, which allows the reduction of the minimum radius of curvature.
- the use of a copper wire, which has no conductive role, as a flexible support during the extrusion of the support rod provides mechanical reinforcement of the structure while guaranteeing the rod a sufficiently low stiffness not to introduce disturbance of the electrical characteristics of the cable during a possible bending.
- the present invention therefore makes it possible to obtain cables with low transmission losses capable of withstanding small radii of curvature while retaining their electrical characteristics, and which can at the same time operate at very high frequencies and at high temperatures.
- cables can be used in particular in the aeronautical, space, military fields, and in any other field where the constraints of congestion imply the need to subject the cables to a significant confinement.
- the support rod can be produced by extruding PTFE on a flexible support of metallic or non-metallic mechanical reinforcement.
- This support may for example consist of a strand or a metal wire with a diameter between 0.15 and 0.5 times that of the rod.
- the density of the dielectric constituting the insulator intermediate can be between 0.3 and 1.2. However, it is always necessary to remain in a ratio between density of the intermediate insulation and density of the support rod of between 0.15 and 0.75 in order to preserve the properties of the cable according to the invention.
- the taping recovery rate can vary between 20 and 60%.
- the thickness of the inner conductor is advantageously between 0.002 and 0.2 mm. In practice for cable use frequencies greater than 1 GHz, this thickness is of the order of 0.002 mm, and for use frequencies greater than 10 MHz, it is approximately 0.2 mm.
Landscapes
- Communication Cables (AREA)
Abstract
Description
La présente invention concerne un câble coaxial à faibles pertes, fonctionnant en particulier à de très hautes fréquences et à des températures élevées.The present invention relates to a low loss coaxial cable, operating in particular at very high frequencies and at high temperatures.
Afin de réduire les pertes de transmission des câbles coaxiaux, on utilise comme isolant intermédiaire un diélectrique de faible densité(de valeur minimale environ égale à 15% de celle du diélectrique d'un câble coaxial à diélectrique massif). On peut par exemple remplacer du polytétrafluoroéthylène (PTFE) massif par du PTFE expansé, dont la densité est plus faible que celle du PTFE massif. Le PTFE expansé a une permittivité relative inférieure à celle du PTFE massif. Par conséquent, pour conserver des caractéristiques électriques identiques à celles des câbles classiques, et notamment une impédance caractéristique semblable (on rappelle que l'impédance caractéristique d'un câble dépend de la concentricité des différents éléments du câble, du rapport entre leurs diamètres et de leur permittivité diélectrique relative), il faut diminuer le rapport entre le diamètre intérieur du conducteur extérieur (c'est-à-dire généralement le diamètre extérieur du diélectrique intermédiaire) et le diamètre extérieur du conducteur intérieur, ce qui conduit en pratique à augmenter le diamètre extérieur du conducteur intérieur.In order to reduce the transmission losses of coaxial cables, a low density dielectric is used as an intermediate insulator (with a minimum value approximately equal to 15% of that of the dielectric of a coaxial cable with a solid dielectric). One can for example replace polytetrafluoroethylene (PTFE) massive by expanded PTFE, whose density is lower than that of massive PTFE. Expanded PTFE has a lower relative permittivity than solid PTFE. Consequently, to maintain electrical characteristics identical to those of conventional cables, and in particular a similar characteristic impedance (it is recalled that the characteristic impedance of a cable depends on the concentricity of the various elements of the cable, the ratio between their diameters and their relative dielectric permittivity), it is necessary to decrease the ratio between the internal diameter of the external conductor (that is to say generally the external diameter of the intermediate dielectric) and the external diameter of the internal conductor, which leads in practice to increasing the outer diameter of the inner conductor.
Or, lors de l'utilisation du câble, les contraintes de pliage sont nombreuses ; en effet, les câbles occupant l'espace le plus restreint possible sont de plus en plus recherchés, afin de gagner de la place, notamment dans les applications spatiales, militaires aéronautiques, etc.However, when using the cable, the bending constraints are numerous; indeed, cables occupying the smallest possible space are more and more sought after, in order to save space, in particular in space applications, military aeronautics, etc.
Ainsi, l'augmentation du diamètre extérieur d'un conducteur intérieur métallique massif et raide associée à la diminution de résistance à la compression d'un diélectrique à faible densité entraîne, lors du pliage, un décentrement local de l'âme conductrice centrale du fait de sa raideur. Ceci conduit à une variation néfaste de l'impédance caractéristique, et donc des propriétés électriques, du câble considéré.Thus, the increase in the outside diameter of a solid and stiff metallic interior conductor associated with the reduction in compressive strength of a low density dielectric results, during folding, in a local decentering of the central conductive core. of its stiffness. This leads to a harmful variation in the characteristic impedance, and therefore in the electrical properties, of the cable considered.
Une telle structure de câble ne permet pas d'atteindre des rayons de courbure inférieurs à 4 à 5 fois le diamètre extérieur du câble.Such a cable structure does not allow radii of curvature less than 4 to 5 times the outside diameter of the cable.
On pourrait alors penser à utiliser un câble dans lequel le conducteur central métallique raide est remplacé par un jonc souple en un matériau diélectrique, recouvert par des bandes de métal. Une telle structure est décrite dans le brevet FR-2 487 568.One could then think of using a cable in which the stiff metallic central conductor is replaced by a flexible rod made of a dielectric material, covered by metal strips. Such a structure is described in patent FR-2 487 568.
Toutefois, la solution apportée par cette structure n'est transposable ni au domaine des très hautes fréquences (typiquement supérieures à 12 GHz) où l'on utilise des câbles très fins (diamètre extérieur allant jusqu'à 6,5 mm), ni à celui des hautes températures de service (de l'ordre de 125°C et plus). En effet, le polyuréthane cellulaire utilisé pour former le jonc de soutien décrit dans le brevet mentionné ne tolère pas des températures supérieures à 80°C.However, the solution provided by this structure cannot be transposed either to the very high frequency domain (typically greater than 12 GHz) where very thin cables are used (outside diameter up to 6.5 mm), or to that of high service temperatures (around 125 ° C and above). Indeed, the cellular polyurethane used to form the support rod described in the mentioned patent does not tolerate temperatures above 80 ° C.
D'autre part, l'utilisation d'une bande de métal disposée en long et éventuellement soudée pour réaliser le conducteur intérieur conduit à une structure raide qui ne supporte pas de faibles rayons de courbure : lors du pliage, il y a dégradation du conducteur intérieur.On the other hand, the use of a metal strip arranged long and possibly welded to make the inner conductor leads to a stiff structure which does not support small radii of curvature: during folding, there is degradation of the conductor interior.
Pour des câbles fonctionnant à hautes fréquences (200 MHz par exemple), il suffit d'une épaisseur de métal, pour le conducteur intérieur, de l'ordre du centième de millimètre (l'épaisseur minimale e est fonction de la fréquence f selon la formule suivante :
où est la perméabilité du métal utilisé et σ sa conductivité).
Ceci est impossible à obtenir avec le procédé d'injection de polyuréthane dans un tube métallique constituant l'âme centrale décrit dans le brevet cité. En effet, il n'est pas possible de réaliser un tube métallique d'une épaisseur de quelques centièmes de millimètres capable de supporter l'injection de polyuréthane. En pratique les câbles décrits dans le brevet cité ont des diamètres de plus d'une dizaine de millimètres. Finalement, on ne peut obtenir, grâce aux techniques classiques, un câble supportant de faibles rayons de courbure et entraînant de faibles pertes de transmission, capable de fonctionner à des fréquences très hautes et à des températures élevées.For cables operating at high frequencies (200 MHz for example), a thickness of metal is sufficient, for the inner conductor, of the order of a hundredth of a millimeter (the minimum thickness e is a function of the frequency f according to the following formula:
or is the permeability of the metal used and σ its conductivity).
This is impossible to obtain with the method of injecting polyurethane into a metal tube constituting the central core described in the cited patent. Indeed, it is not possible to produce a metal tube with a thickness of a few hundredths of a millimeter capable of supporting the injection of polyurethane. In practice, the cables described in the cited patent have diameters of more than ten millimeters. Finally, it is not possible, using conventional techniques, to obtain a cable supporting small radii of curvature and causing low transmission losses, capable of operating at very high frequencies and at high temperatures.
La but de la présente invention est donc de réaliser un câble à faibles pertes capable de supporter des rayons de courbure faibles et pouvant être utilisé à de très hautes fréquences et sous de fortes températures.The object of the present invention is therefore to produce a cable with low losses capable of withstanding small radii of curvature and able to be used at very high frequencies and under high temperatures.
La présente invention propose à cet effet un câble coaxial à faibles pertes comprenant :
- un jonc central de soutien en matière plastique, recouvert d'un métal formant le conducteur intérieur (ou âme) dudit câble coaxial,
- un isolant intermédiaire en un matériau diélectrique,
- un conducteur extérieur métallique,
- a central plastic support ring, covered with a metal forming the inner conductor (or core) of said coaxial cable,
- an intermediate insulator made of a dielectric material,
- an external metallic conductor,
Avantageusement, le jonc est réalisé par extrusion de PTFE massif sur un support de diamètre compris entre 0,15 et 0,5 fois le diamètre du jonc. Ce support peut être un toron métallique, un fil métallique ou un fil en un matériau isolant.Advantageously, the rod is produced by extruding solid PTFE on a support with a diameter of between 0.15 and 0.5 times the diameter of the rod. This support can be a metal strand, a metal wire or a wire made of an insulating material.
Selon une réalisation avantageuse, le jonc est en PTFE massif de densité égale à 2,16 et l'isolant intermédiaire est en PTFE expansé de densité égale à 1.According to an advantageous embodiment, the rod is made of solid PTFE with a density equal to 2.16 and the intermediate insulation is made of expanded PTFE with a density equal to 1.
Selon une caractéristique importante, le conducteur intérieur métallique peut être obtenu par rubanage hélicoïdal à pas court sans soudure d'un ruban conducteur autour du jonc. Le taux de recouvrement du rubannage peut alors être compris entre 20 et 60%.According to an important characteristic, the metallic inner conductor can be obtained by helical short pitch taping without welding of a conductive tape around the rod. The recovery rate of the taping can then be between 20 and 60%.
Selon une variante, il est possible d'obtenir le conducteur intérieur par dépôt de métal sur le jonc par vaporisation sous vide, pulvérisation cathodique ou par voie chimique.Alternatively, it is possible to obtain the inner conductor by depositing metal on the rod by vacuum spraying, sputtering or chemically.
De manière avantageuse encore, l'épaisseur du conducteur intérieur ainsi réalisé est comprise entre 0,002 et 0,2 mm, selon la fréquence d'utilisation du câble et la technique de métallisation utilisée.Also advantageously, the thickness of the inner conductor thus produced is between 0.002 and 0.2 mm, depending on the frequency of use of the cable and the metallization technique used.
Enfin, le câble peut comporter en outre une gaine isolante extérieure autour du conducteur extérieur métallique.Finally, the cable may further include an outer insulating sheath around the metallic outer conductor.
D'autres caractéristiques et avantages de la présente invention apparaîtront dans la description suivante d'un câble selon l'invention, donnée à titre illustratif et nullement limitatif.Other characteristics and advantages of the present invention will appear in the following description of a cable according to the invention, given by way of illustration and in no way limitative.
La figure unique représente en perspective un câble selon l'invention.The single figure shows in perspective a cable according to the invention.
Dans cette figure, un câble 1 selon l'invention est constitué d'un jonc 2 en PTFE massif de densité dJ égale à 2,16 et de diamètre 0,93 mm. Le jonc 2 est réalisé par extrusion de PTFE sur un fil en cuivre 7 de diamètre 0,28 mm. Il est recouvert d'un ruban conducteur en cuivre 3 constituant l'âme conductrice 4 du câble 1. Plus précisément, l'âme 4 est réalisée selon un rubanage hélicoïdal, à pas très court et à recouvrement à 49% des spires du ruban 3 non soudé. On obtient alors une épaisseur de métallisation de 0,1 mm, qui permet au câble un fonctionnement à 40 MHz et plus.In this figure, a cable 1 according to the invention consists of a rod 2 made of solid PTFE with a density d J equal to 2.16 and a diameter of 0.93 mm. The rod 2 is produced by extruding PTFE on a copper wire 7 with a diameter of 0.28 mm. It is covered with a conductive copper tape 3 constituting the conductive core 4 of the cable 1. More specifically, the core 4 is produced using helical tape, with very short pitch and covering at 49% of the turns of the tape 3 not welded. This gives a metallization thickness of 0.1 mm, which allows the cable to operate at 40 MHz and more.
Autour de l'âme conductrice 4, on rubanne le diélectrique intermédiaire 5 constitué de PTFE expansé de densité dI égale à 1. Le diamètre de l'isolant intermédiaire 5 ainsi obtenu est de 2,95 mm. Enfin, selon des techniques classiques qui ne font pas l'objet de l'invention, on ajoute le conducteur extérieur 6, qui est un tube métallique de diamètre 3,58 mm. Le câble 1 a donc un diamètre extérieur de 3,58 mm. Il n'est pas nécessaire de munir le câble 1 d'un isolant externe. Le conducteur extérieur 6 est alors éventuellement étamé ou argenté.Around the conductive core 4, the intermediate dielectric 5 is banded made of expanded PTFE with a density d I equal to 1. The diameter of the
Le rapport dI/dJ est égal à 0,46 ; il est compris dans la fourchette définie plus haut, c'est-à-dire entre 0,15 et 0,75. Ainsi, grâce au câble selon l'invention, il est possible d'atteindre des rayons de courbure de 3 fois le diamètre extérieur du câble 1, soit environ 10 mm, sans décentrement de l'âme et donc sans variation des caractéristiques électriques du câble, alors que les rayons de courbure minimaux atteints avec les câbles de l'art antérieur sont de l'ordre de 4, voire 5 fois le diamètre extérieur du câble. Dans le cas de l'invention, la diminution du rayon de courbure minimal n'est plus limitée que par la contrainte mécanique maximale acceptable par le conducteur extérieur lors du pliage.The ratio d I / d J is equal to 0.46; it is included in the range defined above, that is to say between 0.15 and 0.75. Thus, thanks to the cable according to the invention, it is possible to reach radii of curvature of 3 times the external diameter of the cable 1, that is to say approximately 10 mm, without decentering of the core and therefore without variation of the electrical characteristics of the cable. , while the minimum radii of curvature achieved with the cables of the prior art are of the order of 4, or even 5 times the external diameter of the cable. In the case of the invention, the reduction in the minimum radius of curvature is no longer limited except by the maximum mechanical stress acceptable by the external conductor during folding.
D'autre part, 1'utilisation de PTFE pour former le jonc de soutien autorise le fonctionnement du câble à des températures élevées, et généralement supérieures à 125°C.On the other hand, the use of PTFE to form the rod support allows the cable to operate at high temperatures, and generally above 125 ° C.
Grâce au rubanage sans soudure et à pas très court du conducteur intérieur sur le jonc de soutien, la structure de l'âme conductrice est souple, ce qui permet la diminution du rayon de courbure minimal.Thanks to the seamless and very short pitch taping of the inner conductor on the support rod, the structure of the conductive core is flexible, which allows the reduction of the minimum radius of curvature.
Il est également possible de réaliser la métallisation par dépôt de métal sur le jonc par vaporisation sous vide, pulvérisation cathodique ou par voie chimique. On peut ainsi obtenir des épaisseurs de métallisation très faibles (quelques microns) qui sont appropriées à l'utilisation du câble selon l'invention à de très hautes fréquences (avec une épaisseur de métallisation de 5, on peut utiliser le câble à des fréquences supérieures à 200 MHz).It is also possible to carry out metallization by depositing metal on the rod by vacuum spraying, sputtering or by chemical means. It is thus possible to obtain very small metallization thicknesses (a few microns) which are suitable for using the cable according to the invention at very high frequencies (with a metallization thickness of 5 , the cable can be used at frequencies above 200 MHz).
Enfin, et de manière avantageuse, l'utilisation d'un fil de cuivre, qui n'a pas de rôle conducteur, comme support souple lors de l'extrusion du jonc de soutien assure un renfort mécanique de la structure tout en garantissant au jonc une raideur suffisamment faible pour ne pas introduire de perturbation des caractéristiques électriques du câble lors d'un pliage éventuel.Finally, and advantageously, the use of a copper wire, which has no conductive role, as a flexible support during the extrusion of the support rod provides mechanical reinforcement of the structure while guaranteeing the rod a sufficiently low stiffness not to introduce disturbance of the electrical characteristics of the cable during a possible bending.
La présente invention permet donc d'obtenir des câbles à faibles pertes de transmission capables de supporter de faibles rayons de courbure tout en conservant leurs caractéristiques électriques, et pouvant en même temps fonctionner à de très hautes fréquences et à des températures élevées.The present invention therefore makes it possible to obtain cables with low transmission losses capable of withstanding small radii of curvature while retaining their electrical characteristics, and which can at the same time operate at very high frequencies and at high temperatures.
Ces câbles peuvent être utilisés en particulier dans les domaines aéronautique, spatial, militaire, et dans tout autre domaine où les contraintes d'encombrement impliquent la nécessité de soumettre les câbles à un confinement important.These cables can be used in particular in the aeronautical, space, military fields, and in any other field where the constraints of congestion imply the need to subject the cables to a significant confinement.
Bien entendu, la présente invention n'est pas limitée à la structure qui vient d'être décrite.Of course, the present invention is not limited to the structure which has just been described.
En particulier, on peut réaliser le jonc de soutien par extrusion de PTFE sur un support souple de renfort mécanique métallique ou non. Ce support peut être par exemple constitué d'un toron ou d'un fil métallique de diamètre compris entre 0,15 et 0,5 fois celui du jonc.In particular, the support rod can be produced by extruding PTFE on a flexible support of metallic or non-metallic mechanical reinforcement. This support may for example consist of a strand or a metal wire with a diameter between 0.15 and 0.5 times that of the rod.
De même, la densité du diélectrique constituant l'isolant intermédiaire peut être comprise entre 0,3 et 1,2. Toutefois, il faut toujours rester dans un rapport entre densité de l'isolant intermédiaire et densité du jonc de soutien compris entre 0,15 et 0,75 afin de conserver les propriétés du câble selon l'invention.Likewise, the density of the dielectric constituting the insulator intermediate can be between 0.3 and 1.2. However, it is always necessary to remain in a ratio between density of the intermediate insulation and density of the support rod of between 0.15 and 0.75 in order to preserve the properties of the cable according to the invention.
Par ailleurs, le taux de recouvrement du rubanage peut varier entre 20 et 60%.Furthermore, the taping recovery rate can vary between 20 and 60%.
Enfin, l'épaisseur du conducteur intérieur est avantageusement comprise entre 0,002 et 0,2 mm. En pratique pour des fréquences d'utilisation du câble supérieures à 1 GHz, cette épaisseur est de l'ordre de 0,002 mm, et pour des fréquences d'utilisation supérieures à 10 MHz, elle est d'environ 0,2 mm.Finally, the thickness of the inner conductor is advantageously between 0.002 and 0.2 mm. In practice for cable use frequencies greater than 1 GHz, this thickness is of the order of 0.002 mm, and for use frequencies greater than 10 MHz, it is approximately 0.2 mm.
Bien évidemment, on pourra remplacer tout procédé par un procédé d'obtention équivalent sans sortir du cadre de l'invention.Obviously, any process can be replaced by an equivalent process without departing from the scope of the invention.
Claims (12)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9103445 | 1991-03-21 | ||
FR9103445A FR2674365B1 (en) | 1991-03-21 | 1991-03-21 | COAXIAL CABLE WITH LOW LOSSES. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0504776A1 true EP0504776A1 (en) | 1992-09-23 |
EP0504776B1 EP0504776B1 (en) | 1995-03-01 |
Family
ID=9410983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92104511A Expired - Lifetime EP0504776B1 (en) | 1991-03-21 | 1992-03-16 | Low loss coaxial cable |
Country Status (5)
Country | Link |
---|---|
US (1) | US5235299A (en) |
EP (1) | EP0504776B1 (en) |
CA (1) | CA2063639C (en) |
DE (1) | DE69201499T2 (en) |
FR (1) | FR2674365B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0635850A1 (en) * | 1993-07-22 | 1995-01-25 | W.L. GORE & ASSOCIATES GmbH | High frequency broadband electrical coaxial cable |
WO1999009562A1 (en) * | 1997-08-14 | 1999-02-25 | Commscope, Inc. Of North Carolina | Coaxial cable and method of making same |
US6246006B1 (en) | 1998-05-01 | 2001-06-12 | Commscope Properties, Llc | Shielded cable and method of making same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2686727B1 (en) * | 1992-01-28 | 1997-01-31 | Filotex Sa | ELECTRIC CONDUCTOR AND ELECTRIC CABLE CONTAINING SUCH A CONDUCTOR. |
JP3729866B2 (en) | 1996-09-25 | 2005-12-21 | コムスコープ,インコーポレイテッド・オヴ・ノース・キャロライナ | Coaxial cable and manufacturing method thereof |
US5744755A (en) * | 1996-10-31 | 1998-04-28 | Marilyn A. Gasque | Lightning retardant cable |
US6278599B1 (en) | 1996-10-31 | 2001-08-21 | Mag Holdings, Inc | Lightning retardant cable and conduit systems |
US5930100A (en) * | 1996-10-31 | 1999-07-27 | Marilyn A. Gasque | Lightning retardant cable |
US6649841B2 (en) * | 2000-12-01 | 2003-11-18 | Andrew Corporation | Corrugated coaxial cable with high velocity of propagation |
DE10153870A1 (en) * | 2001-11-02 | 2003-05-22 | Leybold Vakuum Gmbh | Drive for the piston of a linear cooler |
DE10302962A1 (en) * | 2003-01-25 | 2004-08-05 | Nexans | Coaxial high frequency cable has outer conductor of at least one helically wound metal wire whose individual windings are butt-wound so the lay length equals external diameter of metal wire |
US20040194996A1 (en) * | 2003-04-07 | 2004-10-07 | Floyd Ysbrand | Shielded electrical wire construction and method of manufacture |
US20070210479A1 (en) * | 2006-03-13 | 2007-09-13 | Mcintyre Leo P | Cable manufacturing method |
US7390963B2 (en) * | 2006-06-08 | 2008-06-24 | 3M Innovative Properties Company | Metal/ceramic composite conductor and cable including same |
CN102832430B (en) * | 2011-06-15 | 2016-08-10 | 深圳金信诺高新技术股份有限公司 | Low-loss radio-frequency coaxial cable |
KR101867168B1 (en) | 2016-08-18 | 2018-06-12 | 엘에스전선 주식회사 | Power cable |
RU183514U1 (en) * | 2018-04-10 | 2018-09-25 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | PHASE STABLE COAXIAL RADIO FREQUENCY CABLE |
CN109193093B (en) * | 2018-11-08 | 2024-03-29 | 神宇通信科技股份公司 | Radio frequency coaxial cable |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2189825A1 (en) * | 1972-06-15 | 1974-01-25 | Sits Soc It Telecom Siemens | |
FR2487568A1 (en) * | 1980-07-25 | 1982-01-29 | Cables De Lyon Geoffroy Delore | Coaxial cable with thin wall tubular core conductor - internally supported against collapse by pref. expanded polyethylene or polyurethane rod in compression |
EP0140757A2 (en) * | 1983-09-29 | 1985-05-08 | Axon'cable S.A. | Coaxial cable for transmissions of microwaves |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3309455A (en) * | 1964-09-21 | 1967-03-14 | Dow Chemical Co | Coaxial cable with insulating conductor supporting layers bonded to the conductors |
FR2613528B1 (en) * | 1987-04-03 | 1989-06-09 | Filotex Sa | METHOD FOR MANUFACTURING A FLEXIBLE ELECTRICAL CONDUCTOR CABLE COMPRISING THIN THREADS OF ALUMINUM OR ALUMINUM ALLOY |
JPS6435804A (en) * | 1987-07-31 | 1989-02-06 | Junkosha Co Ltd | High-frequency coaxial cable |
-
1991
- 1991-03-21 FR FR9103445A patent/FR2674365B1/en not_active Expired - Fee Related
-
1992
- 1992-03-16 EP EP92104511A patent/EP0504776B1/en not_active Expired - Lifetime
- 1992-03-16 DE DE69201499T patent/DE69201499T2/en not_active Expired - Fee Related
- 1992-03-20 CA CA002063639A patent/CA2063639C/en not_active Expired - Fee Related
- 1992-03-20 US US07/854,688 patent/US5235299A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2189825A1 (en) * | 1972-06-15 | 1974-01-25 | Sits Soc It Telecom Siemens | |
FR2487568A1 (en) * | 1980-07-25 | 1982-01-29 | Cables De Lyon Geoffroy Delore | Coaxial cable with thin wall tubular core conductor - internally supported against collapse by pref. expanded polyethylene or polyurethane rod in compression |
EP0140757A2 (en) * | 1983-09-29 | 1985-05-08 | Axon'cable S.A. | Coaxial cable for transmissions of microwaves |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0635850A1 (en) * | 1993-07-22 | 1995-01-25 | W.L. GORE & ASSOCIATES GmbH | High frequency broadband electrical coaxial cable |
US5500488A (en) * | 1993-07-22 | 1996-03-19 | Buckel; Konrad | Wide band high frequency compatible electrical coaxial cable |
WO1999009562A1 (en) * | 1997-08-14 | 1999-02-25 | Commscope, Inc. Of North Carolina | Coaxial cable and method of making same |
US6326551B1 (en) | 1997-08-14 | 2001-12-04 | Commscope Properties, Llc | Moisture-absorbing coaxial cable and method of making same |
KR100334198B1 (en) * | 1997-08-14 | 2002-05-03 | 추후제출 | Coaxial cable and method of making same |
US6800809B2 (en) | 1997-08-14 | 2004-10-05 | Commscope Properties, Llc | Coaxial cable and method of making same |
US6246006B1 (en) | 1998-05-01 | 2001-06-12 | Commscope Properties, Llc | Shielded cable and method of making same |
Also Published As
Publication number | Publication date |
---|---|
FR2674365B1 (en) | 1993-06-04 |
EP0504776B1 (en) | 1995-03-01 |
CA2063639C (en) | 1999-02-16 |
DE69201499D1 (en) | 1995-04-06 |
CA2063639A1 (en) | 1992-09-22 |
US5235299A (en) | 1993-08-10 |
DE69201499T2 (en) | 1995-07-06 |
FR2674365A1 (en) | 1992-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0504776B1 (en) | Low loss coaxial cable | |
CA2088215C (en) | High frequency electric cable | |
EP2105994B1 (en) | Joint structure for connecting two superconducting cables | |
EP0320404B1 (en) | Helix-type antenna and its manufacturing process | |
EP1017063B1 (en) | Structural reinforced energy and/or telecom cable | |
EP2146395B1 (en) | Sleeve for connecting a superconductor cable and connection termination via this sleeve | |
EP3735702B1 (en) | Split-core current transformer comprising a flexible magnetic core | |
FR2850788A1 (en) | Transmission cable for connecting mobile device e.g. crane, with voltage source, has electric screen formed around film to present metallic band formed in closed envelope of tubular form and to present good electric conduction | |
FR2660827A1 (en) | COIL IGNITION CABLE AND METHOD FOR MANUFACTURING THE SAME. | |
EP0046098B2 (en) | Tunable resonator and microwave circuit with at least one such resonator | |
FR2508180A1 (en) | OPTICAL FIBER CABLE AND METHOD FOR MANUFACTURING THE SAME | |
EP0299125B1 (en) | Low-pass propagation structure | |
FR2497597A1 (en) | COAXIAL CABLE WITH LOW FREQUENCY BANDED FILTER | |
EP1163682B1 (en) | Radiating cable | |
CH691095A5 (en) | electric cable high frequency transmission. | |
EP0125172B1 (en) | Process for preparing the extremity of a very high frequency flexible coaxial cable for installing a connector element, and sleeve used for carrying out the process | |
WO2024134122A1 (en) | Electrical shielded cable | |
EP1177562A1 (en) | Low pass cable | |
FR2596193A1 (en) | Internally-cooled superconducting cable | |
FR2633118A1 (en) | DIELECTRIC RESONATOR PASSER FILTER | |
JPH04504645A (en) | coaxial cable connector assembly | |
FR2785715A1 (en) | HIGH FREQUENCY PAIR OR QUARTE TRANSMISSION CABLE | |
BE441386A (en) | ||
BE521287A (en) | ||
WO1999017401A1 (en) | Coaxial radiating cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19921124 |
|
17Q | First examination report despatched |
Effective date: 19940422 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 69201499 Country of ref document: DE Date of ref document: 19950406 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950328 |
|
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: FILOTEX TRANSFER- ALCATEL CABLE FRANCE * ALCATEL C Ref country code: CH Ref legal event code: PFA Free format text: ALCATEL CABLE FRANCE,30, RUE PIERRE BEREGOVOY,92110 CLICHY (FR) TRANSFER- ALCATEL CABLE FRANCE,72, AVENUE DE LA LIBERTE,92723 NANTERRE CEDEX (FR) * VIVALEC TRANSFER- NEXANS FRANCE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
BECA | Be: change of holder's address |
Free format text: 20010518 *NEXANS FRANCE:16 RUE DE MONCEAU, 75008 PARIS |
|
BECH | Be: change of holder |
Free format text: 20010518 *NEXANS FRANCE:16 RUE DE MONCEAU, 75008 PARIS |
|
BECN | Be: change of holder's name |
Effective date: 20010702 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020222 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20020225 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020305 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020309 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020315 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20020322 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030316 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030317 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030331 |
|
BERE | Be: lapsed |
Owner name: *NEXANS FRANCE Effective date: 20030331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031001 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030316 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031127 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050316 |