EP0482635A2 - Electromagnetic inductor with ferrite core for heating electric conducting material - Google Patents
Electromagnetic inductor with ferrite core for heating electric conducting material Download PDFInfo
- Publication number
- EP0482635A2 EP0482635A2 EP91118152A EP91118152A EP0482635A2 EP 0482635 A2 EP0482635 A2 EP 0482635A2 EP 91118152 A EP91118152 A EP 91118152A EP 91118152 A EP91118152 A EP 91118152A EP 0482635 A2 EP0482635 A2 EP 0482635A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- induction
- coil
- enclosure
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/42—Cooling of coils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/14—Tools, e.g. nozzles, rollers, calenders
- H05B6/145—Heated rollers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/365—Coil arrangements using supplementary conductive or ferromagnetic pieces
Definitions
- the present invention relates to an induction heater that uses an open core made of ferric material with a coil of Litz wire through which an excitation current flows to produce a variable magnetic field which is concentrated between the open core poles by means of magnetic flux concentrators made of electrically conductive tubes in close contact with a heat conductive but non-electrically conductive material in order to drain the heat generated in the coil and the core, while a coolant is circulated in the concentrator tubes.
- US Patent 2,785,263 discloses the use of cores made of ferrite. Such a material has a relatively high magnetic permeability and low conductivity and has been found to be an ideal material for use in induction heating stations.
- cores made of ferrite.
- Such a material has a relatively high magnetic permeability and low conductivity and has been found to be an ideal material for use in induction heating stations.
- other problems have arisen as a result of the use of such cores and, more particularly, in order to saturate the poles so that they contribute as much as possible to the density of flux generated in a part arranged between them, it it is necessary to substantially saturate the entire core, this being very inefficient and resulting at high frequencies, in huge heat losses.
- US Patent 4,359,620 attempts to solve this new problem by using a core construction which concentrates a magnetic field with high flux density between its two ends which are separated very little and tapered.
- a periodic voltage is supplied to the core and a capacitor is connected to the excitation core so as to form a resonant circuit which is used for controlling the frequency and the phase of the periodic voltage supplied to the circuit in order to keep it in resonance.
- the object of the present invention is to develop an improved induction heating device for heating ferromagnetic materials at temperatures rising at least up to 300 ° C., this device overcoming the disadvantages of the prior art mentioned above. -above.
- Another object of the present invention is to develop an improved induction heating device for heating ferromagnetic materials to temperatures of at least up to 300 ° C, in which the core is made of ferric material and uses a coil of Litz wire, and in which the improvement resides in magnetic flux concentrator tubes which are positioned around the coil at a short distance from the core while a coolant circulates inside the tubes in order to cool the core and the coil.
- This allows excitation currents to be applied to the coil in a frequency range of 12 to 25 kHz so that the eddy currents in the magnetic field produced can generate 4 to 20 kW of heat in a conductive surface.
- the temperature, frequency and power values are only illustrative and in no way limitative.
- the present invention also aims to develop an improved induction heating device as described above and, in addition, in which the core and the coil are positioned in a material which conducts heat but which does not conduct electricity.
- a material which conducts heat but which does not conduct electricity which is a composite material made of epoxy and powdered copper or aluminum.
- the present invention also aims to develop an improved induction heat device as described above and in which the core takes the form of an E which forms two opposite poles and a central pole between which a magnetic field is generated, around the central pole, the coil being wound with concentrator tubes being positioned around the coil and near the opposite poles in order to increase the magnetic flux generated between the poles, outside on the surface to be heated .
- an advantageous embodiment of the invention provides an induction heating device for heating an electrically conductive and mainly ferromagnetic material at temperatures ranging at least up to 300 ° C.
- the device includes an open core made of ferric material, a coil of Litz wire wrapped around the core, a power source connected to the coil to produce an excitation current in the coil within a range frequency varying between 12 and 25 kHz in order to generate a magnetic field when magnetized.
- Magnetic flux concentrator tubes made of an electrically conductive material are positioned around the coil and near the core in a heat conductive but non-electrically conductive material.
- a coolant circulates in the concentrator tubes to cool the core and the coil.
- An induction zone is defined by the magnetic field generated between the opposite poles of the core and orientable near an electrically conductive surface in order to heat this surface electromagnetically by means of eddy currents generated between the opposite poles of the core and concentrated therebetween by the concentrator tubes.
- FIG. 1 there is generally shown at 10 an induction heating device according to the present invention which is shown here as being spaced a little apart from the surface of a calendering roller 11 d 'a paper machine so as to heat the ferromagnetic material positioned on the outer surface of the calendering roller.
- the heater comprises a ferrite core 12 which has the shape of an E providing opposite arms 13 and 13 'and a central leg 14 around which a coil 15 of Litz wire is wound.
- the coil 15 has terminals 16 to which a controllable power source 17 (see Figure 2) is connected so as to supply an excitation current to the coil in a frequency range from 12 to 25 kHz.
- the improvement of the induction heating device according to the present invention lies in the contribution of magnetic flux concentrator tubes 18 which are positioned around the coil 15 very close to the core 12.
- the concentrator tubes 18 are positioned in a conductive material heat but not electrically conductive 19 and are spaced from the core and the coil.
- One end of the tubes 18 is electrically isolated from the side plates 22a or 22b illustrated in FIG. 1A.
- the material 19 is a composite of an epoxy or a synthetic resin generally, and of copper or aluminum powder which is positioned in the enclosure 20.
- the enclosure 20, as illustrated in FIG. 2, is a rectangular enclosure formed from a powdered ceramic material and fiberglass.
- a layer of aluminum paint 21 is applied to the induction surface of the enclosure which is positioned a short distance from the electromagnetic surface to be heated so as to reduce the heat transfer by external radiation with return to the surface d induction 21 of the enclosure 20.
- a metal shield 22, 22a, and 22b is also positioned in the enclosure 20 and, as illustrated here, against the upper wall and the two side walls of the latter in order to electromagnetically shield the inductor.
- a pressurized water supply 23 is used for the circulation of cooling water through the magnetic flux concentrator tubes 18 so as to cool the core and the coil in the enclosure 20 heated by Joule effect on the surface of the tubes and inside the coil, and heat from the surface of the workpiece.
- This cooling effect allows the application of an excitation current in a high frequency range varying between 12 and 25 kHz, from where the induction heater 10 can generate approximately between 4 and 25 kW of power while the coolant keeps the internal temperature of the enclosure below 60 ° C, these values being non-limiting.
- the concentrator tubes 18 also concentrate the magnetic field produced between the poles 24 and 14.
- the inductance of the core also varies between 40 and 125 ⁇ H depending on the dimensions of the core used and the frequency of the selected source, these values being nonlimiting.
- a typical application of an electromagnetic induction heating device As illustrated here, a plurality of heaters 10 are alternately positioned, offset and side by side along a heating calendering roller 30 of a paper machine (not shown).
- the heaters 10 are spaced apart from the roller 30 as illustrated in FIG. 4 and are stationary with respect to the roller 30. Their specific spacing and their mutual relationship make it possible to obtain a controlled temperature along the width of the roller.
- These heaters 10 can also be supplied with electrical power or parallel power in series alignment or individually.
- FIGS. 3 to 5 relate to an application in the manufacture of paper, it is pointed out that these induction heating stations have a multitude of other applications and they could, for example, be used in other industries for laminating or glazing a sheet-like material.
- the efficiency of this heating device has also been calculated as being in the order of 95% when calculated by the proportion of useful heat generated relative to the electric power used.
- the heating devices according to the present invention can generate approximately 250 kW of heat per meter of length of the electrically conductive material used in the construction of the calendering roller.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Induction Heating (AREA)
Abstract
Description
La présente invention concerne un dispositif de chauffage par induction qui utilise un noyau ouvert fait d'un matériau ferrique muni d'une bobine de fil de Litz dans laquelle circule un courant d'excitation afin de produire un champ magnétique variable qui est concentré entre les pôles du noyau ouvert au moyen de concentrateurs de flux magnétique faits de tubes conducteurs d'électricité en contact rapproché avec un matériau conducteur de chaleur mais non conducteur d'électricité afin de drainer la chaleur générée dans la bobine et le noyau, alors qu'un fluide de refroidissement est circulé dans les tubes concentrateurs.The present invention relates to an induction heater that uses an open core made of ferric material with a coil of Litz wire through which an excitation current flows to produce a variable magnetic field which is concentrated between the open core poles by means of magnetic flux concentrators made of electrically conductive tubes in close contact with a heat conductive but non-electrically conductive material in order to drain the heat generated in the coil and the core, while a coolant is circulated in the concentrator tubes.
Plusieurs types de dispositifs de chauffage par induction à haute fréquence ont été proposés dans l'art antérieur. Le brevet américain 4.359.620 représente un bon sommaire de la technique antérieure en décrivant que l'un des problèmes rencontrés au niveau des nombreux postes de chauffage par induction utilisant des noyaux magnétiques est celui des hautes pertes de chaleur dans leur noyau. Ceci est particulièrement vrai si l'intensité et la fréquence du champ magnétique fluctuant généré sont augmentées suffisamment afin d'être adéquates pour le soudage du métal, par exemple. Cependant, ceci entraîne le problème d'augmentation de la température du noyau, et le noyau se met à fondre. Les noyaux faits de matériaux magnétiques feuilletés qui sont utilisés dans la plupart des transformateurs ont de grandes pertes dues aux courants de Foucault ainsi qu'à l'effet pelliculaire qui en résulte à des fréquences excédant 20 KHz. De plus, la nature conductrice des feuilles du noyau présente un danger réel de choc électrique lorsqu'utilisées dans des postes de chauffage par induction ayant une grande quantité de puissance fournie à leurs bobines d'excitation.Several types of high frequency induction heating devices have been proposed in the prior art. The US patent 4,359,620 represents a good summary of the prior art by describing that one of the problems encountered with many induction heating stations using magnetic cores is that of the high heat losses in their core. This is especially true if the intensity and frequency of the fluctuating magnetic field generated is increased enough to be suitable for welding metal, for example. However, this causes the problem of increasing the core temperature, and the core begins to melt. Cores made of laminated magnetic materials which are used in most transformers have large losses due to eddy currents as well as the resulting film effect at frequencies exceeding 20 KHz. In addition, the conductive nature of the core sheets presents a real danger of electric shock when used in workstations. induction heating having a large amount of power supplied to their excitation coils.
Afin de tenter de réduire ce problème, le brevet américain 2.785.263 divulgue l'utilisation de noyaux faits de ferrite. Un tel matériau possède une perméabilité magnétique relativement élevée et une conductivité faible et s'est avéré comme étant un matériau d'utilisation idéale dans les postes de chauffage par induction. Cependant, d'autres problèmes se sont présentés à la suite de l'utilisation de tels noyaux et, plus particulièrement, afin de saturer les pôles pour qu'ils contribuent au maximum à la densité de flux générée dans une pièce disposée entre eux, il est nécessaire de saturer sensiblement le noyau au complet, ceci étant très inefficace et résultant à hautes fréquences, en d'énormes pertes de chaleur. Le brevet américain 4.359.620 tente de résoudre ce nouveau problème en utilisant une construction de noyau qui concentre un champ magnétique à haute densité de flux entre ses deux extrémités qui sont séparées de très peu et fuselées. Une tension périodique est alimentée au noyau et une capacité est connectée au noyau d'excitation de façon à former un circuit en résonance qui est utilisé pour le contrôle de la fréquence et de la phase de la tension périodique alimentée au circuit afin de le maintenir en résonance. Encore une fois, ce brevet ne s'occupe pas des hautes pertes de chaleur dans le noyau et du problème du noyau et de la bobine qui sont soumis à de hautes températures, restreignant ainsi la grandeur de l'intensité de la densité de flux du champ magnétique généré, ce qui limite l'utilisation du poste de chauffage par induction dû à sa faible résistance à la chaleur et à son manque de constance dans son chauffage.In an attempt to reduce this problem, US Patent 2,785,263 discloses the use of cores made of ferrite. Such a material has a relatively high magnetic permeability and low conductivity and has been found to be an ideal material for use in induction heating stations. However, other problems have arisen as a result of the use of such cores and, more particularly, in order to saturate the poles so that they contribute as much as possible to the density of flux generated in a part arranged between them, it it is necessary to substantially saturate the entire core, this being very inefficient and resulting at high frequencies, in huge heat losses. US Patent 4,359,620 attempts to solve this new problem by using a core construction which concentrates a magnetic field with high flux density between its two ends which are separated very little and tapered. A periodic voltage is supplied to the core and a capacitor is connected to the excitation core so as to form a resonant circuit which is used for controlling the frequency and the phase of the periodic voltage supplied to the circuit in order to keep it in resonance. Again, this patent does not deal with the high heat losses in the core and the problem of the core and the coil which are subjected to high temperatures, thus limiting the magnitude of the intensity of the flux density of the magnetic field generated, which limits the use of the induction heating station due to its low resistance to heat and its lack of constancy in its heating.
La présente invention a pour but de mettre au point un dispositif de chauffage par induction amélioré pour le chauffage de matériaux ferromagnétiques à des températures s'élevant au moins jusqu'à 300°C, ce dispositif surmontant les désavantages de l'art antérieur mentionnés ci-dessus.The object of the present invention is to develop an improved induction heating device for heating ferromagnetic materials at temperatures rising at least up to 300 ° C., this device overcoming the disadvantages of the prior art mentioned above. -above.
La présente invention a aussi pour but de mettre au point un dispositif de chauffage par induction amélioré pour le chauffage de matériaux ferromagnétiques à des températures s'élevant au moins jusqu'à 300°C, dans lequel le noyau est fait d'un matériau ferrique et utilise une bobine de fil de Litz, et dans lequel l'amélioration réside dans des tubes concentrateurs de flux magnétique qui sont positionnés autour de la bobine à faible distance du noyau alors qu un fluide de refroidissement circule à l'intérieur des tubes afin de refroidir le noyau et la bobine. Ceci permet que des courants d'excitation soient appliqués à la bobine dans une gamme de fréquence de 12 à 25 kHz de sorte que les courants de Foucault dans le champ magnétique produit puissent générer de 4 à 20 kW de chaleur dans une surface conductrice d'électricité et principalement ferromagnétique positionnée dans le champ. Les valeurs de température, de fréquence et de puissance ne sont qu'illustratives et en aucun cas limitatives.Another object of the present invention is to develop an improved induction heating device for heating ferromagnetic materials to temperatures of at least up to 300 ° C, in which the core is made of ferric material and uses a coil of Litz wire, and in which the improvement resides in magnetic flux concentrator tubes which are positioned around the coil at a short distance from the core while a coolant circulates inside the tubes in order to cool the core and the coil. This allows excitation currents to be applied to the coil in a frequency range of 12 to 25 kHz so that the eddy currents in the magnetic field produced can generate 4 to 20 kW of heat in a conductive surface. electricity and mainly ferromagnetic positioned in the field. The temperature, frequency and power values are only illustrative and in no way limitative.
La présente invention a également pour but de mettre au point un dispositif de chauffage par induction amélioré tel que décrit ci-dessus et, de plus, dans lequel le noyau et la bobine sont positionnés dans un matériau conducteur de chaleur mais non conducteur d'électricité qui est un matériau composite constitué d'époxy et de cuivre ou d'aluminium en poudre.The present invention also aims to develop an improved induction heating device as described above and, in addition, in which the core and the coil are positioned in a material which conducts heat but which does not conduct electricity. which is a composite material made of epoxy and powdered copper or aluminum.
La présente invention a également pour but de mettre au point un dispositif de chaleur par induction amélioré tel que décrit ci-dessus et dans lequel le noyau prend la forme d'un E qui pratique deux pôles opposés et un pôle central entre lesquels un champ magnétique est généré, autour du pôle central, la bobine étant enroulée avec des tubes concentrateurs étant positionnés autour de la bobine et à proximité des pôles opposés afin d'augmenter le flux magnétique généré entre les pôles, à l'extérieur sur la surface à être chauffée.The present invention also aims to develop an improved induction heat device as described above and in which the core takes the form of an E which forms two opposite poles and a central pole between which a magnetic field is generated, around the central pole, the coil being wound with concentrator tubes being positioned around the coil and near the opposite poles in order to increase the magnetic flux generated between the poles, outside on the surface to be heated .
D'après les buts précédents, une forme de réalisation avantageuse de l'invention fournie un dispositif de chauffage par induction pour chauffer un matériau conducteur d'électricité et principalement ferromagnétique à des températures allant au moins jusqu'à 300°C. Le dispositif comprend un noyau ouvert fait d'un matériau ferrique, une bobine de fil de Litz enroulée autour du noyau, une source de puissance connectée à la bobine pour produire un courant d'excitation dans la bobine à l'intérieur d'une gamme de fréquence variant entre 12 et 25 kHz afin de générer un champ magnétique lorsqu'aimantée. Des tubes concentrateurs de flux magnétique faits d'un matériau conducteur d'électricité sont positionnés autour de la bobine et près du noyau dans un matériau conducteur de chaleur mais non conducteur d'électricité. Un fluide de refroidissement circule dans les tubes concentrateurs afin de refroidir le noyau et la bobine. Une zone d'induction est définie par le champ magnétique généré entre les pôles opposés du noyau et orientable près d'une surface conductrice d'électricité afin de chauffer cette surface de façon électromagnétique au moyen de courants de Foucault générés entre les pôles opposés du noyau et concentrés entre ceux-ci par les tubes concentrateurs.According to the foregoing objects, an advantageous embodiment of the invention provides an induction heating device for heating an electrically conductive and mainly ferromagnetic material at temperatures ranging at least up to 300 ° C. The device includes an open core made of ferric material, a coil of Litz wire wrapped around the core, a power source connected to the coil to produce an excitation current in the coil within a range frequency varying between 12 and 25 kHz in order to generate a magnetic field when magnetized. Magnetic flux concentrator tubes made of an electrically conductive material are positioned around the coil and near the core in a heat conductive but non-electrically conductive material. A coolant circulates in the concentrator tubes to cool the core and the coil. An induction zone is defined by the magnetic field generated between the opposite poles of the core and orientable near an electrically conductive surface in order to heat this surface electromagnetically by means of eddy currents generated between the opposite poles of the core and concentrated therebetween by the concentrator tubes.
Une réalisation préférée de la présente invention sera maintenant décrite en référence aux dessins annexés dans lesquels:
- Les figures 1 et 1A sont des vues en section illustrant la réalisation d'un dispositif de chauffage par induction suivant la présente invention;
- la figure 2 est une vue en perspective illustrant la configuration du dispositif de chauffage par induction de la figure 1;
- la figure 3 est une vue en perspective illustrant l'utilisation du dispositif de chauffage par induction de la présente invention et, sur cette figure, plusieurs de ces dispositifs sont positionnés de façon rapprochée le long d'un rouleau chauffeur de calandrage tel qu'utilisé dans une machine à papier afin de sécher une feuille de papier continue;
- la figure 4 est une vue en bout de la figure 3, et
- la figure 5 est une vue en plan illustrant le positionnement des inducteurs le long du cylindre de chauffage.
- Figures 1 and 1A are sectional views illustrating the embodiment of an induction heating device according to the present invention;
- Figure 2 is a perspective view illustrating the configuration of the induction heater of Figure 1;
- FIG. 3 is a perspective view illustrating the use of the induction heating device of the present invention and, in this figure, several of these devices are positioned close together along a calendering heating roller as used in a paper machine to dry a continuous sheet of paper;
- FIG. 4 is an end view of FIG. 3, and
- Figure 5 is a plan view illustrating the positioning of the inductors along the heating cylinder.
Se référant maintenant à ces dessins, et plus particulièrement à la figure 1, on montre généralement en 10 un dispositif de chauffage par induction suivant la présente invention qui est montré ici comme étant espacé de peu de la surface d'un rouleau de calandrage 11 d'une machine à papier de façon à chauffer le matériau ferromagnétique positionné sur la surface extérieure du rouleau de calandrage. Le dispositif de chauffage comprend un noyau de ferrite 12 qui a la forme d'un E ménageant des bras opposés 13 et 13' et une jambe centrale 14 autour de laquelle une bobine 15 de fil de Litz est enroulée. La bobine 15 a des bornes 16 auxquelles une source de puissance contrôlable 17 (voir figure 2) est connectée de façon à alimenter un courant d'excitation à la bobine dans une gamme de fréquence de 12 à 25 kHz.Referring now to these drawings, and more particularly to FIG. 1, there is generally shown at 10 an induction heating device according to the present invention which is shown here as being spaced a little apart from the surface of a calendering roller 11 d 'a paper machine so as to heat the ferromagnetic material positioned on the outer surface of the calendering roller. The heater comprises a ferrite core 12 which has the shape of an E providing
L'amélioration du dispositif de chauffage par induction suivant la présente invention réside dans la contribution de tubes concentrateurs de flux magnétique 18 qui sont positionnés autour de la bobine 15 de façon très rapprochée du noyau 12. Les tubes concentrateurs 18 sont positionnés dans un matériau conducteur de chaleur mais non conducteur d'électricité 19 et sont espacés du noyau et de la bobine. Une extrémité des tubes 18 est isolée électriquement des plaques de côté 22a ou 22b illustrées dans la figure 1A. Le matériau 19 est un composite d'un époxy ou d'une résine synthétique généralement, et de cuivre ou d'aluminium en poudre qui est positionné dans l'enceinte 20. L'enceinte 20, telle qu'illustrée à la figure 2, est une enceinte rectangulaire formée d'un matériau de céramique en poudre et de fibre de verre. Une couche de peinture d'aluminium 21 est appliquée sur la surface d'induction de l'enceinte qui est positionnée à faible distance de la surface électromagnétique à être chauffée de façon à réduire le transfert de chaleur par radiation externe avec retour à la surface d'induction 21 de l'enceinte 20. Un bouclier en métal 22, 22a, et 22b est également positionné dans l'enceinte 20 et, tel qu'illustré ici, contre le mur supérieur et les deux murs de côté de cette dernière afin de blinder électromagnétiquement l'inducteur.The improvement of the induction heating device according to the present invention lies in the contribution of magnetic
Tel qu'illustré à la figure 2, une alimentation en eau sous pression 23 est utilisée pour la circulation d'eau de refroidissement à travers les tubes concentrateurs de flux magnétique 18 de façon à refroidir le noyau et la bobine dans l'enceinte 20 chauffés par effet Joule à la surface des tubes et à l'intérieur de la bobine, et la chaleur en provenance de la surface de la pièce de travail. Cet effet de refroidissement permet l'application d'un courant d'excitation dans une gamme élevée de fréquence variant entre 12 et 25 kHz, d'où le dispositif de chauffage par induction 10 peut générer approximativement entre 4 et 25 kW de puissance alors que le fluide de refroidissement maintient la température interne de l'enceinte inférieure à 60°C, ces valeurs étant non limitatives. Les tubes concentrateurs 18 concentrent également le champ magnétique produit entre les pôles 24 et 14. L'inductance du noyau varie également entre 40 et 125 µH dépendant des dimensions du noyau utilisé et de la fréquence de la source sélectionnée, ces valeurs étant non limitatives.As illustrated in Figure 2, a pressurized
Maintenant avec référence additionnelle aux figures 3 à 5, il est montré une application typique d'un dispositif de chauffage par induction électromagnétique suivant la présente invention. Tel qu'illustré ici, plusieurs dispositifs de chauffage 10 sont positionnés de façon alternée, décalée et côte-à-côte le long d'un rouleau de calandrage de chauffage 30 d'une machine à papier (non illustrée). Les dispositifs de chauffage 10 sont peu espacés du rouleau 30 tel qu'illustré à la figure 4 et sont stationnaires par rapport au rouleau 30. Leur espacement spécifique et leur relation mutuelle permettent d'obtenir une température contrôlée le long de la largeur du rouleau. Ces dispositifs de chauffage 10 peuvent également être alimentés avec une puissance électrique ou une puissance parallèle dans un alignement en série ou individuellement. On contemple également l'installation de senseurs de température (non illustrés) pour détecter la température le long de la surface du rouleau 30 et leur utilisation pour le contrôle individuel des sources de puissance de façon à varier le courant d'excitation de leur bobine respective afin de contrôler de façon individuelle la chaleur générée par ces inducteurs, de façon à obtenir la disposition requise de la température le long du rouleau de calandrage.Now with additional reference to Figures 3 to 5, there is shown a typical application of an electromagnetic induction heating device according to the present invention. As illustrated here, a plurality of
Bien que les figures 3 à 5 sont relatives à une application dans la fabrication du papier, il est signalé que ces postes de chauffage par induction ont une multitude d'autres applications et ils pourraient, par exemple, être utilisés dans d'autres industries pour le laminage ou le glaçage d'un matériau en forme de feuille. Le rendement de ce dispositif de chauffage a également été calculé comme étant dans l'ordre de 95% lorsque calculé par la proportion de chaleur utile générée par rapport à la puissance électrique utilisée. Par exemple, dans l'application du rouleau de calandrage, les dispositifs de chauffage suivant la présente invention peuvent générer à peu près 250 kW de chaleur par mètre de longueur du matériau conducteur d'électricité utilisé dans la construction du rouleau de calandrage.Although FIGS. 3 to 5 relate to an application in the manufacture of paper, it is pointed out that these induction heating stations have a multitude of other applications and they could, for example, be used in other industries for laminating or glazing a sheet-like material. The efficiency of this heating device has also been calculated as being in the order of 95% when calculated by the proportion of useful heat generated relative to the electric power used. For example, in the application of the calendering roller, the heating devices according to the present invention can generate approximately 250 kW of heat per meter of length of the electrically conductive material used in the construction of the calendering roller.
Il est entendu que la présente invention n étant d'aucune façon limitée aux formes de réalisations décrites ci-dessus et que toutes modifications évidentes apportées à celles-ci demeurent dans le cadre de l'invention, pourvu que ces modifications tombent dans la portée des revendications ci-jointes.It is understood that the present invention is in no way limited to the embodiments described above and that any obvious modifications made to them remain within the scope of the invention, provided that these modifications fall within the scope of the appended claims.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US603150 | 1990-10-25 | ||
US07/603,150 US5101086A (en) | 1990-10-25 | 1990-10-25 | Electromagnetic inductor with ferrite core for heating electrically conducting material |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0482635A2 true EP0482635A2 (en) | 1992-04-29 |
EP0482635A3 EP0482635A3 (en) | 1993-02-03 |
Family
ID=24414287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19910118152 Withdrawn EP0482635A3 (en) | 1990-10-25 | 1991-10-24 | Electromagnetic inductor with ferrite core for heating electric conducting material |
Country Status (3)
Country | Link |
---|---|
US (1) | US5101086A (en) |
EP (1) | EP0482635A3 (en) |
CA (1) | CA2093786A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1768462A3 (en) * | 2003-07-02 | 2007-09-26 | iTherm Technologies LP | Heating systems and methods |
Families Citing this family (113)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3934208C2 (en) * | 1989-10-13 | 1994-02-17 | Kuesters Eduard Maschf | Coil formers for the inductive heating of rolls |
US5847370A (en) * | 1990-06-04 | 1998-12-08 | Nordson Corporation | Can coating and curing system having focused induction heater using thin lamination cores |
US5641422A (en) | 1991-04-05 | 1997-06-24 | The Boeing Company | Thermoplastic welding of organic resin composites using a fixed coil induction heater |
US5728309A (en) | 1991-04-05 | 1998-03-17 | The Boeing Company | Method for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5624594A (en) | 1991-04-05 | 1997-04-29 | The Boeing Company | Fixed coil induction heater for thermoplastic welding |
US5793024A (en) | 1991-04-05 | 1998-08-11 | The Boeing Company | Bonding using induction heating |
US7126096B1 (en) | 1991-04-05 | 2006-10-24 | Th Boeing Company | Resistance welding of thermoplastics in aerospace structure |
US5410132A (en) | 1991-10-15 | 1995-04-25 | The Boeing Company | Superplastic forming using induction heating |
US5808281A (en) | 1991-04-05 | 1998-09-15 | The Boeing Company | Multilayer susceptors for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5645744A (en) | 1991-04-05 | 1997-07-08 | The Boeing Company | Retort for achieving thermal uniformity in induction processing of organic matrix composites or metals |
US5723849A (en) | 1991-04-05 | 1998-03-03 | The Boeing Company | Reinforced susceptor for induction or resistance welding of thermoplastic composites |
US5508496A (en) * | 1991-10-18 | 1996-04-16 | The Boeing Company | Selvaged susceptor for thermoplastic welding by induction heating |
US5500511A (en) * | 1991-10-18 | 1996-03-19 | The Boeing Company | Tailored susceptors for induction welding of thermoplastic |
US5444220A (en) * | 1991-10-18 | 1995-08-22 | The Boeing Company | Asymmetric induction work coil for thermoplastic welding |
JPH05115536A (en) * | 1991-10-25 | 1993-05-14 | Tome Sangyo Kk | Contact lens treating device and contact lens treating vessel used therefor |
US5613505A (en) * | 1992-09-11 | 1997-03-25 | Philip Morris Incorporated | Inductive heating systems for smoking articles |
US5529747A (en) * | 1993-11-10 | 1996-06-25 | Learflux, Inc. | Formable composite magnetic flux concentrator and method of making the concentrator |
US5418069A (en) * | 1993-11-10 | 1995-05-23 | Learman; Thomas J. | Formable composite magnetic flux concentrator and method of making the concentrator |
US5461215A (en) * | 1994-03-17 | 1995-10-24 | Massachusetts Institute Of Technology | Fluid cooled litz coil inductive heater and connector therefor |
US5710412A (en) * | 1994-09-28 | 1998-01-20 | The Boeing Company | Fluid tooling for thermoplastic welding |
US5660669A (en) * | 1994-12-09 | 1997-08-26 | The Boeing Company | Thermoplastic welding |
US5486684A (en) * | 1995-01-03 | 1996-01-23 | The Boeing Company | Multipass induction heating for thermoplastic welding |
US5573613A (en) * | 1995-01-03 | 1996-11-12 | Lunden; C. David | Induction thermometry |
US5584419A (en) * | 1995-05-08 | 1996-12-17 | Lasko; Bernard C. | Magnetically heated susceptor |
US6602810B1 (en) | 1995-06-06 | 2003-08-05 | The Boeing Company | Method for alleviating residual tensile strain in thermoplastic welds |
US5717191A (en) * | 1995-06-06 | 1998-02-10 | The Boeing Company | Structural susceptor for thermoplastic welding |
US5705795A (en) * | 1995-06-06 | 1998-01-06 | The Boeing Company | Gap filling for thermoplastic welds |
US5829716A (en) * | 1995-06-07 | 1998-11-03 | The Boeing Company | Welded aerospace structure using a hybrid metal webbed composite beam |
US5756973A (en) * | 1995-06-07 | 1998-05-26 | The Boeing Company | Barbed susceptor for improviing pulloff strength in welded thermoplastic composite structures |
US5556565A (en) * | 1995-06-07 | 1996-09-17 | The Boeing Company | Method for composite welding using a hybrid metal webbed composite beam |
US5660753A (en) * | 1995-06-16 | 1997-08-26 | Lingnau; David Grant | Apparatus for high frequency induction heating for the removal of coatings from metal surfaces |
US5660754A (en) * | 1995-09-08 | 1997-08-26 | Massachusetts Institute Of Technology | Induction load balancer for parallel heating of multiple parts |
US5760379A (en) * | 1995-10-26 | 1998-06-02 | The Boeing Company | Monitoring the bond line temperature in thermoplastic welds |
US5786575A (en) * | 1995-12-20 | 1998-07-28 | Gas Research Institute | Wrap tool for magnetic field-responsive heat-fusible pipe couplings |
US5916469A (en) * | 1996-06-06 | 1999-06-29 | The Boeing Company | Susceptor integration into reinforced thermoplastic composites |
US5869814A (en) * | 1996-07-29 | 1999-02-09 | The Boeing Company | Post-weld annealing of thermoplastic welds |
US5902935A (en) | 1996-09-03 | 1999-05-11 | Georgeson; Gary E. | Nondestructive evaluation of composite bonds, especially thermoplastic induction welds |
US6747252B2 (en) * | 1996-11-15 | 2004-06-08 | Kenneth J. Herzog | Multiple head induction sealer apparatus and method |
US6412252B1 (en) | 1996-11-15 | 2002-07-02 | Kaps-All Packaging Systems, Inc. | Slotted induction heater |
US6092643A (en) * | 1997-11-07 | 2000-07-25 | Herzog; Kenneth | Method and apparatus for determining stalling of a procession of moving articles |
US6633480B1 (en) | 1997-11-07 | 2003-10-14 | Kenneth J. Herzog | Air-cooled induction foil cap sealer |
US6284089B1 (en) | 1997-12-23 | 2001-09-04 | The Boeing Company | Thermoplastic seam welds |
CA2265297C (en) | 1998-03-31 | 2002-10-29 | Illinois Tool Works Inc. | Method and apparatus for welding |
US6229126B1 (en) | 1998-05-05 | 2001-05-08 | Illinois Tool Works Inc. | Induction heating system with a flexible coil |
GB2325982B (en) * | 1998-05-20 | 1999-08-04 | Valro Mfg Ltd | Portable induction heater |
JP2002527227A (en) | 1998-10-15 | 2002-08-27 | ラスコ,バーナード,シー. | Glue gun control method |
EP1071103B1 (en) * | 1999-07-23 | 2008-10-08 | POWER ONE ITALY S.p.A. | Method for the production of windings for inductive components, and corresponding components thus obtained |
US6255633B1 (en) | 1999-12-28 | 2001-07-03 | Toshiba Tec Kabushiki Kaisha | Fixing device using induction heating |
US6512212B1 (en) | 2000-10-30 | 2003-01-28 | Thermomedics International Inc. | Heater with removable cartridge |
FI109958B (en) * | 2000-12-27 | 2002-10-31 | Metso Paper Automation Oy | Cooled induction heating coil |
US6713735B2 (en) * | 2000-12-29 | 2004-03-30 | Lepel Corp. | Induction foil cap sealer |
US6727483B2 (en) | 2001-08-27 | 2004-04-27 | Illinois Tool Works Inc. | Method and apparatus for delivery of induction heating to a workpiece |
US6713737B1 (en) * | 2001-11-26 | 2004-03-30 | Illinois Tool Works Inc. | System for reducing noise from a thermocouple in an induction heating system |
US8038931B1 (en) | 2001-11-26 | 2011-10-18 | Illinois Tool Works Inc. | On-site induction heating apparatus |
US6956189B1 (en) | 2001-11-26 | 2005-10-18 | Illinois Tool Works Inc. | Alarm and indication system for an on-site induction heating system |
US7015439B1 (en) | 2001-11-26 | 2006-03-21 | Illinois Tool Works Inc. | Method and system for control of on-site induction heating |
US20040084443A1 (en) * | 2002-11-01 | 2004-05-06 | Ulrich Mark A. | Method and apparatus for induction heating of a wound core |
US6911089B2 (en) | 2002-11-01 | 2005-06-28 | Illinois Tool Works Inc. | System and method for coating a work piece |
EP1416772A1 (en) * | 2002-11-04 | 2004-05-06 | Schärer Schweiter Mettler AG | Inductively heated roller |
US7022951B2 (en) * | 2002-11-18 | 2006-04-04 | Comaintel, Inc. | Induction heating work coil |
JP2004206920A (en) * | 2002-12-24 | 2004-07-22 | Canon Inc | Heating device |
US7498549B2 (en) * | 2003-10-24 | 2009-03-03 | Raytheon Company | Selective layer millimeter-wave surface-heating system and method |
US20050092738A1 (en) * | 2003-10-31 | 2005-05-05 | Ring Edmund J. | Inductive heating device including an inductive coupling assembly |
US8803044B2 (en) * | 2003-11-05 | 2014-08-12 | Baxter International Inc. | Dialysis fluid heating systems |
US20050230379A1 (en) * | 2004-04-20 | 2005-10-20 | Vianney Martawibawa | System and method for heating a workpiece during a welding operation |
JP4842946B2 (en) * | 2004-06-10 | 2011-12-21 | エービービー・リミテッド | Method and apparatus for a water-cooled power module in an inductive calendering control actuator system |
US7540316B2 (en) | 2006-08-16 | 2009-06-02 | Itherm Technologies, L.P. | Method for inductive heating and agitation of a material in a channel |
US7723653B2 (en) * | 2006-08-16 | 2010-05-25 | Itherm Technologies, Lp | Method for temperature cycling with inductive heating |
US7449663B2 (en) * | 2006-08-16 | 2008-11-11 | Itherm Technologies, L.P. | Inductive heating apparatus and method |
US7718935B2 (en) * | 2006-08-16 | 2010-05-18 | Itherm Technologies, Lp | Apparatus and method for inductive heating of a material in a channel |
KR101254472B1 (en) * | 2006-08-31 | 2013-04-12 | 개리 앤. 소르티노 | Bond head assembly and system |
US7731689B2 (en) | 2007-02-15 | 2010-06-08 | Baxter International Inc. | Dialysis system having inductive heating |
ES2347723T3 (en) | 2007-09-21 | 2010-11-03 | Soudronic Ag | DEVICE AND PROCEDURE FOR THE INDUCTIVE WARMING OF AN ELECTRICALLY CONDUCTING WORK PIECE. |
EP2100525A1 (en) | 2008-03-14 | 2009-09-16 | Philip Morris Products S.A. | Electrically heated aerosol generating system and method |
EP2110034A1 (en) | 2008-04-17 | 2009-10-21 | Philip Morris Products S.A. | An electrically heated smoking system |
EP2253233A1 (en) | 2009-05-21 | 2010-11-24 | Philip Morris Products S.A. | An electrically heated smoking system |
EP2327318A1 (en) | 2009-11-27 | 2011-06-01 | Philip Morris Products S.A. | An electrically heated smoking system with internal or external heater |
WO2012019925A1 (en) * | 2010-08-09 | 2012-02-16 | Tetra Laval Holdings & Finance S.A. | An inductor for sealing packages |
MX2013003285A (en) * | 2010-09-23 | 2013-05-30 | Radyne Corp | Electric induction heat treatment of longitudinally-oriented workpieces. |
CN102456475A (en) * | 2010-10-19 | 2012-05-16 | 通用电气公司 | Magnetic element |
US10040143B2 (en) | 2012-12-12 | 2018-08-07 | Illinois Tool Works Inc. | Dabbing pulsed welding system and method |
USD719596S1 (en) | 2012-12-20 | 2014-12-16 | Sfs Intec Holding Ag | Induction apparatus |
US10906114B2 (en) | 2012-12-21 | 2021-02-02 | Illinois Tool Works Inc. | System for arc welding with enhanced metal deposition |
US9950383B2 (en) | 2013-02-05 | 2018-04-24 | Illinois Tool Works Inc. | Welding wire preheating system and method |
US10835983B2 (en) | 2013-03-14 | 2020-11-17 | Illinois Tool Works Inc. | Electrode negative pulse welding system and method |
US11045891B2 (en) | 2013-06-13 | 2021-06-29 | Illinois Tool Works Inc. | Systems and methods for anomalous cathode event control |
US10828728B2 (en) | 2013-09-26 | 2020-11-10 | Illinois Tool Works Inc. | Hotwire deposition material processing system and method |
CN103689812A (en) * | 2013-12-30 | 2014-04-02 | 深圳市合元科技有限公司 | Smoke generator and electronic cigarette with same |
US11154946B2 (en) | 2014-06-30 | 2021-10-26 | Illinois Tool Works Inc. | Systems and methods for the control of welding parameters |
US11198189B2 (en) | 2014-09-17 | 2021-12-14 | Illinois Tool Works Inc. | Electrode negative pulse welding system and method |
US11478870B2 (en) | 2014-11-26 | 2022-10-25 | Illinois Tool Works Inc. | Dabbing pulsed welding system and method |
US10189106B2 (en) | 2014-12-11 | 2019-01-29 | Illinois Tool Works Inc. | Reduced energy welding system and method |
US10638554B2 (en) * | 2014-12-23 | 2020-04-28 | Illinois Tool Works Inc. | Systems and methods for interchangeable induction heating systems |
US11370050B2 (en) | 2015-03-31 | 2022-06-28 | Illinois Tool Works Inc. | Controlled short circuit welding system and method |
US11285559B2 (en) | 2015-11-30 | 2022-03-29 | Illinois Tool Works Inc. | Welding system and method for shielded welding wires |
US10610946B2 (en) | 2015-12-07 | 2020-04-07 | Illinois Tool Works, Inc. | Systems and methods for automated root pass welding |
US12194579B2 (en) | 2015-12-10 | 2025-01-14 | Illinois Tool Works Inc. | Systems, methods, and apparatus to preheat welding wire |
US10675699B2 (en) | 2015-12-10 | 2020-06-09 | Illinois Tool Works Inc. | Systems, methods, and apparatus to preheat welding wire |
US10104805B2 (en) | 2016-05-09 | 2018-10-16 | The United States Of America As Represented By The Secretary Of The Army | Self cooling stretchable electrical circuit having a conduit forming an electrical component and containing electrically conductive liquid |
US10766092B2 (en) | 2017-04-18 | 2020-09-08 | Illinois Tool Works Inc. | Systems, methods, and apparatus to provide preheat voltage feedback loss protection |
US10870164B2 (en) | 2017-05-16 | 2020-12-22 | Illinois Tool Works Inc. | Systems, methods, and apparatus to preheat welding wire |
CN111315524A (en) | 2017-06-09 | 2020-06-19 | 伊利诺斯工具制品有限公司 | Welding torch having two contacts and multiple liquid cooled assemblies for conducting current to the contacts |
US11524354B2 (en) | 2017-06-09 | 2022-12-13 | Illinois Tool Works Inc. | Systems, methods, and apparatus to control weld current in a preheating system |
CA3066619C (en) | 2017-06-09 | 2022-07-19 | Illinois Tool Works Inc. | Welding torch with a first contact tip to preheat welding wire and a second contact tip |
CA3066677C (en) | 2017-06-09 | 2023-04-04 | Illinois Tool Works Inc. | Welding assembly for a welding torch, with two contact tips and a cooling body to cool and conduct current |
US11590598B2 (en) | 2017-06-09 | 2023-02-28 | Illinois Tool Works Inc. | Systems, methods, and apparatus to preheat welding wire |
US11020813B2 (en) | 2017-09-13 | 2021-06-01 | Illinois Tool Works Inc. | Systems, methods, and apparatus to reduce cast in a welding wire |
EP3843933A1 (en) | 2018-08-31 | 2021-07-07 | Illinois Tool Works, Inc. | Submerged arc welding systems and submerged arc welding torches to resistively preheat electrode wire |
US11014185B2 (en) | 2018-09-27 | 2021-05-25 | Illinois Tool Works Inc. | Systems, methods, and apparatus for control of wire preheating in welding-type systems |
CN113474113A (en) | 2018-12-19 | 2021-10-01 | 伊利诺斯工具制品有限公司 | Contact tip, wire preheating assembly, contact tip assembly and consumable electrode feed welding-type system |
US12103121B2 (en) | 2019-04-30 | 2024-10-01 | Illinois Tool Works Inc. | Methods and apparatus to control welding power and preheating power |
US11772182B2 (en) | 2019-12-20 | 2023-10-03 | Illinois Tool Works Inc. | Systems and methods for gas control during welding wire pretreatments |
WO2021152716A1 (en) * | 2020-01-29 | 2021-08-05 | Primetals Technologies Japan株式会社 | Rolling machine and method for rolling metal sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB715714A (en) * | 1951-06-22 | 1954-09-22 | Deutsche Edelstahlwerke Ag | Improvements in and relating to induction heating apparatus |
FR2412401A1 (en) * | 1977-11-02 | 1979-07-20 | Kommunarsk Gorno Metallurg | VULCANIZATION DEVICE FOR THE REPAIR OF RUBBER ARTICLES AND IN PARTICULAR ELECTRICAL CABLES |
EP0196264A2 (en) * | 1985-03-27 | 1986-10-01 | Beloit Corporation | Inductor configuraton for eddy current heating in the papermaking process |
GB2226221A (en) * | 1988-12-15 | 1990-06-20 | Blum Gmbh & Co E | Inductively heated apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0159337B2 (en) * | 1983-10-03 | 1996-02-28 | Valmet Oy | Method and device for electromagnetic heating of a roll, in particular of a calender roll, used in the manufacture of paper or of some other web-formed product |
FR2566986B1 (en) * | 1984-06-28 | 1986-09-19 | Electricite De France | ELECTROMAGNETIC INDUCTION DEVICE FOR HEATING METAL ELEMENTS |
US4602140A (en) * | 1984-11-01 | 1986-07-22 | Mangels Industrial S.A. | Induction fluid heater |
GB2205720B (en) * | 1987-06-10 | 1991-01-02 | Electricity Council | Induction heater |
FR2630612B1 (en) * | 1988-04-26 | 1996-05-24 | Siderurgie Fse Inst Rech | DEVICE FOR PROTECTING INDUCER POLES AND INDUCER PROVIDED WITH SUCH DEVICE |
-
1990
- 1990-10-25 US US07/603,150 patent/US5101086A/en not_active Expired - Fee Related
-
1991
- 1991-10-24 CA CA002093786A patent/CA2093786A1/en not_active Abandoned
- 1991-10-24 EP EP19910118152 patent/EP0482635A3/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB715714A (en) * | 1951-06-22 | 1954-09-22 | Deutsche Edelstahlwerke Ag | Improvements in and relating to induction heating apparatus |
FR2412401A1 (en) * | 1977-11-02 | 1979-07-20 | Kommunarsk Gorno Metallurg | VULCANIZATION DEVICE FOR THE REPAIR OF RUBBER ARTICLES AND IN PARTICULAR ELECTRICAL CABLES |
EP0196264A2 (en) * | 1985-03-27 | 1986-10-01 | Beloit Corporation | Inductor configuraton for eddy current heating in the papermaking process |
GB2226221A (en) * | 1988-12-15 | 1990-06-20 | Blum Gmbh & Co E | Inductively heated apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1768462A3 (en) * | 2003-07-02 | 2007-09-26 | iTherm Technologies LP | Heating systems and methods |
US7767941B2 (en) | 2003-07-02 | 2010-08-03 | Valery Kagan | Inductive heating method utilizing high frequency harmonics and intermittent cooling |
Also Published As
Publication number | Publication date |
---|---|
CA2093786A1 (en) | 1992-04-26 |
US5101086A (en) | 1992-03-31 |
EP0482635A3 (en) | 1993-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0482635A2 (en) | Electromagnetic inductor with ferrite core for heating electric conducting material | |
BE1013307A3 (en) | Home cooking induction and adaptive radiation method for producing reduced. | |
CA2620883C (en) | Device for transforming materials using induction heating | |
JP5566286B2 (en) | Method for converting thermal energy into electrical energy | |
US7041944B2 (en) | Apparatus for inductive and resistive heating of an object | |
EP2883006B1 (en) | Device for the induction heating of a water heater and water heater provided with such a device | |
US6847019B2 (en) | Induction heating roller device, heating roller for induction heating roller device, fixing apparatus and image forming apparatus | |
FR2726963A1 (en) | INDUCTION COOKING FIREPLACE | |
AU646466B2 (en) | Electromagnetic device for heating metal elements | |
CN1596558A (en) | Method and apparatus for temperature control of an object | |
FR2979047A1 (en) | PROVITF FOR ADJUSTING THE QUALITY FACTOR OF AN INDUCTION HEATING SYSTEM, IN PARTICULAR AN INDEPENDENT HEATING MOLD | |
EP3030845A1 (en) | Water heater | |
CN101682941B (en) | Method and device for heating tubular or solid parts by induction heating | |
KR20100037112A (en) | Induction burner | |
EP2883005B1 (en) | Assembly composed of a water heater comprising a heater comprising a water volume and of at least one generator for an inductive module for an electric apparatus | |
KR20180123633A (en) | High power capacitor | |
MXPA05003231A (en) | Magnetic heating device. | |
CA1298881C (en) | Thermo-induction hot fluid generator | |
WO2004047494B1 (en) | Induction heating work coil | |
CA1165405A (en) | Induction heating gun | |
FR2536943A1 (en) | Method and device for the induction heating of a ferromagnetic component having axial symmetry and irregular contour. | |
EP0563374A1 (en) | Dual surface heaters | |
RU2804020C2 (en) | Aerosol-producing apparatus and method for operation thereof | |
FR2740645A1 (en) | LITZ-TYPE MULTI-STRANDED INDUCING COIL FOR INDUCTION COOKING | |
JP2004273301A (en) | Induction heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19930726 |
|
17Q | First examination report despatched |
Effective date: 19940923 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19960820 |