[go: up one dir, main page]

EP0484360A1 - Electrical switching circuit. - Google Patents

Electrical switching circuit.

Info

Publication number
EP0484360A1
EP0484360A1 EP90910728A EP90910728A EP0484360A1 EP 0484360 A1 EP0484360 A1 EP 0484360A1 EP 90910728 A EP90910728 A EP 90910728A EP 90910728 A EP90910728 A EP 90910728A EP 0484360 A1 EP0484360 A1 EP 0484360A1
Authority
EP
European Patent Office
Prior art keywords
current
input
transistor
output
electrical circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90910728A
Other languages
German (de)
French (fr)
Other versions
EP0484360B1 (en
Inventor
Heinz Rinderle
Rolf Boehme
Guenter Gleim
Elke Roesch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefunken Electronic GmbH
Deutsche Thomson Brandt GmbH
Original Assignee
Telefunken Electronic GmbH
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefunken Electronic GmbH, Deutsche Thomson Brandt GmbH filed Critical Telefunken Electronic GmbH
Publication of EP0484360A1 publication Critical patent/EP0484360A1/en
Application granted granted Critical
Publication of EP0484360B1 publication Critical patent/EP0484360B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/59Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current 
    • G05F1/46Regulating voltage or current  wherein the variable actually regulated by the final control device is DC
    • G05F1/56Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current  wherein the variable actually regulated by the final control device is DC using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Definitions

  • the invention relates to an electrical circuit with a plurality of current-voltage converters, the parameters of which depend in approximately the same way on external factors.
  • the transmission resistance of a current-voltage converter depends on the temperature and other influencing variables.
  • the temperature dependency in integrated circuits is particularly pronounced because of the strong changes in diffused or implanted resistors.
  • the invention solves this problem in that one of the IU converters is provided as a reference IU converter, in that its transmission resistance is compared with the value of a reference resistor and in that a comparison criterion is used for setting the transmission resistance of all IU converters is derived.
  • Figure 1 shows a first embodiment of the invention
  • Figure 2 shows a simple way of generating the reference current
  • Figure 4 shows the symmetry of the reference voltage
  • FIG. 5a shows the electricity generation for the balancing
  • FIG. 5b shows the power generation with reversal of direction for the metering
  • Figure 6 shows the breakdown of the IU converter into an input stage, a control stage and an output stage
  • Figure 7 shows an IU converter with discretely controlled transmission resistance.
  • an integrated circuit contains several, but at least two, IU converters Wr, W1, ..., Wn.
  • Each IU converter has a current-sensitive, preferably low-input, a live output and a control input.
  • One of the IU converters is provided as a reference IU converter Wr.
  • a reference current Iref is generated in a reference current source Iq by means of a reference voltage source Uref and a reference resistor Rref and is supplied to the input of the reference IU converter Wr.
  • the first input of a comparator V1 is connected to the output of the reference IU converter Wr and the second input is connected to the reference voltage source Uref.
  • the control inputs of all IU converters Wr, Wl, ..., Wn are connected to the output of the comparator V1.
  • the reference resistance Rref lies between the reference voltage source Uref and the input of the reference IU converter Wr. With this arrangement, the potential at the input of the reference IU converter Wr must be equal to the potential of the ground terminal. If the reference resistor Rref is connected externally, two connections are required on the integrated circuit.
  • a differential amplifier Vd controls two current sources Iq1 and Iq2, which are shown here in the form of two transistors T1 and T2 with emitter resistors R1 and R2.
  • the output of the differential amplifier Vd is connected to the bases of the transistors T1 and T2.
  • the emitter resistors R1 and R2 lead to a common supply voltage source Ub1.
  • the collector of the first transistor T1, which corresponds to the output of the first current source Iq1 is connected to the reference resistor Rref and the first input terminal of the differential amplifier Vd.
  • the Kollek ⁇ gate of the second transistor T2, which corresponds to the output of the second current source Iq2, the reference IU converter Wr is connected to the input.
  • the voltage drop across the reference resistor Rref must be equal to the reference voltage Urefi.
  • the current required for this is supplied by the first current source Iq1.
  • the current Iref to the input of the reference IU wall Lers Wr is supplied by the second current source Iq2.
  • the current sources Iq1 and Iq2 can be dimensioned in such a way that their currents are identical to one another or that what is indicated by emp Chen IU converters is advantageous, the current Iref is a fraction K1 of the current through the reference resistor Rref.
  • stabilization can be significantly better than with a chip-based resistance can be achieved.
  • symmetrical signals are preferred.
  • the reference IU converter Wr supplies the output signal Ur to two connection terminals with opposite polarity, the instantaneous voltage of both output terminals being dependent on the temperature or other influencing factors.
  • a comparison of the symmetrical output signal Ur of the reference IU converter Wr with the asymmetrical reference voltage Uref must therefore be carried out.
  • this can be done by a differential stage comprising two transistors T3 and T4, which is fed by a current source Iv, the current source Iv being dependent on the reference voltage Uref.
  • An emitter resistor R3 is connected upstream of one of the two transistors.
  • the bases of the transistors T3 and T4 are connected to the output terminals of the reference IU converter Wr.
  • the collectors of the transistors T3 and T4 are connected to a current mirror Ssp.
  • a signal Uv is taken from the output A of the current mirror Ssp, which e.g. is converted into a control signal Sr by an output amplifier.
  • the function of this part of the comparator V1 results from the fact that, in the case of a mirror ifactor one of the current mirror Ssp and, in the balanced state, the rain Isch Lei fe, the same currents Iv / 2 flow through the two branches with the transistors T1 and T2 and that the voltage Ur must therefore be equal to the voltage drop Ur3 across the resistor R3.
  • the current Iv is shown in FIG. 5 - "formed by the reference voltage Uref In figure-5a i st ⁇ n ⁇ Di ⁇ ei fferenzverEntr V2 vorge see, whose first input is connected to the one pole of the voltage source Uref Referenzspan-, whose second input is connected to the one terminal of a reference resistor Rref2 and the output thereof is connected to the base of a current source transistor T5, and the emitter of the current source transistor T5 is connected to the second input of the D fference amplifier V2 connected.
  • the other pole of the reference voltage source Uref and the other connection of the reference resistor Rref2 are at ground or at a reference point.
  • the voltage drop across the reference resistor Rref2 becomes equal to the reference voltage Uref.
  • the current that can be drawn from the collector of the current source transistor T5 then corresponds to the current through the reference resistance Rref2, except for the low base current.
  • the circuit from FIG. 5b differs from the circuit from FIG. 5a in the arrangement of the current source transistor T5, the collector of which is connected here to the second input of the differential amplifier V2, while the emitter represents the current source Len output Ai. While in FIG. 5a the second input of the differential amplifier V2 is of the inverting type, in FIG. 5b it must not be inverting. FIG. 5b also shows how a current source can be formed in the opposite direction.
  • a resistor R5 is connected between the output Ai _and a _Versorgungssj3annungsttle Ub2 ge ⁇ cha ltet._
  • the Ba ⁇ s e ls of a further transistor T6 is connected to the output of Diffe ⁇ ence amplifier V2.
  • a resistor R6 lies between the supply voltage source Ub2 and the emitter of the transistor T6.
  • the output current Iv in the opposite direction is taken from the collector of transistor T6, which is referred to as output Aj.
  • the i-th IU converter is composed of an input stage Wai, a differential stage Wbi and an output stage Wci.
  • the input stage Wai converts the input current Ii into a voltage Uai.
  • the differential stage Wbi lying between the input stage Wai and the output stage Wci is made up of bipolar transistors T7 and T8, the bases of which are connected to the output of the input stage Wai, the emitters of which are connected to a current source Ibi and the collectors of which are connected to the inputs of the Output stage Wci are connected.
  • the output stage Wci forms the output voltage Ui from the Ko L detector currents of the differential stage Wbi.
  • the mode of operation is based on the fact that the steepness of the differential stage and thus its amplification is proportional to the current of the current source Ibi.
  • the current Ibi In order to ensure that the i-th converter Wi has K times the transmission resistance compared to the reference IU converter Wr, the current Ibi must assume the K times the value of the current Ibr of the reference IU converter Wr. The technical means for this are known and therefore need not be described here. The possibility of making the factor K variable and thus controllable is included.
  • FIG. 7 One possibility of making the transmission resistance discretely controllable and thus programmable is shown in FIG. 7.
  • Several differential stages made of bipolar transistors T71 ,. T81; T72, T82; T73, T83; ... are connected on the input side to the Wai input section and on the output side to the Wci output section. They are fed by current sources Ib1, Ib2, Ib3 ... which can be switched on and off by controllable switches S1, S2, S3 ... If for the transistors T71, T81; T72, T82; T73, T83; ... the differential stages emitter resistors R71, R81; R72, R82; R73, R83; ... are provided, the linearity and other properties are improved.
  • the steepness of the middle part Wbi results from the sum of the steepness of the differential stages switched on.
  • the slope can be changed in stages by means of the controllable switches K1, K2, K3,. It is particularly advantageous to select the currents Ib1, Ib2, Ib3, ... in accordance with a sequence of potencies to the base 2. If emitter resistors are provided, their values must be assigned inversely. In addition, it is recommended that the areas of the transistors T71, T81; T72, T82; ... also staggered in the ratio of the currents, because this enables maximum accuracy and stability to be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)
  • Networks Using Active Elements (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Analogue/Digital Conversion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Paper (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

A system for regulating the transfer impedance of a plurality of current-to-voltage converters to a substantially equal value includes a reference voltage source and a reference impedance for providing a reference current. A reference current-to-voltage converter is responsive to the reference current and provides an output voltage. A comparator is responsive to the reference voltage and the output voltage and provides a control signal to the reference current-to-voltage converter and to all the other current-to-voltage converters to maintain the transfer impedance of all the current-to-voltage converters constant.

Description

PATENTANMELDUNG PATENT APPLICATION
Elektrischer SchaltkreisElectrical circuit
Die Erfindung betrifft einen elektrischen Schaltkreis mit mehre¬ ren Strom-Spanπungs-Wandlern, deren Parameter in annähernd glei¬ cher Weise von äußeren Einflußgrößen abhängen.The invention relates to an electrical circuit with a plurality of current-voltage converters, the parameters of which depend in approximately the same way on external factors.
Der Übertragungswiderstand eines Strom-Spannungs-Wandlers, im weiteren Verlauf kurz IU-Wandler genannt, hängt von der Tempera¬ tur und anderen Ein lußgrößen ab. Einerseits ist die Temperatur¬ abhängigkeit in integrierten Schaltungen wegen der starken Ände¬ rungen diffundierter oder implantierter Widerstände besonders stark ausgeprägt. Andererseits ist es häufig notwendig, eine ho¬ he Stabilität des Übertragungswiderstandes eines IU-Wandlers zu gewährleisten. Dies trifft z.B. für die integrierten Schaltkrei¬ se eines CD-Spielers für Fahrzeuge zu, die in einem Temperatur¬ bereich von -20 bis +70 Celsius arbeitsfähig und sehr stabil se n müssen. Es ist daher Aufgabe der Erfindung, in einem elektrischen Schaltkreis mit mehreren IU-Wandlern eine Drift des übertra- gungswiderstandes zu unterdrücken.The transmission resistance of a current-voltage converter, hereinafter referred to as IU converter for short, depends on the temperature and other influencing variables. On the one hand, the temperature dependency in integrated circuits is particularly pronounced because of the strong changes in diffused or implanted resistors. On the other hand, it is often necessary to ensure a high stability of the transmission resistance of an IU converter. This applies, for example, to the integrated circuits of a CD player for vehicles which have to be capable of working and very stable in a temperature range from -20 to +70 Celsius. It is therefore an object of the invention to suppress a drift in the transmission resistance in an electrical circuit with a plurality of IU converters.
Die Erfindung löst diese Aufgabe dadurch, daß einer der IU-Wand- ler als Referenz-IU-Wand ler vorgesehen ist, daß dessen Übertra¬ gungswiderstand mit dem Wert eines Referenzwiderstandes vergli¬ chen wird und daß aus dem Vergleich ein Kriterium zur Einstel¬ lung des Übertragungswiderstandes aller IU-Wandler abgeleitet wi rd.The invention solves this problem in that one of the IU converters is provided as a reference IU converter, in that its transmission resistance is compared with the value of a reference resistor and in that a comparison criterion is used for setting the transmission resistance of all IU converters is derived.
Die Erfindung wird nun anhand von Ausführungsbeispielen erläu¬ tert. In der zugehörigen Zeichnung zeigen:The invention will now be explained on the basis of exemplary embodiments. In the accompanying drawing:
Figur 1 ein erstes Ausführungsbe sp el der Erfindung;Figure 1 shows a first embodiment of the invention;
Figur 2 eine einfache Art der Erzeugung des Referenzstromes;Figure 2 shows a simple way of generating the reference current;
Figur 3 die Erzeugung des Referenzstromes mittels synchroner Stro quel len;3 shows the generation of the reference current by means of synchronous Stro sources;
Figur 4 die Symmetr erung der Re erenzspannung;Figure 4 shows the symmetry of the reference voltage;
Figur 5a die Stromerzeugung für die Symmetrierung;FIG. 5a shows the electricity generation for the balancing;
Figur 5b die Stromerzeugung mit Richtungsumkehr für die Sy me- trierung;FIG. 5b shows the power generation with reversal of direction for the metering;
Figur 6 die Zerlegung des IU-Wandlers in eine Eingangsstufe, eine Steuerstύfe und eine Ausgangsstufe;Figure 6 shows the breakdown of the IU converter into an input stage, a control stage and an output stage;
Figur 7 einen IU-Wandler mit diskret gesteuertem Übertragungs¬ widerstand. Ein integrierter Schaltkreis enthält nach Figur 1 mehrere, min¬ destens aber zwei IU-Wandler Wr, W1 , ..., Wn. Jeder IU-Wandler besitzt einen stromempfindlichen, vorzugsweise ni ederoh i gen Eingang, einen spannungsführenden Ausgang und einen Steuerein¬ gang. Einer der IU-Wandler ist als Referenz-IU-Wand ler Wr vorge¬ sehen. In einer Referenzstromquelle Iq wird mittels einer Refe¬ renzspannungsquelle Uref und eines Referenzwiderstandes Rref ein Re erenzs rom Iref erzeugt, der dem Eingang des Referenz- IU-Wandlers Wr zugeführt wird. Der erste Eingang eines Verglei¬ chers V1 ist mit dem Ausgang des Referenz-IU-Wandlers Wr und der zweite Eingang mit der Referenzspannungsquelle Uref verbun¬ den. Die Steuereingänge aller IU-Wandler Wr, Wl, ..., Wn sind mit dem Ausgang des Vergleichers V1 verbunden.Figure 7 shows an IU converter with discretely controlled transmission resistance. According to FIG. 1, an integrated circuit contains several, but at least two, IU converters Wr, W1, ..., Wn. Each IU converter has a current-sensitive, preferably low-input, a live output and a control input. One of the IU converters is provided as a reference IU converter Wr. A reference current Iref is generated in a reference current source Iq by means of a reference voltage source Uref and a reference resistor Rref and is supplied to the input of the reference IU converter Wr. The first input of a comparator V1 is connected to the output of the reference IU converter Wr and the second input is connected to the reference voltage source Uref. The control inputs of all IU converters Wr, Wl, ..., Wn are connected to the output of the comparator V1.
In der Referenzstro que l Le Iq wird der Refereπzstrom Iref = K1 * Uref / Rref erzeugt, wobei K1 ein konstanter Faktor ist. Der Referenz-IU-Wandler Wr bildet aus dem einfließenden Referenz¬ strom Iref die Ausgangsspannung Ur = Iref * Rr, wobei Rr der Übertragungswiderstand des Referenz-IU-Wand lers Wr ist. Der Ver¬ gleicher V1 bildet zumindest näherungsweise das Ausgangssignal Sa = V * (Ur - K2 * Uref), wobei K2 ein konstanter Faktor und V die Verstärkung ist. Bei einem stabilen System wird mit hinrei¬ chend großer Verstärkung Ur - K2 * Uref = 0. Mit den oben ge¬ nannten Beziehungen ergibt sich dadurch Rr = Rref * K2 / K1. In¬ dem durch das Steuersignal Sa der Referenz-IU-Wand Ler Wr den Übertragungswiderstand Rr = Rref * K2 / K1 annimmt, werden alle weiteren IU-Wandler W1 bis Wn, soweit sie die gleichen Eigen¬ schaften wie der Referenz-IU-Wandler Wr haben, auf den gleichen Übertragungswiderstand R1 = R2 = ... Rn = Rr eingestellt. Die Voraussetzung der Gleichartigkeit aller IU-Wandler bezüglich der Abhängigkeit einzelner Parameter von äußeren Einflußgrößen läßt sich innerhalb e nes integrierten Schaltkreises durch gleichartigen Aufbau, enge Nachbarschaft und geringen Tempera¬ turgradienten verhältnismäßig gut erfüllen. Auf die Stabilität der Referenzspannung Uref kommt es nicht an, da sie nicht in die Abgleichbedingung eingeht. In Figur 2 ist dargestellt, wie der Referenzstrom Iref auf ein¬ fache Weise erzeugt werden kann. Der Referenz iderstand Rref liegt zwischen der Referenzspannungsquelle Uref und dem Eingang des Referenz-IU-Wand lers Wr. Bei dieser Anordnung muß das Poten¬ tial am Eingang des Referenz-IU-Wandlers Wr gleich dem Potenti¬ al der Massek lemme sein. Wenn der Referenzwiderstand Rref ex¬ tern angeschlossen ist, sind am integrierten Schaltkreis zwei Anschlüsse erforderlich.The reference current Iref = K1 * Uref / Rref is generated in the reference current I Leq, where K1 is a constant factor. The reference IU converter Wr forms the output voltage Ur = Iref * Rr from the incoming reference current Iref, where Rr is the transmission resistance of the reference IU converter Wr. The comparator V1 forms at least approximately the output signal Sa = V * (Ur - K2 * Uref), K2 being a constant factor and V being the gain. In a stable system, Ur - K2 * Uref = 0 with a sufficiently large gain. With the relationships mentioned above, this results in Rr = Rref * K2 / K1. As a result of the control signal Sa of the reference IU wall Ler Wr assuming the transmission resistance Rr = Rref * K2 / K1, all further IU converters W1 to Wn are provided that they have the same properties as the reference IU converter Wr have set the same transmission resistance R1 = R2 = ... Rn = Rr. The prerequisite for the uniformity of all IU converters with regard to the dependence of individual parameters on external influencing variables can be fulfilled relatively well within an integrated circuit by means of the same structure, close proximity and low temperature gradients. The stability of the reference voltage Uref is not important, since it does not go into the adjustment condition. FIG. 2 shows how the reference current Iref can be generated in a simple manner. The reference resistance Rref lies between the reference voltage source Uref and the input of the reference IU converter Wr. With this arrangement, the potential at the input of the reference IU converter Wr must be equal to the potential of the ground terminal. If the reference resistor Rref is connected externally, two connections are required on the integrated circuit.
Vorteilhafter ist die in Figur 3 dargestellte Anordnung. Ein Differenzverstärker Vd steuert zwei Stromquellen Iq1 und Iq2, die hier in Form zweier Transistoren T1 und T2 mit Emitterwider¬ ständen R1 und R2 dargestellt sind. Der Ausgang des Differenz¬ verstärkers Vd ist mit den Basen der Transistoren T1 und T2 ver¬ bunden. Die Emitterwiderstände R1 und R2 führen zu einer gemein¬ samen Versorgungsspannungsque l le Ub1. Der Kollektor des ersten Transistors T1, der dem Ausgang der ersten Stromquelle Iq1 ent¬ spricht, ist mit dem Referenzwiderstand Rref und der ersten Ein¬ gangsklemme des Differenzverstärkers Vd verbunden. Der Kollek¬ tor des zweiten , Transistors T2, der dem Ausgang der zweiten Stromquelle Iq2 entspricht, ist mit dem Eingang des Referenz- IU-Wandlers Wr verbunden.The arrangement shown in FIG. 3 is more advantageous. A differential amplifier Vd controls two current sources Iq1 and Iq2, which are shown here in the form of two transistors T1 and T2 with emitter resistors R1 and R2. The output of the differential amplifier Vd is connected to the bases of the transistors T1 and T2. The emitter resistors R1 and R2 lead to a common supply voltage source Ub1. The collector of the first transistor T1, which corresponds to the output of the first current source Iq1, is connected to the reference resistor Rref and the first input terminal of the differential amplifier Vd. The Kollek¬ gate of the second transistor T2, which corresponds to the output of the second current source Iq2, the reference IU converter Wr is connected to the input.
Für hinreichend hohe Verstärkung des Di ferenzverstärkers Vd muß der Spannungsab all am Referenzwiderstand Rref gleich der Referenzspannung Uref seini Der dazu notwendige Strom wird von der ersten Stromquelle Iq1 geliefert. Der Strom Iref zum Ein¬ gang des Referenz-IU-Wand Lers Wr wird von der zweiten Stromquel¬ le Iq2 geliefert« Die Stromquellen Iq1 und Iq2 können so dimen¬ sioniert sein, daß ihre Ströme untereinander gleich sind oder daß, was bei emp indl chen IU-Wandlern vorteilhaft ist, der- Stro Iref einen Bruchteil K1 des Stromes durch den Referenzwi¬ derstand Rref beträgt.For a sufficiently high amplification of the differential amplifier Vd, the voltage drop across the reference resistor Rref must be equal to the reference voltage Urefi. The current required for this is supplied by the first current source Iq1. The current Iref to the input of the reference IU wall Lers Wr is supplied by the second current source Iq2. The current sources Iq1 and Iq2 can be dimensioned in such a way that their currents are identical to one another or that what is indicated by emp Chen IU converters is advantageous, the current Iref is a fraction K1 of the current through the reference resistor Rref.
Durch die Verwendung eines externen Referenzw derstandes kann eine wesentlich bessere Stabil sierung als mit einem chipinter- nen Widerstand erreicht werden. Darüberhinaus besteht die Mög¬ lichkeit, Exemplarstreuungen der die IU-Wandler speisenden Si¬ gnalquellen durch Anpassung des Referenzwiderstandes auszuglei¬ chen.By using an external reference resistor, stabilization can be significantly better than with a chip-based resistance can be achieved. In addition, there is the possibility of compensating for sample variations in the signal sources feeding the IU converter by adapting the reference resistance.
In einer bipolar integrierten Schaltung bevorzugt man symmetri¬ sche Signale. Der Re erenz-IU-Wandlers Wr liefert das Ausgangs¬ signal Ur an zwei Ansc lußklemmen mit entgegengesetzter Polari¬ tät, wobei die GLei chtaktSpannung beider Ausgangsklemmen von der Temperatur oder anderen Einflußfaktoren abhängen kann. So¬ mit muß ein Vergleich des symmetrischen Ausgangssignales Ur des Re erenz-IU-Wand lers Wr mit der unsymmet ischen Referenzspan¬ nung Uref durchgeführt werden. Dies kann nach Figur 4 durch ei¬ ne Di fferenzεtufe aus zwei Transistoren T3 und T4 erfolgen, die von einer Stromquelle Iv gespe st wird, wobei die Stromquelle Iv von der Referenzspannung Uref abhängt. Einem der beiden Tran¬ sistoren ist ein Emitterw derstand R3 vorgeschaltet. Die Basen der Transistoren T3 und T4 sind mit den Ausgangsklemmen des Re- ferenz-IU-Wandlers Wr verbunden. Die Kollektoren der Transisto¬ ren T3 und T4 sind mit einem Stromspiegel Ssp verbunden. Am Aus¬ gang A des Stromspiegels Ssp wird ein Signal Uv entnommen, das z.B. durch einen Ausgangsverstärker in ein Steuersignal Sr umge¬ formt wird. Die Funktion dieses Teiles des Vergleichers V1 er¬ gibt sich daraus, daß bei einem Spiege Ifaktor eins des Strom¬ spiegels Ssp und im abgeglichenen Zustand der Rege Isch Lei fe durch die beiden Zweige mit den Transistoren T1 und T2 jeweils gleiche Ströme Iv/2 fließen und daß somit die Spannung Ur gleich dem Spannungsabfall Ur3 über dem Widerstand R3 sein muß.In a bipolar integrated circuit, symmetrical signals are preferred. The reference IU converter Wr supplies the output signal Ur to two connection terminals with opposite polarity, the instantaneous voltage of both output terminals being dependent on the temperature or other influencing factors. A comparison of the symmetrical output signal Ur of the reference IU converter Wr with the asymmetrical reference voltage Uref must therefore be carried out. According to FIG. 4, this can be done by a differential stage comprising two transistors T3 and T4, which is fed by a current source Iv, the current source Iv being dependent on the reference voltage Uref. An emitter resistor R3 is connected upstream of one of the two transistors. The bases of the transistors T3 and T4 are connected to the output terminals of the reference IU converter Wr. The collectors of the transistors T3 and T4 are connected to a current mirror Ssp. A signal Uv is taken from the output A of the current mirror Ssp, which e.g. is converted into a control signal Sr by an output amplifier. The function of this part of the comparator V1 results from the fact that, in the case of a mirror ifactor one of the current mirror Ssp and, in the balanced state, the rain Isch Lei fe, the same currents Iv / 2 flow through the two branches with the transistors T1 and T2 and that the voltage Ur must therefore be equal to the voltage drop Ur3 across the resistor R3.
Der Strom Iv wird nach Figur 5 -"mittels der Referenzspannung Uref gebildet. In Figur- 5a i st ~~ei n~Di~fferenzverstärker V2 vorge¬ sehen, dessen erster Eingang mit dem einen Pol der Referenzspan- nungsquelle Uref, dessen zweiter Eingang mit dem einen Anschluß eines Referenzwiderstandes Rref2 und dessen Ausgang mit der Ba¬ sis eines Stromquellentransistors T5 verbunden ist. Der Emitter des Stromquel Lent ransistors T5 ist mit dem zweiten Eingang des D fferenzverstärkers V2 verbunden. Der andere Pol der Referenz¬ spannungsquelle Uref und der andere Anschluß des Referenzw der¬ standes Rref2 liegen auf Masse oder an einem Bezugspunkt.The current Iv is shown in FIG. 5 - "formed by the reference voltage Uref In figure-5a i st ~~ n ~ Di ~ ei fferenzverstärker V2 vorge see, whose first input is connected to the one pole of the voltage source Uref Referenzspan-, whose second input is connected to the one terminal of a reference resistor Rref2 and the output thereof is connected to the base of a current source transistor T5, and the emitter of the current source transistor T5 is connected to the second input of the D fference amplifier V2 connected. The other pole of the reference voltage source Uref and the other connection of the reference resistor Rref2 are at ground or at a reference point.
Mit hinreichend hoher Verstärkung des Differenzverstärkers V2 wird der Spannungsabfall am Referenzwiderstand Rref2 gleich der Referenzspannung Uref. Der am Kollektor des Stromquellentransi¬ stors T5 entnehmbare Strom entspricht dann bis auf den geringen Basisstrom dem Strom durch den Referenzw derstand Rref2. Bei hö¬ heren Anforderungen kann der Stromquellentransistor T5 durch ei¬ ne Darlington-Schaltung aus zwei Transistoren ersetzt werden. Ist z.B. R3 = 2 * Rref2, so wird wegen der Halbierung des Stro¬ mes Iv der Spannungsab all über R3 gleich der Referenzspannung Uref. Je nach dem Widerstandsverhältnis kann die H lfsspannung Ur3 = Ur beleibig gewählt werden. Eine gleichsinnige Änderung der Widerstände Rref2 und R3 läßt die Spannung Ur unverändert, weil es nur auf -das Widerstandsverhältnis R3 / Rref2 ankommt. Dadurch läßt sich eine sehr geringe Temperaturabhängigkeit der integrierten Schaltung erzielen.With a sufficiently high gain of the differential amplifier V2, the voltage drop across the reference resistor Rref2 becomes equal to the reference voltage Uref. The current that can be drawn from the collector of the current source transistor T5 then corresponds to the current through the reference resistance Rref2, except for the low base current. In the case of higher requirements, the current source transistor T5 can be replaced by a Darlington circuit comprising two transistors. Is e.g. R3 = 2 * Rref2, because of the halving of the current Iv, the voltage drop across R3 becomes equal to the reference voltage Uref. Depending on the resistance ratio, the auxiliary voltage Ur3 = Ur can be chosen arbitrarily. A change in the same direction of the resistors Rref2 and R3 leaves the voltage Ur unchanged, because only the resistance ratio R3 / Rref2 is important. A very low temperature dependency of the integrated circuit can thereby be achieved.
Die Schaltung aus Figur 5b unterscheidet sich von der Schaltung aus Figur 5a in der Anordnung des StromquelLentrans stors T5, dessen Kollektor hier mit dem zweiten Eingang des Differenzver¬ stärkers V2 verbunden ist, während der Emitter den Stromquel Len- ausgang Ai darstellt. Während in Figur 5a der zweite Eingang des Dif erenzverstärkers V2 vom invertierenden Typ ist, muß er in Figur 5b ni chtinvertierend sein. In Figur 5b ist weiter dai— gestellt, wie eine Stromquelle umgekehrter Richtung gebildet werden kann. Dazu wird ein Widerstand R5 zwischen den Ausgang Ai _und einer _Versorgungssj3annungsquelle Ub2 ge^cha ltet._ Die Ba¬ sels eines weiteren Transistors T6 wird an den Ausgang des Diffe¬ renzverstärkers V2 angeschlossen. Zwischen der Versorgungsspan- nungsquelle Ub2 und dem Emitter des Transistors T6 liegt ein Wi¬ derstand R6. Der Ausgangsstrom Iv umgekehrter Richtung wird am Kollektor des Transistors T6 entnommen, der als Ausgang Aj be¬ zeichnet ist. Die Aufgabe, mehrere IU-Wandler zu stabilisieren, dabei aber verschiedene Übertragungswiderstände aufrechtzuerhalten, kann ebenfalls mit den erfindungsgemäßen Mitteln ausgeführt werden. Dazu ist nach Figur 6 vorgesehen, innerhalb des IU-Wandlers ei¬ ne als steuerbares Organ wirkende Differenzstufe mit bipolaren Transistoren T7 und T8 zu verwenden. Der i-te IU-Wandler ist aus einer Eingangsstufe Wai, einer Differenzstufe Wbi und einer Ausgangsstufe Wci aufgebaut. Die Eingangsstufe Wai wandelt den Eingangsstrom Ii in eine Spannung Uai. Die zwischen der Ein¬ gangsstufe Wai und der Ausgangsstufe Wci liegende Differenzstu¬ fe Wbi ist aus bipolaren Transistoren T7 und T8 aufgebaut, deren Basen am Ausgang der Eingangsstufe Wai angeschlossen sind, deren Emitter mit einer Sromquelle Ibi verbunden sind und deren Kollektoren mit den Eingängen der Ausgangsstufe Wci ver¬ bunden sind. Die Ausgangsstufe Wci bildet aus den Ko L Lektorströ¬ men der Differenzstufe Wbi die Ausgangsspannung Ui.The circuit from FIG. 5b differs from the circuit from FIG. 5a in the arrangement of the current source transistor T5, the collector of which is connected here to the second input of the differential amplifier V2, while the emitter represents the current source Len output Ai. While in FIG. 5a the second input of the differential amplifier V2 is of the inverting type, in FIG. 5b it must not be inverting. FIG. 5b also shows how a current source can be formed in the opposite direction. For this purpose, a resistor R5 is connected between the output Ai _and a _Versorgungssj3annungsquelle Ub2 ge ^ cha ltet._ The Ba¬ s e ls of a further transistor T6 is connected to the output of Diffe¬ ence amplifier V2. A resistor R6 lies between the supply voltage source Ub2 and the emitter of the transistor T6. The output current Iv in the opposite direction is taken from the collector of transistor T6, which is referred to as output Aj. The task of stabilizing several IU converters while maintaining different transmission resistances can also be carried out with the means according to the invention. For this purpose, according to FIG. 6 it is provided to use a differential stage with bipolar transistors T7 and T8 within the IU converter, which acts as a controllable organ. The i-th IU converter is composed of an input stage Wai, a differential stage Wbi and an output stage Wci. The input stage Wai converts the input current Ii into a voltage Uai. The differential stage Wbi lying between the input stage Wai and the output stage Wci is made up of bipolar transistors T7 and T8, the bases of which are connected to the output of the input stage Wai, the emitters of which are connected to a current source Ibi and the collectors of which are connected to the inputs of the Output stage Wci are connected. The output stage Wci forms the output voltage Ui from the Ko L detector currents of the differential stage Wbi.
Die Wirkungsweise beruht darauf, daß die Steilheit der Diffe¬ renzstufe und damit ihre Verstärkung proportional zum Strom der Stromquelle Ibi ist. Um zu erreichen, daß der i-te Wandler Wi den K-fachen Übertragungswiderstand gegenüber dem Referenz-IU- Wandler Wr hat, muß der Strom Ibi den K-fachen Wert des Stromes Ibr des Referenz-IU-Wandlers Wr annehmen. Die scha Itungstechni- schen ittel dazu sind bekannt und brauchen deshalb hier nicht dargelegt zu werden. Die Möglichkeit, den Faktor K variabel und damit steuerbar zu gestalten, ist dabei eingeschlossen.The mode of operation is based on the fact that the steepness of the differential stage and thus its amplification is proportional to the current of the current source Ibi. In order to ensure that the i-th converter Wi has K times the transmission resistance compared to the reference IU converter Wr, the current Ibi must assume the K times the value of the current Ibr of the reference IU converter Wr. The technical means for this are known and therefore need not be described here. The possibility of making the factor K variable and thus controllable is included.
Eine Möglichkeit, den Übertragungswiderstand diskret steuerbar und damit programmierbar zu machen, ist in Figur 7 dargestellt. Mehrere Differenzstufen aus bipolaren Transistoren T71,. T81; T72, T82; T73, T83; ... sind eingangsseiti g am Eingangsteil Wai und ausgangsseitig am Ausgangsteil Wci angeschlossen. Sie wei— den von Stromquellen Ib1, Ib2, Ib3 ... gespeist, die durch steuerbare Schalter S1, S2, S3 ... zu- und abgeschaltet werden können. Wenn für die Transistoren T71 , T81; T72, T82; T73, T83; ... der Differenzstufen Emitterwiderstände R71, R81; R72, R82; R73, R83; ... vorgesehen werden, werden die Linearität und ande¬ re Eigenschaften verbessert.One possibility of making the transmission resistance discretely controllable and thus programmable is shown in FIG. 7. Several differential stages made of bipolar transistors T71 ,. T81; T72, T82; T73, T83; ... are connected on the input side to the Wai input section and on the output side to the Wci output section. They are fed by current sources Ib1, Ib2, Ib3 ... which can be switched on and off by controllable switches S1, S2, S3 ... If for the transistors T71, T81; T72, T82; T73, T83; ... the differential stages emitter resistors R71, R81; R72, R82; R73, R83; ... are provided, the linearity and other properties are improved.
Die Steilheit des Mittelteiles Wbi ergibt sich aus der Summe der Steilheiten der eingeschalteten Differenzstufen. Die Steil¬ heit kann infolgedessen über die steuerbaren Schalter K1 , K2, K3, ... in Stufen verändert werden. Besonders vorte lhaft ist es, die Ströme Ib1, Ib2, Ib3, ... gemäß einer Folge von Poten¬ zen zur Basis 2 zu wählen. Falls Emitterwiderstände vorgesehen sind, müssen deren Werte invers zugeordnet werden. Darüberhin- aus empfiehlt es sich, die Flächen der Transistoren T71, T81; T72, T82; ... ebenfalls im Verhältnis der Ströme zu staffeln, weil dadurch höchste Genauigkeit und Stabilität erzielt werden können. The steepness of the middle part Wbi results from the sum of the steepness of the differential stages switched on. As a result, the slope can be changed in stages by means of the controllable switches K1, K2, K3,. It is particularly advantageous to select the currents Ib1, Ib2, Ib3, ... in accordance with a sequence of potencies to the base 2. If emitter resistors are provided, their values must be assigned inversely. In addition, it is recommended that the areas of the transistors T71, T81; T72, T82; ... also staggered in the ratio of the currents, because this enables maximum accuracy and stability to be achieved.

Claims

E§£SD£äDSE£Ü£l2§E§ £ SD £ äDSE £ Ü £ l2§
Elektrischer Schaltkreis mit mehreren Stromspannungswand¬ lern (Wr, W1, ..., Wn), deren Parameter in annähernd glei¬ cher Weise von äußeren Einflußgrößen abhängen, d a ¬ d u r c h g e k e n n z e i c h n e t, daß einer der Stromspannungswandler als Referenzstromspannungswandler (Wr) vorgesehen ist, daß dessen Übertragungswiderstand mit einem Referenzwiderstand (Rref) verglichen wird und daß aus dem Vergleich ein Kriterium zur Einstellung des übei— tragungswiderstandes aller Stromspannungswandler (Wr, W1, ..., Wn) abgleitet wird.Electrical circuit with a plurality of current voltage converters ( Wr, W1, ..., Wn), the parameters of which depend in approximately the same way on external influencing variables, since ¬ characterized in that one of the current voltage converters is provided as a reference current voltage converter ( Wr ) , that Transmission resistance is compared with a reference resistance (Rref) and that from the comparison a criterion for setting the transmission resistance of all current voltage transformers (Wr, W1, ..., Wn) is derived.
Elektrischer Schaltkreis nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der erste Eingang einer ersten Stromquelle (Iq) über den Referenzwiderstand (Rref) auf Masse liegt, daß am zweiten Eingang der ersten Strom¬ quelle (Iq) und am ersten Eingang eines Vergleichers (VD eine Referenzspannung (Uref) liegt, daß der Ausgang der ersten Stromquelle (Iq) mit dem Eingang des Referenzstrom- spannungswand Lers (Wr) verbunden ist, daß der Ausgang des Referenzst romspannungswandlers (Wr) mit dem zweiten Ein¬ gang des Vergleichers (VD verbunden ist und daß der Aus¬ gang des Vergleichers (VD mit den Steuereingängen aller Stromspannungswandler (Wr, W1 , ..., Wn) verbunden ist.Electrical circuit according to Claim 1, characterized in that the first input of a first current source (Iq) is connected to ground via the reference resistor (Rref ) , that a reference voltage is present at the second input of the first current source (Iq) and at the first input of a comparator ( VD) (Uref) is that the output of the first current source (Iq) is connected to the input of the reference current voltage wall Lers (Wr), that the output of the reference current voltage converter (Wr) is connected to the second input of the comparator (VD) and that the output of the comparator (VD is connected to the control inputs of all current-voltage converters (Wr, W1, ..., Wn).
Elektrischer Schaltkreis nach Anspruch 1, d a d u r c h g e k e n n z 'e i c h n e t, daß der eine Pol einer Refe¬ renzspannungsquelle (Uref) und mit dem ersten Eingang ei¬ nes Vergleichers (VD und über den Referenzw derstand (Rref) mit dem Eingang des Referenzstromspannungswandlers (Wr) verbunden ist, daß der Ausgang des Referenzstromspan¬ nungswandlers (Wr) mit dem zweiten Eingang des Verglei- _The electrical circuit of claim 1, dadurchgekennz 'eichnet that one pole is a Refe¬ ence voltage source (Uref) and to the first input ei¬ nes comparator (VD and the Referenzw resistor (Rref) to the input of the reference current-voltage converter (Wr) connected that the output of the reference current voltage converter ( Wr ) with the second input of the comparison _
- -- -
chers (VD verbunden ist und daß der Ausgang des Verglei¬ chers (VD mit den Steuereingängen aller Stromspannungs¬ wandler (Wr, W1, ...,.Wn) verbunden ist.Chers (VD is connected and that the output of the comparator (VD is connected to the control inputs of all current voltage converters (Wr, W1, ...,. Wn ) .
Elektrischer Schaltkreis nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß der erste Eingang eines ersten Differenzverstärkers (Vd) über den Referenzwider¬ stand (Rref) auf Masse Liegt, daß am zweiten Eingang des ersten Differenzverstärkers (Vd) die Referenzspannung (Uref) liegt, daß der Ausgang des ersten Differenzverstär¬ kers (Vd) eine zweite und eine dritte Stromquelle (Iq1, Iq2) ansteuert und daß eine der beiden Stromquellen den Strom für den Referenzstromspannungswandler (Wr) liefert.Electrical circuit according to Claim 2, characterized in that the first input of a first differential amplifier (Vd) is connected to ground via the reference resistor (Rref), that the reference voltage (Uref ) is at the second input of the first differential amplifier (Vd), that the output of the first differential amplifier (Vd ) controls a second and a third current source ( Iq1, Iq2 ) and that one of the two current sources supplies the current for the reference current-voltage converter (Wr).
Elektrischer SchaLtkreis nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß der erste Eingang des ersten Differenzverstärkers (Vd) über den Referenzwider¬ stand (Rref> auf Masse liegt, daß am zweiten Eingang des ersten Differenzverstärkers (Vd) die Referenzspannung (Uref) liegt, daß der Ausgang des ersten Di fferenzverstäi— kers (Vd) mit der Basis eines ersten und zweiten Transi¬ stors (T1, T2) verbunden ist, daß der Emitter des ersten und zweiten Transistors (T1, T2) über e einen Widerstand (R1, R2) an einer ersten Versorgungsspannung (UbD liegt, daß der Kollektor des ersten Transistors (T1) mit dem ei— sten Eingang des ersten Differenzverstärkers (Vd) verbun¬ den ist und daß der Kollektor des zweiten Transistors (T2) mit dem Eingang des Referenzstromspannungswandlers (Wr) verbunden ist.Electrical circuit according to Claim 4, characterized in that the first input of the first differential amplifier (Vd) is connected to ground via the reference resistor (Rref>), that the reference voltage (Uref) is at the second input of the first differential amplifier (Vd), that the output of the first differential amplifier (Vd) is connected to the base of a first and second transistor (T1, T2) such that the emitter of the first and second transistor (T1, T2) connects a resistor (R1, R2) via e a first supply voltage (UbD is that the collector of the first transistor (T1 ) is connected to the first input of the first differential amplifier (Vd ) and that the collector of the second transistor (T2 ) is connected to the input of the reference current voltage converter ( Wr) connected is.
Elektrischer Schaltkreis nach Anspruch 4 oder 5, d a ¬ d u r c h g e k e n n z e i c h n e t, daß die Ströme der Stromquellen (Iq1, Iq2) oder des ersten und zweiten Transi¬ stors (T1, T2) gleich groß gewählt sind. 7. Elektrischer Schaltkreis nach Anspruch 4 oder 5, d a ¬ d u r c h g e k e n n z e i c h n e t , daß der Strom (Iref) am Eingang des Referenzstromspannungswandlers (Wr) kleiner als der durch den Referenzwiderstand (Rref) flie¬ ßende Strom gwählt ist.Electrical circuit according to claim 4 or 5, since ¬ characterized in that the currents of the current sources (Iq1, Iq2 ) or the first and second transistor (T1, T2) are chosen to be the same size. 7. Electrical circuit according to claim 4 or 5, since ¬ characterized in that the current ( Iref ) at the input of the reference current voltage converter (Wr) is chosen smaller than the current flowing through the reference resistor (Rref) ß current.
8. Elektrischer Schaltkreis nach Anspruch 1, 2, 3, 4, 5, 6 oder 7, d a d u r c h g e k e n n z e i c h n e t, daß der Vergleicher (VD eine dritte Stromquelle (Iv) enthält, die von der zugeführten Refe enzspannung (Uref) gesteuert w rd.8. Electrical circuit according to claim 1, 2, 3, 4, 5, 6 or 7, d a d u r c h g e k e n n z e i c h n e t that the comparator (VD contains a third current source (Iv) which is controlled by the supplied reference voltage (Uref).
9. Elektrischer Schaltkreis nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß der Vergleicher (VD eine asymmetrische Differenzstufe mit einem dritten und vierten Transistor (T3, T4) enthält, .daß die Basen des dritten und vierten Transistors (T3, T4) den zweiten Eingang des Ver¬ gleichers (1) bilden, daß die Emitter des dritten und vier¬ ten Transistors (T3, T4) mit der dritten Stromquelle (Iv) verbunden sind, wobei dem Emitter des dritten oder vierten Transistors (T3) ein Widerstand (R3) vorgeschaltet ist, und daß die Kollektoren des dritten und vierten Transi¬ stors (T3, T4) mit dem Eingang (E) und dem Ausgang (A) ei¬ nes Stromspiege Ls (Ssp) verbunden sind.9. Electrical circuit according to claim 8, characterized in that the comparator (VD contains an asymmetrical differential stage with a third and fourth transistor (T3, T4),. That the bases of the third and fourth transistor (T3, T4) the second input of the Ver ¬ gleichers (1) form, that the emitter of the (T4 T3) are connected to the third current source (Iv) third and vier¬ th transistor, wherein the emitter of the third or fourth transistor (T3) upstream of a resistor (R3) , and that the collectors of the third and fourth transistor (T3, T4) are connected to the input (E) and the output (A) of a current mirror Ls (Ssp).
10. Elektrischer Schaltkreis nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß die dritte Stromquelle (Iv) derart aufgebaut ist, daß der eine Pol der Referenz¬ spannungsquelle (Uref) mit dem ni chti nverti erenden Eingang eines zweiten Differen-zverstärkers (V2) ^verbunden ist, daß der invertierende Eingang des zweiten Di fferenzverstärkers (V2) mit dem Emitter eines fünften Transistors (T5) und über einen vierten Widerstand (Rref2) mit dem anderen Pol der Referenzspannungsquelle (Uref) verbunden ist, der auf Masse liegt, daß die Basis des fünften Transistors (T5) mit dem Ausgang des zweiten Differenzverstärkers (V2) ver- - „1 ,2 -10. Electrical circuit according to claim 8, characterized in that the third current source (Iv ) is constructed such that the one pole of the reference voltage source (Uref) is connected to the non-inverting input of a second differential amplifier (V2) ^ that the inverting input of the second differential amplifier (V2) is connected to the emitter of a fifth transistor (T5) and via a fourth resistor (Rref2) to the other pole of the reference voltage source (Uref), which is grounded, that the base of the fifth transistor (T5) connected to the output of the second differential amplifier (V2) - "1, 2 -
bunden ist und daß der Kollektor des fünften Transistors (T5) den Ausgang der dritten Stromquelle (Iv) darstellt.is bound and that the collector of the fifth transistor (T5) represents the output of the third current source (Iv).
11. Elektrischer Schaltkreis nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß die dritte Stromquelle (Iv) derart aufgebaut st, daß die Referenzspannungsquelle (Uref) mit dem invertierenden Eingang eines zweiten Diffe¬ renzverstärkers (V2) verbunden ist, daß der ni chti nverti e- rende Eingang des zweiten Differenzverstärkers (V2) mit dem Kollektor eines fünften Transistors (T5) und über ei¬ nen vierten Widerstand (Rref2) mit dem anderen Pol der Re- ferenzspannungsque l Le (Uref) verbunden ist, daß die Basis des fünften Transistors (T5) mit dem Ausgang des zweiten Differenzverstärkers (V2) verbunden ist und daß der Emit¬ ter des fünften Transistors (T5) den Ausgang (Ai) der drit¬ ten Stromquelle (Iv) darstellt.11. Electrical circuit according to claim 8, characterized in that the third current source (Iv) st such that the reference voltage source (Uref) is connected to the inverting input of a second differential amplifier (V2) that the ni chti nverti e- end Input of the second differential amplifier ( V2 ) is connected to the collector of a fifth transistor (T5 ) and via a fourth resistor (Rref2) to the other pole of the reference voltage source (Uref ) that the base of the fifth transistor (T5 ) is connected to the output of the second differential amplifier (V2) and that the emitter of the fifth transistor (T5) represents the output (Ai) of the third current source (Iv).
12. Elektrischer Schaltkreis nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, daß die dritte Stromquelle (Iv) derart aufgebaut ist, daß der eine Pol der Referenz¬ spannungquelle (Uref) mit dem invertierenden Eingang eines zweiten Differenzverstärkers (V2) verbunden ist, dessen ni chtinvertierender Eingang mit dem Kollektor eines fünf¬ ten Transistors (T5) und über einen vierten Widerstand (Rref2) mit dem anderen Pol der Referenzspannungsquelle (Uref) verbunden ist, daß der Ausgang des zweiten Diffe¬ renzverstärkers (V2) mit der Basis des fünften Transistors (T5) und eines sechsten Transistors (T6) verbunden ist, daß der Emitter des fünften Transistors (T5) über einen fünften Widerstand (R5) und der -Emitter des sechsten Tran¬ sistors (T6) über einen sechsten Widerstand "CR6)~ mit einer zweiten Versorgungsspannungsquelle (Ub2) verbunden ist und daß der Kollektor des sechsten Transistors (T6) den Aus¬ gang (Aj) der dritten Stromquelle (Iv) darstellt. 13. Elektrischer Schaltkreis nach einem oder mehreren der vor¬ angehenden Ansprüche, d a d u r c h g e k e n n - z e i c h n e t, daß jeder Stromspannungswandler (Wr, W1, ..., Wn) aus einer Eingangsstufe (Wai), einer Ausgangsstu¬ fe (Wci) und einer zwischen Eingangsstufe (Wai) und Aus¬ gangsstufe (Wci) liegenden Steuerstufe (Wbi) aufgebaut ist.12. Electrical circuit according to claim 8, characterized in that the third current source (Iv) is constructed such that the one pole of the reference voltage source (Uref) is connected to the inverting input of a second differential amplifier (V2), the non-inverting input of which the collector of a fifth transistor (T5) and a fourth resistor (Rref2) is connected to the other pole of the reference voltage source (Uref) such that the output of the second differential amplifier (V2) is connected to the base of the fifth transistor (T5) and a sixth transistor (T6) is connected that the emitter of the fifth transistor (T5) via a fifth resistor (R5) and the emitter of the sixth transistor (T6) via a sixth resistor " CR6) ~ to a second supply voltage source (Ub2 ) is connected and that the collector of the sixth transistor (T6 ) represents the output (Aj) of the third current source ( Iv). 13. Electrical circuit according to one or more of the preceding claims, characterized in that each current-voltage converter (Wr, W1, ..., Wn ) consists of an input stage (Wai), an output stage ( Wci ) and one between the input stage (Wai) and output stage (Wci) lying control stage (Wbi) is constructed.
14. Elektrischer Schaltkreis nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t, daß der erste Ausgang der Ein¬ gangsstufe (Wai) mit der Basis eines siebten Transistors (T7) verbunden ist, dessen Kollektor mit dem ersten Ein¬ gang der Ausgangsstufe (Wci) verbunden ist, daß der zweite Ausgang der Eingangsstufe (Wai) mit der Basis eines achten Transistors (T8) verbunden ist, dessen Kollektor mit dem zweiten Eingang der Ausgangsstufe (Wci) verbunden ist, daß d e miteinander verbundenen Emitter des siebten und achten Transistors (T7, T8) mit dem einen Pol einer steuerbaren Stromquelle (Ibi) verbunden sind und daß der siebte und achte Transistor (T7, T8) sowie die steuerbare Stromquelle (Ibi) die Steuerstufe (Wbi) bilden.14. Electrical circuit according to claim 13, characterized in that the first output of the input stage ( Wai ) is connected to the base of a seventh transistor ( T7 ) , the collector of which is connected to the first input of the output stage (Wci) that the second output of the input stage (Wai) is connected to the base of an eighth transistor (T8), the collector of which is connected to the second input of the output stage (Wci), that the interconnected emitter of the seventh and eighth transistors (T7, T8) one pole of a controllable current source ( Ibi) is connected and that the seventh and eighth transistors (T7, T8) and the controllable current source ( Ibi ) form the control stage (Wbi).
15. ELektrischer Schaltkreis nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t, daß mehrere Steuerstufen (Wbi) zueinander parallel geschaltet sind, daß für jeden Transistor (T71, T72, ... T81, T82, ...) ein Emitterwider¬ stand (R71, R72, ..., R81, R82, ...) vorgesehen ist und daß jede steuerbare Stromquelle (Ibi, Ib2, ...) mittels ei¬ nes steuerbaren Schalters (S1, S2, ...) an die Emitterwi¬ derstände (R71, R72, ..., R81, R82, ...) anschaltbar ist.15. Electrical circuit according to claim 14, characterized in that a plurality of control stages ( Wbi ) are connected in parallel to each other, that for each transistor (T71, T72, ... T81, T82, ...) an emitter resistor (R71, R72, ..., R81, R82, ...) is provided and that each controllable current source (Ibi, Ib2, ...) by means of a controllable switch (S1, S2, ...) to the emitter resistors (R71 , R72, ..., R81, R82, ...) can be switched on.
16. Elektrischer Schaltkreis nach Anspruch 15, d a d u r c h g e k e n n z e i c h n e t, daß die Ströme der steuerba¬ ren Stromquellen (Ib1, Ib2, ... ) gemäß einer Poteπzreihe ur Basis 2 gewählt sind. 17. Elektrischer Schaltkreis nach Anspruch 15 oder 16, d a ¬ d u r c h g e k e n n z e i c h n e t, daß die Flächen der Transistoren (T71, T72, ..., T81, T82, ... ) im Ver¬ hältnis der Ströme der Stromquellen (Ib1, Ib2, ... ) ge¬ staffelt sind. 16. Electrical circuit according to claim 15, characterized in that the currents of the controllable current sources (Ib1, Ib2, ...) are selected according to a Poteπzzeile ur base 2. 17. Electrical circuit according to claim 15 or 16, since ¬ characterized in that the areas of the transistors (T71, T72, ..., T81, T82, ...) in the ratio of the currents of the current sources (Ib1, Ib2,. .. ) are staggered.
EP90910728A 1989-07-27 1990-07-04 Electrical switching circuit Expired - Lifetime EP0484360B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3924804A DE3924804A1 (en) 1989-07-27 1989-07-27 ELECTRICAL CIRCUIT
DE3924804 1989-07-27
PCT/EP1990/001067 WO1991002301A1 (en) 1989-07-27 1990-07-04 Electrical switching circuit

Publications (2)

Publication Number Publication Date
EP0484360A1 true EP0484360A1 (en) 1992-05-13
EP0484360B1 EP0484360B1 (en) 1995-01-04

Family

ID=6385923

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90910728A Expired - Lifetime EP0484360B1 (en) 1989-07-27 1990-07-04 Electrical switching circuit

Country Status (15)

Country Link
US (1) US5245218A (en)
EP (1) EP0484360B1 (en)
JP (1) JP2871850B2 (en)
KR (1) KR0135629B1 (en)
CN (1) CN1043272C (en)
AT (1) ATE116750T1 (en)
AU (1) AU6073890A (en)
DD (1) DD295441A5 (en)
DE (2) DE3924804A1 (en)
FI (1) FI920357A0 (en)
HK (1) HK106397A (en)
HU (1) HU218058B (en)
MY (1) MY107257A (en)
TR (1) TR25653A (en)
WO (1) WO1991002301A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930010834A (en) * 1991-11-25 1993-06-23 프레데릭 얀 스미트 Reference current loop
JP3102396B2 (en) 1997-12-03 2000-10-23 日本電気株式会社 Voltage controlled oscillator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956638A (en) * 1974-12-20 1976-05-11 Hughes Aircraft Company Battery paralleling system
US3986101A (en) * 1975-03-10 1976-10-12 Ncr Corporation Automatic V-I crossover regulator
US4032830A (en) * 1975-07-03 1977-06-28 Burroughs Corporation Modular constant current power supply
CH659156A5 (en) * 1982-11-30 1986-12-31 Hasler Ag Method for the protected supply of a load with a rectified DC voltage
US4618779A (en) * 1984-06-22 1986-10-21 Storage Technology Partners System for parallel power supplies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9102301A1 *

Also Published As

Publication number Publication date
HK106397A (en) 1997-08-22
US5245218A (en) 1993-09-14
EP0484360B1 (en) 1995-01-04
AU6073890A (en) 1991-03-11
KR0135629B1 (en) 1998-05-15
HU218058B (en) 2000-05-28
HU9200206D0 (en) 1992-04-28
HUT60046A (en) 1992-07-28
FI920357A0 (en) 1992-01-27
KR920704210A (en) 1992-12-19
JP2871850B2 (en) 1999-03-17
CN1043272C (en) 1999-05-05
WO1991002301A1 (en) 1991-02-21
DD295441A5 (en) 1991-10-31
ATE116750T1 (en) 1995-01-15
MY107257A (en) 1995-10-31
TR25653A (en) 1993-07-01
CN1049065A (en) 1991-02-06
DE59008203D1 (en) 1995-02-16
DE3924804A1 (en) 1991-01-31
JPH05501180A (en) 1993-03-04

Similar Documents

Publication Publication Date Title
DE69318054T2 (en) Pulse width modulator for class D amplifiers
DE69005755T2 (en) Current measurement circuit.
DE69116641T2 (en) Bandgap reference circuit
DE1901804C3 (en) Stabilized differential amplifier
DE2457753A1 (en) TEMPERATURE COMPENSATED ELECTRONIC POWER SOURCE
EP0721269A2 (en) Method and circuit arrangement for the termination of a line to a CMOS circuit
DE3725339A1 (en) AUTOMATIC ADJUSTMENT FOR ADJUSTING THE TIME CONSTANT OF A FILTER CIRCUIT
DE69909067T2 (en) AMPLIFIERS WITH AMPLIFIER CONTROL, AMPLIFIERS WITH VARIABLE AMPLIFIERS AND AMPLIFIERS WITH AUTOMATIC GAIN CONTROL
DE68914682T2 (en) DIGITAL-ANALOG CONVERTER WITH INVERTING AMPLIFIER BUILT ON THE PLATE WITH UNIT REINFORCEMENT.
DE69528845T2 (en) N-BIT CONVERTER WITH N-1 SIZE AMPLIFIERS AND N-COMPARATORS
DE3877093T2 (en) CONTROLLED PRECISION CURRENT GENERATOR.
EP0499657B1 (en) Integratable shunt regulator
DE10237122B4 (en) Circuit and method for setting the operating point of a BGR circuit
DE2539269C3 (en) Push-pull amplifier
DE2924171C2 (en)
EP0484360A1 (en) Electrical switching circuit.
DE3210661A1 (en) AMPLIFIER
DE69431521T2 (en) Method and circuit arrangement for transistor protection against switching off and voltage regulator using this method
DE69320776T2 (en) Transconductance amplifier
DE4210215C2 (en) Differential amplifier arrangement
DE2340847A1 (en) ANALOG-DIGITAL CONVERTER FOR SIGNALS WITH INCLINED CURVE SECTIONS
DE60216622T2 (en) minimum detector
DE10337285B4 (en) amplifier arrangement
DE4211980C1 (en) Current-voltage converter for measuring appts. - has parallel electronic circuit paths acting as voltage divider and regulated voltage divider with centre tap-offs providing positive and negative output voltage nodes
DE68907700T2 (en) Circuit for controlling the open circuit voltage of a load and difference comparator with such a control circuit.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940407

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950104

Ref country code: NL

Effective date: 19950104

Ref country code: DK

Effective date: 19950104

Ref country code: BE

Effective date: 19950104

REF Corresponds to:

Ref document number: 116750

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59008203

Country of ref document: DE

Date of ref document: 19950216

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950120

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950404

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950731

Ref country code: LI

Effective date: 19950731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20010802

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070730

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090722

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090721

Year of fee payment: 20

Ref country code: GB

Payment date: 20090629

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100704