EP0496246B1 - Circuit for operating a discharge lamp - Google Patents
Circuit for operating a discharge lamp Download PDFInfo
- Publication number
- EP0496246B1 EP0496246B1 EP92100456A EP92100456A EP0496246B1 EP 0496246 B1 EP0496246 B1 EP 0496246B1 EP 92100456 A EP92100456 A EP 92100456A EP 92100456 A EP92100456 A EP 92100456A EP 0496246 B1 EP0496246 B1 EP 0496246B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- voltage
- lamp
- operational amplifier
- discharge lamp
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
- H05B41/392—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/288—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
- H05B41/2881—Load circuits; Control thereof
- H05B41/2882—Load circuits; Control thereof the control resulting from an action on the static converter
Definitions
- the invention relates to a circuit arrangement for operating a discharge lamp according to the preamble of patent claim 1 or 2.
- Such a circuit arrangement is disclosed, for example, in EP 0 228 123.
- This circuit arrangement has a circuit unit for detecting the changes in the instantaneous lamp power, the input signal of this circuit unit being additively composed of a current drop relative to the instantaneous lamp current and a voltage drop proportional to the instantaneous lamp operating voltage.
- the circuit unit compares the input signal with a predetermined reference signal and generates an output signal that is used to control the switching power supply that supplies the discharge lamp, so that the discharge lamp is operated with approximately constant power.
- the input signal is generated with the aid of a voltage divider arranged in parallel with the discharge lamp and by means of a current measuring resistor through which the lamp flows, and is evaluated using a plurality of operational amplifiers, which are likewise part of the circuit unit.
- This circuit arrangement has the disadvantage that it allows the lamp to be regulated only in the immediate vicinity of the operating point of the above-mentioned circuit unit. Since the lamp lamp voltage usually increases in the course of the lamp aging process, no reliable power control over the lamp life is guaranteed with this circuit arrangement. Furthermore, it is comparatively complex.
- the published patent application EP 0 350 104 describes a power control of a high-pressure discharge lamp with the aid of transformers, which generate voltage components proportional to the lamp current and the lamp operating voltage and which use the accumulated voltage components to control the inverter.
- This circuit arrangement is also comparatively complex.
- EP 0 445 882 discloses a circuit arrangement for operating a high-pressure sodium discharge lamp. To keep the color temperature constant To ensure the lamp, it is important to regulate the lamp voltage to a constant level. On the other hand, the circuit arrangement should prevent the lamp from extinguishing in the event of abrupt changes in the lamp current which occasionally occur. For this reason, it is proposed in the aforementioned publication to use a signal to control the switched-mode power supply which operates the high-pressure sodium discharge lamp and which is additively composed of a proportion proportional to the lamp operating voltage and a possibly small proportion proportional to the lamp current.
- the circuit arrangement according to the invention has the decisive advantage that the voltage is automatically reduced proportionally in the case of short-circuit operation and the current in the case of excessively high voltage.
- the working range of the circuit arrangement according to the invention in which the lamp power is almost constant is expanded by using a second operational amplifier, which is connected as a comparator and effects an operating point switchover as a function of the lamp operating voltage.
- a second operational amplifier which is connected as a comparator and effects an operating point switchover as a function of the lamp operating voltage.
- differences in the lamp operating voltage which are caused by production or caused by the aging process of the discharge lamps, can be compensated for.
- this circuit arrangement makes it possible to limit the deviation of the electrical power at the discharge lamp from the target value to approximately ⁇ 1%.
- this first embodiment has a relatively high stability to temperature fluctuations.
- the working range of the circuit arrangement according to the invention is expanded by using a Zener diode which is arranged in parallel with the first voltage divider, so that manufacturing or age-related variations in the lamp operating voltage can also be compensated for here.
- Another very important advantage of the second embodiment is that the object of the invention is achieved with very little circuitry and cost.
- the deviation of the electrical power of the discharge lamp from its target value in the working range of this exemplary embodiment is only about ⁇ 2%.
- the Circuit arrangement has a DC voltage source U Batt , a switched-mode power supply SNT, an inverter WR, an ignition device ZG, a discharge lamp L, a control circuit ST and a circuit part ADD for detecting the lamp power.
- the circuit part ADD translates the instantaneous lamp power into a voltage signal, compares it with a reference signal and gives the differential signal to an input of the control circuit ST, which clocks the switching power supply SNT in such a way that the discharge lamp L, which is connected to the output of the switching power supply SNT, with almost constant electrical power consumption is operated.
- a battery or an AC voltage source with a downstream rectifier can serve as the DC voltage source U Batt .
- the inverter WR is not required for DC discharge lamps.
- Figure 2 shows the structure of the circuit part ADD according to a first embodiment. Also shown are the output capacitor CA of the switched-mode power supply SNT and a high-pressure discharge lamp L with a power consumption of 75 watts and an operating voltage of approximately 85 volts.
- a first voltage divider R2 ', R3' is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2 'and R3', which have a resistance of 120 k ⁇ or 300 ⁇ .
- Another ohmic resistor R1 'with a resistance value of 0.22 ⁇ , which is called current measuring resistor here, is connected to the output capacitor CA via a branch point A', which is at ground potential, and via a branch point B 'to the discharge lamp L and the ohmic resistor R2 'of the first voltage divider R2', R3 'connected.
- the first voltage divider R2 ', R3' has a tap C 'between the resistors R2' and R3 ', which has a low-pass filter R2', C1 ', which consists of the resistor R2' and the capacitor C1 'with a capacitance of 100 nF , is connected to the non-inverting input of a first operational amplifier IC2-A '.
- a first reference voltage U1 ' is applied to the inverting input of the first operational amplifier IC2-A' via a 15 k ⁇ resistor R4 '.
- the output of the first operational amplifier IC2-A ' is fed back via an RC element R5', C2 ', which has a resistance of 56 k ⁇ and a capacitance of 22nF, to the inverting input of the first operational amplifier IC2-A'.
- a second voltage divider R6, R7 which consists of two ohmic resistors R6 and R7, is connected in parallel with the discharge lamp and in parallel with the output capacitor CA.
- a tap D of the second voltage divider R6, R7 is connected to the non-inverting input of a second operational amplifier IC2-B.
- a second reference voltage U2 is present at the inverting input of the second operational amplifier IC2-B.
- the output of the second operational amplifier IC2-B is connected to the control electrode of a first transistor switch T1 via an ohmic resistor R8.
- the first transistor switch T1 is connected, on the one hand, to a pole of the first reference voltage source U1 'and, on the other hand, is connected to the other pole of the first reference voltage source, ie to ground potential, via a voltage divider R9, R10, which consists of the ohmic resistors R9, R10.
- the tap E of this voltage divider R9, R10 is led via the ohmic resistor R4 'to the inverting input of the first operational amplifier IC2-A'.
- Another ohmic resistor R11 is connected in parallel with transistor switch T1 and resistor R9, but in series with resistor R10, and is connected via a branch point F to resistor R4 'and the inverting input of the first operational amplifier IC2-A'. Values for the resistors used can be found in Table I.
- An ohmic resistor R12 and a second transistor switch are connected in parallel with the resistor R2 'of the first voltage divider R2', R3 '.
- the control electrode of this second transistor switch T2 is controlled via an ohmic resistor R13 from the output of the second operational amplifier IC2-B.
- the non-inverting input of the second operational amplifier IC2-B is fed back via an ohmic resistor R14 to the output of the second operational amplifier IC2-B.
- a branching point G which leads to the non-inverting input of the first operational amplifier IC2-A '.
- the first operational amplifier IC2-A ' therefore carries out a target / actual comparison and works as a so-called PI controller.
- the control circuit ST which clocks the switching power supply SNT, receives the amplified difference signal from the output of the first operational amplifier IC2-A '.
- the total voltage U p or the difference signal can be used to regulate the lamp power.
- the operating point of the circuit part ADD is set to the desired value with the aid of the resistor R2 'and the first reference voltage U1'.
- the expansion of the circuit part ADD by a further operational amplifier IC2-B enables an operating point switchover depending on the lamp operating voltage.
- the transistors T1 and T2 block and the circuit part ADD works exactly as stated above. However, if the voltage drop across the resistor R6 of the second voltage divider reaches a critical value, then the two transistors T1 and T2 are closed by the output signal of the second operational amplifier IC2-B. Thereby, the resistor R11, the resistor R9 and the resistor R2 ', the resistor R12 are connected in parallel.
- the resulting change in the distribution of the voltage drops across the resistors R9, R10, R11 changes the reference signal at the inverting input of the first operational amplifier IC2-A 'and, together with the voltage drop across the resistor R2' changed by the parallel resistor R12, causes an operating point switchover the circuit arrangement.
- the switchover point is defined by the resistors R6 and R7 connected in parallel with the discharge lamp L and by the second reference voltage U2 at the inverting input of the second operational amplifier IC2-B.
- FIG. 3 shows the circuit part ADD according to a second embodiment together with the output capacitor CA of the switched-mode power supply SNT and with a 170 W high-pressure discharge lamp L.
- a voltage divider R2 ", R3", R3 “' is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2", R3 ", R3”' consists.
- a series circuit comprising a temperature-compensated Zener diode DZ with an ohmic resistor R15 is connected in parallel with the resistors R2 "and R3" of the voltage divider. This defines further branch points A "and D".
- the branch point A is at ground potential and is connected to the output capacitor CA, the zener diode DZ and, via an ohmic resistor R1", to a branch point B ", which in turn has connections to the discharge lamp L and to the resistor R2".
- the tapping point C "of the voltage divider R2", R3 " is connected via a capacitor C1" connected in parallel to the non-inverting input of an operational amplifier IC2-A ".
- the ohmic resistor R2" and the capacitor C1 form an RC low-pass filter that high-frequency interference signals suppressed.
- the inverting input of the operational amplifier IC2-A is connected via an ohmic resistor R4" to a pole U1 ". Of a reference voltage source.
- Table II contains numerical values for the components used for the operation of a 170 W high-pressure discharge lamp.
- Table 2 R1 '': 0.11 ⁇ R2 '': 2.7 k ⁇ R3 '': 390 k ⁇ R3 ''': 510 k ⁇ R4 '': 15 k ⁇ R5 '': 56 k ⁇ R15: 680 k ⁇ C1 '': 100 nF C2 '': 22 nF DR: ZTK 33
- the amplified differential signal reaches the control circuit ST, which clocks the switching power supply SNT.
- the total voltage Up ′′ corresponds to the lamp power.
- the total voltage Up ′′ can therefore be used to regulate the output of the discharge lamp.
- the Zener diode DZ becomes conductive and switches the resistor R15 in parallel with the resistors R2 ′′ and R3 ′′.
- the potential at the branch point C '' and thus the signal at the non-inverting input of the Operational amplifier IC2-A '' manipulated in such a way that it is still possible to regulate the lamp L to constant power even with a higher lamp operating voltage.
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Dc-Dc Converters (AREA)
Description
Die Erfindung betrifft eine Schaltungsanordnung zum Betrieb einer Entladungslampe gemäß dem Oberbegriff des Patentanspruchs 1 oder 2.The invention relates to a circuit arrangement for operating a discharge lamp according to the preamble of patent claim 1 or 2.
Eine derartige Schaltungsanordnung ist beispielsweise in der EP 0 228 123 offenbart. Diese Schaltungsanordnung besitzt eine Schaltungseinheit zur Erfassung der Änderungen der momentanen Lampenleistung, wobei sich das Eingangssignal dieser Schaltungseinheit additiv aus einem zum momentanen Lampen strom und aus einem zur momentanen Lampenbrennspannung proportionalen Spannungsabfall zusammensetzt. Die Schaltungseinheit vergleicht das Eingangssignal mit einem vorgegebenen Referenzsignal und erzeugt ein Ausgangssignal, das zur Steuerung des die Entladungslampe versorgenden Schaltnetzteiles verwendet wird, so daß die Entladungslampe mit annähernd konstanter Leistung betrieben wird. Das Eingangssignal wird mit Hilfe eines parallel zur Entladungslampe angeordneten Spannungsteilers und mittels eines vom Lampen strom durchflossenen Strommeßwiderstandes erzeugt und unter Verwendung mehrerer Operationsverstärker, die ebenfalls Bestandteil der Schaltungseinheit sind, ausgewertet. Diese Schaltungsanordnung hat den Nachteil, daß sie eine Leistungsregelung der Lampe nur in unmittelbarer Umgebung des Arbeitspunktes der obengenannten Schaltungseinheit erlaubt. Da sich im Verlaufe des Lampenalterungsprozeßes die Lampenbrennspannung üblicherweise erhöht, ist mit dieser Schaltungsanordnung keine zuverlässige Leistungsregelung über die Lampenlebensdauer gewährleistet. Ferner ist sie vergleichsweise aufwendig.Such a circuit arrangement is disclosed, for example, in EP 0 228 123. This circuit arrangement has a circuit unit for detecting the changes in the instantaneous lamp power, the input signal of this circuit unit being additively composed of a current drop relative to the instantaneous lamp current and a voltage drop proportional to the instantaneous lamp operating voltage. The circuit unit compares the input signal with a predetermined reference signal and generates an output signal that is used to control the switching power supply that supplies the discharge lamp, so that the discharge lamp is operated with approximately constant power. The input signal is generated with the aid of a voltage divider arranged in parallel with the discharge lamp and by means of a current measuring resistor through which the lamp flows, and is evaluated using a plurality of operational amplifiers, which are likewise part of the circuit unit. This circuit arrangement has the disadvantage that it allows the lamp to be regulated only in the immediate vicinity of the operating point of the above-mentioned circuit unit. Since the lamp lamp voltage usually increases in the course of the lamp aging process, no reliable power control over the lamp life is guaranteed with this circuit arrangement. Furthermore, it is comparatively complex.
Die Offenlegungsschrift EP 0 350 104 beschreibt eine Leistungsregelung einer Hochdruckentladungslampe mit Hilfe von Transformatoren, die zum Lampenstrom und zur Lampenbrennspannung proportionale Spannungskomponenten erzeugen und die aufsummierten Spannungskomponenten zur Ansteuerung des Inverters ausnutzen. Auch diese Schaltungsanordnung ist vergleichsweise aufwendig.The published patent application EP 0 350 104 describes a power control of a high-pressure discharge lamp with the aid of transformers, which generate voltage components proportional to the lamp current and the lamp operating voltage and which use the accumulated voltage components to control the inverter. This circuit arrangement is also comparatively complex.
Die EP 0 445 882 offenbart eine Schaltungsanordnung zum Betrieb einer Natriumdampf-Hochdruckentladungslampe. Um eine gleichbleibende Farbtemperatur der Lampe zu gewährleisten, ist es wichtig, die Lampenbrennspannung auf ein konstantes Niveau zu regeln. Andererseits soll die Schaltungsanordnung bei gelegentlich auftretenden abrupten Änderungen des Lampen stromes ein Verlöschen der Lampe verhindern. Aus diesem Grund wird in der vorgenannten Druckschrift vorgeschlagen, ein Signal zur Ansteuerung des die Natriumdampf-Hochdruckentladungslampe betreibenden Schaltnetzteils zu verwenden, das sich additiv aus einem zur Lampenbrennspannung proportionalen Anteil und einem möglicht kleinen, zum Lampen strom proportionalen Anteil zusammensetzt.EP 0 445 882 discloses a circuit arrangement for operating a high-pressure sodium discharge lamp. To keep the color temperature constant To ensure the lamp, it is important to regulate the lamp voltage to a constant level. On the other hand, the circuit arrangement should prevent the lamp from extinguishing in the event of abrupt changes in the lamp current which occasionally occur. For this reason, it is proposed in the aforementioned publication to use a signal to control the switched-mode power supply which operates the high-pressure sodium discharge lamp and which is additively composed of a proportion proportional to the lamp operating voltage and a possibly small proportion proportional to the lamp current.
Es ist die Aufgabe der Erfindung, eine relativ einfache und mit geringen Herstellungskosten verbundene Schaltungsanordnung für den Betrieb einer Entladungslampe bereitzustellen, die es ermöglicht die Entladungslampe mit konstanter elektrischer Leistung zu versorgen.It is the object of the invention to provide a relatively simple circuit arrangement for the operation of a discharge lamp which is associated with low manufacturing costs and which makes it possible to supply the discharge lamp with constant electrical power.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 bzw. des Patentanspruchs 2 gelöst. Besonders vorteilhafte Ausführungen der finden sich in den Unteransprüchen.This object is achieved according to the invention by the characterizing features of claim 1 and claim 2. Particularly advantageous versions of the can be found in the subclaims.
Die erfindungsgemäße Schaltungsanordnung besitzt den entscheidenden Vorteil, daß bei Kurzschlußbetrieb automatisch die Spannung und bei zu hoher Spannung automatisch der Strom überproportional zurückgeregelt werden.The circuit arrangement according to the invention has the decisive advantage that the voltage is automatically reduced proportionally in the case of short-circuit operation and the current in the case of excessively high voltage.
Der Arbeitsbereich der erfindungsgemäßen Schaltungsanordnung, in dem die Lampenleistung nahezu konstant ist, wird durch Verwendung eines zweiten Operationsverstärkers, der als Komparator verschaltet ist und eine Arbeitspunktumschaltung in Abhängigkeit der Lampenbrennspannung bewirkt, erweitert. Außerdem können Unterschiede in der Lampenbrennspannung, die herstellungsbedingt oder durch den Alterungsprozeß der Entladungslampen verursacht sind, aufgefangen werden. Ferner ermöglicht diese Schaltungsanordnung die Abweichung der elektrischen Leistung an der Entladungslampe vom Sollwert auf ungefähr ±1% zu begrenzen. Weiterhin besitzt dieses erste Ausführungsbeispiel eine relativ hohe Stabiltät gegenüber Temperaturschwankungen. Beim zweiten Ausführungsbeispiel wird durch Verwendung einer Zenerdiode, die parallel zum ersten Spannungsteiler angeordnet ist, der Arbeitsbereich der erfindungsgemäßen Schaltungsanordnung erweitert, so daß hier ebenfalls herstellungs- oder alterungsbedingte Streuungen der Lampenbrennspannung ausgeglichen werden können. Ein weiterer sehr wichtiger Vorteil des zweiten Ausführungsbeispiels besteht darin, daß die Aufgabe der Erfindung mit einem sehr geringen Schaltungs- und Kostenaufwand gelöst wird. Dabei beträgt die Abweichung der elektrischen Leistung der Entladungslampe von ihrem Sollwert im Arbeitsbereich dieses Ausführungsbeispiels nur etwa ± 2 %.The working range of the circuit arrangement according to the invention, in which the lamp power is almost constant is expanded by using a second operational amplifier, which is connected as a comparator and effects an operating point switchover as a function of the lamp operating voltage. In addition, differences in the lamp operating voltage, which are caused by production or caused by the aging process of the discharge lamps, can be compensated for. Furthermore, this circuit arrangement makes it possible to limit the deviation of the electrical power at the discharge lamp from the target value to approximately ± 1%. Furthermore, this first embodiment has a relatively high stability to temperature fluctuations. In the second exemplary embodiment, the working range of the circuit arrangement according to the invention is expanded by using a Zener diode which is arranged in parallel with the first voltage divider, so that manufacturing or age-related variations in the lamp operating voltage can also be compensated for here. Another very important advantage of the second embodiment is that the object of the invention is achieved with very little circuitry and cost. The deviation of the electrical power of the discharge lamp from its target value in the working range of this exemplary embodiment is only about ± 2%.
Die erfindungsgemäße Schaltungsanordnung wird nun anhand mehrerer Ausführungsbeispiele näher erläutert.The circuit arrangement according to the invention will now be explained in more detail using several exemplary embodiments.
Es zeigen
- Figur 1
- ein Blockschaltbild der gesamten Schaltungsanordnung zum Betrieb einer Entladungslampe
- Figur 2
- den Aufbau des Schaltungsteils ADD nach einem ersten Ausführungsbeispiel
- Figur 3
- den Aufbau des Schaltungsteils ADD nach einem zweiten Ausführungsbeispiel
- Figure 1
- a block diagram of the entire circuit arrangement for operating a discharge lamp
- Figure 2
- the structure of the circuit part ADD according to a first embodiment
- Figure 3
- the structure of the circuit part ADD according to a second embodiment
In Figur 1 ist mit Hilfe eines Blockschaltbildes die gesamte Schaltungsanordnung zum Betrieb einer Entladungslampe schematisch dargestellt. Die Schaltungsanordnung weist eine Gleichspannungsquelle UBatt, ein Schaltnetzteil SNT, einen Wechselrichter WR, ein Zündgerät ZG, eine Entladungslampe L, eine Steuerschaltung ST und einen Schaltungsteil ADD zur Erfassung der Lampenleistung auf.In Figure 1, the entire circuit arrangement for operating a discharge lamp is shown schematically with the aid of a block diagram. The Circuit arrangement has a DC voltage source U Batt , a switched-mode power supply SNT, an inverter WR, an ignition device ZG, a discharge lamp L, a control circuit ST and a circuit part ADD for detecting the lamp power.
Der Schaltungsteil ADD übersetzt die momentane Lampenleistung in ein Spannungssignal, vergleicht dieses mit einem Referenzsignal und gibt das Differentsignal auf einen Eingang der Steuerschaltung ST, die das Schaltnetzteil SNT so taktet, daß die Entladungslampe L, die am Ausgang des Schaltnetzteiles SNT angeschlossen ist, mit nahezu konstanter elektrischer Leistungsaufnahme betrieben wird. Als Gleichspannungquelle UBatt kann eine Batterie oder eine Wechselspannungsquelle mit nachgeschaltetem Gleichrichter dienen. Der Wechselrichter WR entfällt bei Gleichstromentladungslampen.The circuit part ADD translates the instantaneous lamp power into a voltage signal, compares it with a reference signal and gives the differential signal to an input of the control circuit ST, which clocks the switching power supply SNT in such a way that the discharge lamp L, which is connected to the output of the switching power supply SNT, with almost constant electrical power consumption is operated. A battery or an AC voltage source with a downstream rectifier can serve as the DC voltage source U Batt . The inverter WR is not required for DC discharge lamps.
Im folgenden werden zwei Ausführungsbeispiele einer Schaltungsanordnung zum Betrieb einer Entladungslampe beschrieben, die sich nur im Aufbau des Schaltungsteils ADD unterscheiden.Two exemplary embodiments of a circuit arrangement for operating a discharge lamp are described below, which differ only in the construction of the circuit part ADD.
Die Figur 2 zeigt den Aufbau des Schaltungsteils ADD nach einem ersten Ausführungsbeispiel. Dargestellt sind außerdem auch der Ausgangskondensator CA des Schaltnetzteils SNT und eine Hochdruckentladungslampe L mit einer Leistungsaufnahme von 75 Watt und einer Brennspannung von ca. 85 Volt.Figure 2 shows the structure of the circuit part ADD according to a first embodiment. Also shown are the output capacitor CA of the switched-mode power supply SNT and a high-pressure discharge lamp L with a power consumption of 75 watts and an operating voltage of approximately 85 volts.
Parallel zum Ausgangskondensator CA und parallel zur Entladungslampe L ist ein erster Spannungsteiler R2', R3' geschaltet, der aus den ohmschen Widerständen R2' und R3' besteht, die einen Widerstand von 120 kΩ bzw. 300Ω aufweisen. Ein weiterer ohmscher Widerstand R1' mit einem Widerstandswert von 0,22Ω, der hier Strommeßwiderstand genannt wird, ist über einen Verzweigungspunkt A', der auf Erdpotential liegt, mit dem Ausgangskondensator CA und über einen Verzweigungspunkt B' mit der Entladungslampe L und dem ohmschen Widerstand R2' des ersten Spannungsteilers R2', R3' verbunden.A first voltage divider R2 ', R3' is connected in parallel with the output capacitor CA and in parallel with the discharge lamp L and consists of the ohmic resistors R2 'and R3', which have a resistance of 120 kΩ or 300Ω. Another ohmic resistor R1 'with a resistance value of 0.22Ω, which is called current measuring resistor here, is connected to the output capacitor CA via a branch point A', which is at ground potential, and via a branch point B 'to the discharge lamp L and the ohmic resistor R2 'of the first voltage divider R2', R3 'connected.
Der erste Spannungsteiler R2', R3' besitzt zwischen den Widerständen R2' und R3' einen Abgriff C', der über ein Tiefpaßfilter R2', C1', das aus dem Widerstand R2' und dem Kondensator C1' mit einer Kapazität von 100 nF besteht, an den nichtinvertierenden Eingang eines ersten Operationsverstärkers IC2-A' angeschlossen ist. An den invertierenden Eingang des ersten Operationsverstärkers IC2-A' ist über einen 15 kΩ-Widerstand R4' eine erste Referenzspannung U1' angelegt. Der Ausgang des ersten Operationsverstärkers IC2-A' ist über ein RC-Glied R5', C2', das einen Widerstand von 56 kΩ und eine Kapazität von 22nF besitzt, zum invertierenden Eingang des ersten Operationsverstärkers IC2-A' rückgekoppelt.
Parallel zur Entladungslampe und parallel zum Ausgangskondensator CA ist ein zweiter Spannungsteiler R6, R7, der aus zwei ohmschen Widerständen R6 und R7 besteht, geschaltet. Ein Abgriff D des zweiten Spannungsteilers R6, R7 ist mit dem nichtinvertierenden Eingang eines zweiten Operationsverstärkers IC2-B verbunden. Am invertierenden Eingang des zweiten Operationsverstärkers IC2-B liegt eine zweite Referenzspannung U2 an. Der Ausgang des zweiten Operationsverstärkers IC2-B ist über einen ohmschen Widerstand R8 an die Steuerelektrode eines ersten Transistorschalters T1 angeschlossen. Der erste Transistorschalter T1 ist einerseits mit einem Pol der ersten Referenzspannungsquelle U1' verbunden und andererseits über einen Spannungsteiler R9, R10, der aus den ohmschen Widerständen R9, R10 besteht, mit dem anderen Pol der ersten Referenzspannungsquelle, d.h., dem Erdpotential verbunden. Der Abgriff E dieses Spannungsteilers R9, R10 ist über den ohmschen Widerstand R4' an den invertierenden Eingang des ersten Operationsverstärkers IC2-A' geführt. Parallel zum Transistorschalter T1 und zum Widerstand R9, aber in Reihe zum Widerstand R10 ist eine weiterer ohmscher Widerstand R11 geschaltet, der über einen Verzweigungspunkt F mit dem Widertsand R4' und dem invertierenden Eingang des ersten Operationsverstärkers IC2-A' verbunden ist. Werte für die verwendeten Widerstände können der Tabelle I entnommen werden.The first voltage divider R2 ', R3' has a tap C 'between the resistors R2' and R3 ', which has a low-pass filter R2', C1 ', which consists of the resistor R2' and the capacitor C1 'with a capacitance of 100 nF , is connected to the non-inverting input of a first operational amplifier IC2-A '. A first reference voltage U1 'is applied to the inverting input of the first operational amplifier IC2-A' via a 15 kΩ resistor R4 '. The output of the first operational amplifier IC2-A 'is fed back via an RC element R5', C2 ', which has a resistance of 56 kΩ and a capacitance of 22nF, to the inverting input of the first operational amplifier IC2-A'.
A second voltage divider R6, R7, which consists of two ohmic resistors R6 and R7, is connected in parallel with the discharge lamp and in parallel with the output capacitor CA. A tap D of the second voltage divider R6, R7 is connected to the non-inverting input of a second operational amplifier IC2-B. A second reference voltage U2 is present at the inverting input of the second operational amplifier IC2-B. The output of the second operational amplifier IC2-B is connected to the control electrode of a first transistor switch T1 via an ohmic resistor R8. The first transistor switch T1 is connected, on the one hand, to a pole of the first reference voltage source U1 'and, on the other hand, is connected to the other pole of the first reference voltage source, ie to ground potential, via a voltage divider R9, R10, which consists of the ohmic resistors R9, R10. The tap E of this voltage divider R9, R10 is led via the ohmic resistor R4 'to the inverting input of the first operational amplifier IC2-A'. Another ohmic resistor R11 is connected in parallel with transistor switch T1 and resistor R9, but in series with resistor R10, and is connected via a branch point F to resistor R4 'and the inverting input of the first operational amplifier IC2-A'. Values for the resistors used can be found in Table I.
Parallel zum Widerstand R2' des ersten Spannungsteilers R2', R3' sind ein ohmscher Widerstand R12 und ein zweiter Transistorschalter geschaltet. Die Steuerelektrode dieses zweiten Transistorschalters T2 wird über einen ohmschen Widerstand R13 vom Ausgang des zweiten Operationsverstärkers IC2-B angesteuert. Der nichtinvertierende Eingang des zweiten Operationsverstärkers IC2-B ist über einen ohmschen Widerstand R14 zum Ausgang des zweiten Operationsverstärkers IC2-B rückgekoppelt. Zwischen dem Abgriff C' des ersten Spannungsteilers R2', R3' und dem ohmschen Widerstand R12 befindet sich ein Verzweigungspunkt G, der zum nichtinvertierenden Eingang des ersten Operationsverstärkers IC2-A' geführt ist.An ohmic resistor R12 and a second transistor switch are connected in parallel with the resistor R2 'of the first voltage divider R2', R3 '. The control electrode of this second transistor switch T2 is controlled via an ohmic resistor R13 from the output of the second operational amplifier IC2-B. The non-inverting input of the second operational amplifier IC2-B is fed back via an ohmic resistor R14 to the output of the second operational amplifier IC2-B. Between the tap C 'of the first voltage divider R2', R3 'and the ohmic resistor R12 there is a branching point G which leads to the non-inverting input of the first operational amplifier IC2-A '.
Der Strommeßwiderstand R1' wird wegen des relativ hohen Widerstandswertes von R3' nahezu vom gesamten Lampenstrom durchflossen und erzeugt daher einen zum Lampenstrom proportionalen Spannungsabfall. Der ohmsche Widerstand R2' des ersten Spannungsteilers R2', R3' bewirkt einen zur Lampenbrennspannung proportionalen Spannungsabfall. Da der Verzweigungspunkt A' auf Erdpotential liegt, addieren sich die Spannungsabfälle über den Widerständen R1' und R2' zu einer Gesamtspannung Up, die über den Abgriff C' am nichtinvertierenden Eingang des Operationsverstärkers IC2-A' anliegt. Die Gesamtspannung Up wird mit einer ersten Referenzspannung U1' verglichen, die am invertierenden Eingang des ersten Operationsverstärkers IC2-A' anliegt. Der erste Operationsverstärkers IC2-A' führt also einen Soll-Ist-Vergleich durch und arbeitet als sogenannter PI-Regler. Vom Ausgang des ersten Operationsverstärkers IC2-A' erhält die Steuerschaltung ST, die das Schaltnetzteil SNT taktet, das verstärkte Differenzsignal. Im Arbeitspunkt des Schaltungsteils ADD kann die Gesamtspannung Up bzw. das Differenzsignal zur Regelung der Lampenleistung benutzt werden. Der Arbeitspunkt des Schaltungsteils ADD wird mit Hilfe des Widerstandes R2' und der ersten Referenzspannung U1' auf den gewünschten Wert eingestellt.
Die Erweiterung des Schaltungsteils ADD um einen weiteren Operationsverstärkers IC2-B ermöglicht eine Arbeitspunktumschaltung in Abhängigkeit der Lampenbrennspannung. Bei geringem Spannungsabfall über dem Widerstand R6 sperren die Transistoren T1 und T2 und der Schaltungsteil ADD arbeitet exakt so wie oben ausgeführt. Erreicht allerdings der Spannungsabfall am Widerstand R6 des zweiten Spannungsteilers einen kritischen Wert, so werden die beiden Transistoren T1 und T2 vom Ausgangssignal des zweiten Operationsverstärkers IC2-B geschlossen. Dadurch werden dem Widerstand R11 der Widerstand R9 und dem Widerstand R2' der Widerstand R12 parallel geschaltet. Die daraus resultierende geänderte Aufteilung der Spannungsabfälle an den Widerständen R9, R10, R11 verändert das Referenzsignal am invertierenden Eingang des ersten Operationsverstärkers IC2-A' und bewirkt zusammen mit dem durch den Parallelwiderstand R12 veränderten Spannungsabfall am Widertstand R2' eine Arbeitspunktumschaltung der Schaltungsanordnung. Der Umschaltpunkt wird durch die zur Entladungslampe L parallel geschalteten Widerstände R6 und R7 sowie durch die zweite Referenzspannung U2 am invertierenden Eingang des zweiten Operationsverstärkers IC2-B definiert.
The expansion of the circuit part ADD by a further operational amplifier IC2-B enables an operating point switchover depending on the lamp operating voltage. With a small voltage drop across the resistor R6, the transistors T1 and T2 block and the circuit part ADD works exactly as stated above. However, if the voltage drop across the resistor R6 of the second voltage divider reaches a critical value, then the two transistors T1 and T2 are closed by the output signal of the second operational amplifier IC2-B. Thereby, the resistor R11, the resistor R9 and the resistor R2 ', the resistor R12 are connected in parallel. The resulting change in the distribution of the voltage drops across the resistors R9, R10, R11 changes the reference signal at the inverting input of the first operational amplifier IC2-A 'and, together with the voltage drop across the resistor R2' changed by the parallel resistor R12, causes an operating point switchover the circuit arrangement. The switchover point is defined by the resistors R6 and R7 connected in parallel with the discharge lamp L and by the second reference voltage U2 at the inverting input of the second operational amplifier IC2-B.
Die Figur 3 zeigt den Schaltungsteil ADD nach einem zweiten Ausführungsbeispiel zusammen mit dem Ausgangskondensator CA des Schaltnetzteils SNT und mit einer 170 W - Hochdruckentladungslampe L. Parallel zum Ausgangskondensator CA und parallel zur Entladungslampe L ist ein Spannungsteiler R2", R3", R3"' geschaltet, der aus den ohmschen Widerständen R2", R3", R3"' besteht. Eine Reihenschaltung aus einer temperaturkompensierten Zenerdiode DZ mit einem ohmschen Widerstand R15 ist parallel zu den Widerständen R2" und R3" des Spannungsteilers geschaltet. Dadurch werden weitere Verzweigungspunkte A" und D" definiert. Der Verzweigungspunkt A" liegt auf Erdpotential und ist mit dem Ausgangskondensator CA, der Zenerdiode DZ und über einen ohmschen Widerstand R1" mit einem Verzweigungspunkt B" verbunden, der seinerseits Verbindungen zur Entladungslampe L und zum Widerstand R2" aufweist. Der Abgriffspunkt C" des Spannungsteilers R2", R3" ist über einen parallelgeschalteten Kondensator C1" mit dem nichtinvertierenden Eingang eines Operationsverstärkers IC2-A" verbunden. Dabei bilden der ohmsche Widerstand R2" und der Kondensator C1" ein RC-Tiefpaßfilter, daß hochfrequente Störsignale unterdrückt.
Der invertierende Eingang des Operationsverstärkers IC2-A" ist über einen ohmschen Widerstand R4" an einen Pol U1". einer Referenzspannungsquelle angeschlossen. Außerdem sind der Ausgang und der invertierende Eingang des Operationsverstärkers IC2-A" mittels eines RC-Gliedes, das aus dem ohmschen Widerstand R5" und dem Kondensator C2" besteht, rückgekoppelt. Tabelle II enthält Zahlenwerte für die verwendeten Bauelemente für den Betrieb einer 170 W - Hochdruckentladungslampe.
The inverting input of the operational amplifier IC2-A "is connected via an ohmic resistor R4" to a pole U1 ". Of a reference voltage source. In addition, the output and the inverting input of the operational amplifier IC2-A" are connected by means of an RC element which results from the ohmic Resistor R5 "and capacitor C2" is fed back. Table II contains numerical values for the components used for the operation of a 170 W high-pressure discharge lamp.
Das Funktionsprinzip dieser Schaltungsanordnung stimmt wieder im wesentlichen mit dem des ersten Ausführungsbeispiels überein. Der ohmsche Widerstand R1'' wird, da die Widerstände R3'', R3''' relativ groß sind, nahezu vom gesamten Lampenstrom durchflossen und erzeugt daher einen zum Lampenstrom proportionalen Spannungsabfall. Der ohmsche Widerstand R2'' erzeugt einen Spannungsabfall, der proportional zur Lampenbrennspannung ist. Da der Verzweigungspunkt A'' auf Erdpotential liegt, addieren sich die Spannungsabfälle an Widerständen R1'' und R2'' am nichtinvertierenden Eingang des Operationsverstärkers zu einer Gesamtspannung Up'', die mit der Referenzspannung U1'' am invertierenden Eingang des Operationsverstärkers IC2-A'' verglichen wird. Vom Ausgang des Operationsverstärkers IC2-A'' gelangt das verstärkte Differenzsignal zur Steuerschaltung ST, die das Schaltnetzteil SNT taktet. Im Arbeitspunkt der Schaltung, der durch die Wahl des Widerstandes R2'' und der Referenzspannung U1'' festgelegt wird, entspricht die Gesamtspannung Up'' der Lampenleistung. Die Gesamtspannung Up'' kann daher zur Leistungsregelung der Entladungslampe verwendet werden.The functional principle of this circuit arrangement is again essentially the same as that of the first exemplary embodiment. Since the resistors R3 ″, R3 ″ ″, the ohmic resistor R1 ″ is traversed by almost the entire lamp current and therefore generates a voltage drop proportional to the lamp current. The ohmic resistor R2 '' generates a voltage drop that is proportional to the lamp voltage. Since the branching point A ″ lies at ground potential, the voltage drops across resistors R1 ″ and R2 ″ at the non-inverting input of the operational amplifier add up to a total voltage Up ″, which corresponds to the reference voltage U1 ″ at the inverting input of the operational amplifier IC2-A '' is compared. From the output of the operational amplifier IC2-A '', the amplified differential signal reaches the control circuit ST, which clocks the switching power supply SNT. At the operating point of the circuit, which is determined by the choice of the resistor R2 ″ and the reference voltage U1 ″, the total voltage Up ″ corresponds to the lamp power. The total voltage Up ″ can therefore be used to regulate the output of the discharge lamp.
Beim Überschreiten der Durchbruchsspannung wird die Zenerdiode DZ leitend und schaltet den Widerstand R15 parallel zu den Widerständen R2'' und R3'' . Dadurch wird das Potential im Verzweigungspunkt C'' und damit das Signal am nichtinvertierenden Eingang des Operationsverstärkers IC2-A'' derart manipuliert, daß eine Regelung der Lampe L auf konstante Leistung auch zu höherer Lampenbrennspannung hin noch möglich ist.When the breakdown voltage is exceeded, the Zener diode DZ becomes conductive and switches the resistor R15 in parallel with the resistors R2 ″ and R3 ″. As a result, the potential at the branch point C '' and thus the signal at the non-inverting input of the Operational amplifier IC2-A '' manipulated in such a way that it is still possible to regulate the lamp L to constant power even with a higher lamp operating voltage.
Claims (3)
- Circuit arrangement for operating a discharge lamp (L), comprising- a switched-mode power supply (SNT) for converting a DC voltage which is fixed within defined limits into a variable DC voltage with a large operating range,- a control circuit (ST) for clocking the switched-mode power supply (SNT),- possibly an invertor (WR) for generating an AC voltage,- an ignition device (ZG) for igniting the discharge lamp (L),- a circuit section (ADD) for detecting the change in the instantaneous lamp power, which section compares an input signal, which is formed by adding together a voltage drop proportional to the lamp current and a voltage drop proportional to the instantaneous lamp running voltage, with a reference signal and generates therefrom at its output an input signal for the control circuit (ST),- the circuit section (ADD) contains a first voltage divider (R2', R3'), which is connected in parallel with the discharge lamp (L), and a current measuring resistor (R1'), which serves as a sensor for changes in the lamp current, as well as at least one operational amplifier (IC2-A'),characterized in that the circuit section (ADD) has a second voltage divider (R6, R7), which is connected in parallel with the discharge lamp (L), and a second operational amplifier (IC2-B) which is connected as a comparator and effects an operating point change of the circuit section (ADD) as a function of the instantaneous lamp running voltage.
- Circuit arrangement for operating a discharge lamp (L), comprising- a switched-mode power supply (SNT) for converting a DC voltage which is fixed within defined limits into a variable DC voltage with a large operating range,- a control circuit (ST) for clocking the switched-mode power supply (SNT),- possibly an invertor (WR) for generating an AC voltage,- an ignition device (ZG) for igniting the discharge lamp (L),- a circuit section (ADD) for detecting the change in the instantaneous lamp power, which section compares an input signal, which is formed by adding together a voltage drop proportional to the lamp current and a voltage drop proportional to the instantaneous lamp running voltage, with a reference signal and generates therefrom at its output an input signal for the control circuit (ST),- the circuit section (ADD) contains a voltage divider (R2", R3"), which is connected in parallel with the discharge lamp (L), and a current measuring resistor (R1"), which serves as a sensor for changes in the lamp current, as well as at least one operational amplifier (IC2-A"),characterized in that the circuit section (ADD) has a series circuit which comprises a passive semiconductor switch (DZ) and a resistor (R15) and is arranged in parallel with the first voltage divider (R2", R3").
- Circuit arrangement according to Claim 1, characterized in that the output signal of the second operational amplifier (IC2-B) controls two active semiconductor switches (T1, T2), one of these active semiconductor switches (T2) being connected in parallel with a non-reactive resistor (R2') of the first voltage divider (R2', R3') and the other active semiconductor switch (T1) being linked to the inverting input of the first operational amplifier (IC2-A'), and the non-inverting input of the second operational amplifier (ICB-2) being connected to the second voltage divider (R6, R7).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4102069A DE4102069A1 (en) | 1991-01-24 | 1991-01-24 | CIRCUIT ARRANGEMENT FOR OPERATING A DISCHARGE LAMP |
DE4102069 | 1991-01-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0496246A1 EP0496246A1 (en) | 1992-07-29 |
EP0496246B1 true EP0496246B1 (en) | 1996-04-17 |
Family
ID=6423628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92100456A Expired - Lifetime EP0496246B1 (en) | 1991-01-24 | 1992-01-13 | Circuit for operating a discharge lamp |
Country Status (5)
Country | Link |
---|---|
US (1) | US5198728A (en) |
EP (1) | EP0496246B1 (en) |
JP (1) | JP3210052B2 (en) |
KR (1) | KR100218980B1 (en) |
DE (2) | DE4102069A1 (en) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5357174A (en) * | 1992-11-05 | 1994-10-18 | General Electric Company | Feedback-controlled circuit and method for powering a high intensity discharge lamp |
DE4301276A1 (en) * | 1993-01-19 | 1994-07-21 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method and power supply unit for the stabilized operation of a sodium high-pressure discharge lamp |
DE4342590A1 (en) * | 1993-12-14 | 1995-06-22 | Bosch Gmbh Robert | Clocked power supply |
JP3224948B2 (en) * | 1994-08-30 | 2001-11-05 | 株式会社小糸製作所 | Lighting circuit of discharge lamp |
JP3197166B2 (en) * | 1994-09-02 | 2001-08-13 | 株式会社小糸製作所 | Lighting circuit of discharge lamp |
JP3197169B2 (en) * | 1994-09-08 | 2001-08-13 | 株式会社小糸製作所 | Lighting circuit of discharge lamp |
DE4437453A1 (en) * | 1994-10-19 | 1996-04-25 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method for operating a discharge lamp and circuit arrangement for operating a discharge lamp |
DE19515510A1 (en) * | 1995-04-27 | 1997-02-20 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Circuit arrangement for the pulse operation of discharge lamps |
DE19515511A1 (en) * | 1995-04-27 | 1996-10-31 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Method and circuit arrangement for starting and operating a discharge lamp |
JP3174993B2 (en) * | 1995-05-12 | 2001-06-11 | 株式会社小糸製作所 | Discharge lamp lighting circuit |
JP3280540B2 (en) * | 1995-05-12 | 2002-05-13 | 株式会社小糸製作所 | Discharge lamp lighting circuit |
JP3210561B2 (en) * | 1995-06-14 | 2001-09-17 | 株式会社小糸製作所 | Discharge lamp lighting circuit |
JPH10505458A (en) * | 1995-06-29 | 1998-05-26 | フィリップス エレクトロニクス ネムローゼ フェンノートシャップ | Circuit device |
DE29511680U1 (en) * | 1995-07-19 | 1996-11-21 | Niggemeyer, Gert Günther, 21244 Buchholz | Multiplication circuit |
DE19540326B4 (en) * | 1995-10-28 | 2006-06-14 | Automotive Lighting Reutlingen Gmbh | Headlights for vehicles |
DE69736273T2 (en) * | 1996-09-11 | 2007-07-05 | Koninklijke Philips Electronics N.V. | CIRCUIT |
US6011357A (en) * | 1997-04-10 | 2000-01-04 | Philips Electronics North America Corporation | Triac dimmable compact fluorescent lamp with low power factor |
EP0984670B1 (en) | 1998-06-13 | 2009-12-09 | Greenwood Soar IP Limited | High intensity discharge lamp ballast |
US6495971B1 (en) | 1998-06-13 | 2002-12-17 | Hatch Transformers, Inc. | High intensity discharge lamp ballast |
AT407462B (en) * | 1998-11-20 | 2001-03-26 | Springer Erwin Dipl Ing | Circuit arrangement for controlled feeding of a gas discharge lamp |
US6359394B1 (en) * | 1999-12-22 | 2002-03-19 | Phillips Electronics North America Corporation | Scheme for sampling lamp conditions during ignition and steady state modes of lamp operation |
DE10018860A1 (en) * | 2000-04-14 | 2001-10-18 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Stabilization of the operation of gas discharge lamps |
US6798153B2 (en) * | 2001-08-02 | 2004-09-28 | Koninklijke Philips Electronics N.V. | Method of regulating power in a high-intensity-discharge lamp |
US7109668B2 (en) * | 2003-10-30 | 2006-09-19 | I.E.P.C. Corp. | Electronic lighting ballast |
US20070194721A1 (en) * | 2004-08-20 | 2007-08-23 | Vatche Vorperian | Electronic lighting ballast with multiple outputs to drive electric discharge lamps of different wattage |
JP4923852B2 (en) * | 2005-09-29 | 2012-04-25 | 東芝ライテック株式会社 | Discharge lamp lighting device and lighting device |
US7589480B2 (en) * | 2006-05-26 | 2009-09-15 | Greenwood Soar Ip Ltd. | High intensity discharge lamp ballast |
DE502006004329D1 (en) | 2006-10-21 | 2009-09-03 | Sma Solar Technology Ag | Circuit device and method, in particular for photovoltaic generators |
DE102007054805A1 (en) * | 2007-11-16 | 2009-05-20 | Tridonicatco Schweiz Ag | Circuit arrangement for operating gas discharge lamps, for example HID lamps |
CN102193607B (en) * | 2010-03-11 | 2013-12-11 | 鸿富锦精密工业(深圳)有限公司 | Power supply circuit |
JP6061033B2 (en) * | 2013-06-20 | 2017-01-18 | 富士電機株式会社 | Reference voltage circuit |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3999100A (en) * | 1975-05-19 | 1976-12-21 | Morton B. Leskin | Lamp power supply using a switching regulator and commutator |
US4523128A (en) * | 1982-12-10 | 1985-06-11 | Honeywell Inc. | Remote control of dimmable electronic gas discharge lamp ballasts |
NL8600812A (en) * | 1985-12-17 | 1987-07-16 | Philips Nv | CIRCUIT SUITABLE FOR OPERATING A HIGH PRESSURE DISCHARGE LAMP. |
US4958106A (en) * | 1988-02-10 | 1990-09-18 | U.S. Philips Corporation | High-pressure sodium discharge lamp |
DK89388D0 (en) * | 1988-02-19 | 1988-02-19 | Silver Gruppen Prod As | ELECTRONIC BALLAST |
US4952848A (en) * | 1988-07-05 | 1990-08-28 | North American Philips Corporation | Signal generating circuit for ballast control of discharge lamps |
US4952849A (en) * | 1988-07-15 | 1990-08-28 | North American Philips Corporation | Fluorescent lamp controllers |
US4958108A (en) * | 1989-02-14 | 1990-09-18 | Avtech Corporation | Universal fluorescent lamp ballast |
US5068572A (en) * | 1989-06-08 | 1991-11-26 | U.S. Philips Corporation | Switch mode power supply |
US5097181A (en) * | 1989-09-29 | 1992-03-17 | Toshiba Lighting & Technology Corporation | Discharge lamp lighting device having level shift control function |
US5103141A (en) * | 1990-03-08 | 1992-04-07 | U.S. Philips Corporation | Switching arrangement for increasing the white life of a high pressure sodium lamp |
US5048033A (en) * | 1990-09-04 | 1991-09-10 | Coherent, Inc. | Method and apparatus for controlling the power supply of a laser operating in a pulse mode |
-
1991
- 1991-01-24 DE DE4102069A patent/DE4102069A1/en not_active Withdrawn
- 1991-12-17 US US07/808,665 patent/US5198728A/en not_active Expired - Lifetime
-
1992
- 1992-01-13 EP EP92100456A patent/EP0496246B1/en not_active Expired - Lifetime
- 1992-01-13 DE DE59205981T patent/DE59205981D1/en not_active Expired - Lifetime
- 1992-01-20 JP JP02883992A patent/JP3210052B2/en not_active Expired - Fee Related
- 1992-01-24 KR KR1019920000986A patent/KR100218980B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JPH04319295A (en) | 1992-11-10 |
US5198728A (en) | 1993-03-30 |
JP3210052B2 (en) | 2001-09-17 |
DE4102069A1 (en) | 1992-07-30 |
KR920015963A (en) | 1992-08-27 |
DE59205981D1 (en) | 1996-05-23 |
EP0496246A1 (en) | 1992-07-29 |
KR100218980B1 (en) | 1999-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0496246B1 (en) | Circuit for operating a discharge lamp | |
DE19533103B4 (en) | Circuit arrangement for operating a discharge lamp | |
DE3888278T2 (en) | High-frequency ballast for discharge gas lamps. | |
DE3447486C2 (en) | Circuit arrangement for operating an electrical consumer | |
EP0241976B1 (en) | Circuit arrangement to produce a dc voltage from a sinusoidal input voltage | |
DE69120180T2 (en) | Fault-tolerant power supply with low harmonic current | |
DE69621889T2 (en) | Arrangement for operating a cold cathode lamp with a piezoelectric converter | |
DE69500031T2 (en) | Control circuit and arrangement for a low pressure fluorescent lamp | |
EP0800335A2 (en) | Circuit for operating electric lamps | |
DE10303246B3 (en) | Switch control circuit for switched power factor converter has signal generation circuit responding to detected critical condition for providing control signal with pulse ratio dependent on regulation signal | |
DE69616479T2 (en) | CIRCUIT | |
DE19622803B4 (en) | Circuit arrangement for high-pressure discharge lamp | |
DE19841719C2 (en) | Circuit arrangement for edge slope shaping | |
EP0144754A1 (en) | Flyback converter switching power supply | |
EP1526622A2 (en) | Electronic ballast with protection circuit for switching transitors of a converter | |
DE69616483T2 (en) | CIRCUIT | |
DE10241327A1 (en) | Circuit arrangement for operating discharge lamps | |
DE9310461U1 (en) | Burner control | |
DE60127966T2 (en) | CIRCUIT | |
DE69709604T2 (en) | CIRCUIT | |
EP0389847B1 (en) | Circuit | |
EP0642295B1 (en) | Electronic ballast for a load, for example a discarge lamp | |
EP0634087B2 (en) | Electronic ballast for a gas discharge lamp | |
EP1326484A2 (en) | Apparatus for operating discharge lamps | |
DE69817326T2 (en) | BALLAST |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19921007 |
|
17Q | First examination report despatched |
Effective date: 19940421 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 59205981 Country of ref document: DE Date of ref document: 19960523 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19961010 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060105 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060123 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060131 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070113 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110321 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59205981 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59205981 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120114 |