EP0480940A1 - Ballistic resistant composite article and method - Google Patents
Ballistic resistant composite article and methodInfo
- Publication number
- EP0480940A1 EP0480940A1 EP19900908866 EP90908866A EP0480940A1 EP 0480940 A1 EP0480940 A1 EP 0480940A1 EP 19900908866 EP19900908866 EP 19900908866 EP 90908866 A EP90908866 A EP 90908866A EP 0480940 A1 EP0480940 A1 EP 0480940A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- networks
- resin
- modulus
- network
- impregnated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/10—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer reinforced with filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/04—Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/08—Impregnating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B38/16—Drying; Softening; Cleaning
- B32B38/164—Drying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41H—ARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
- F41H5/00—Armour; Armour plates
- F41H5/02—Plate construction
- F41H5/04—Plate construction composed of more than one layer
- F41H5/0471—Layered armour containing fibre- or fabric-reinforced layers
- F41H5/0485—Layered armour containing fibre- or fabric-reinforced layers all the layers being only fibre- or fabric-reinforced layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
- B32B2038/0052—Other operations not otherwise provided for
- B32B2038/0076—Curing, vulcanising, cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/54—Yield strength; Tensile strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2571/00—Protective equipment
- B32B2571/02—Protective equipment defensive, e.g. armour plates or anti-ballistic clothing
Definitions
- This invention is an article of manufacture for ballistic end use comprising more than one network of high modulus high strength fibers each network being first impregnated with a high modulus resin which can be cured to a rigid state, dried, then each impregnated, dried but not cured network coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. The plied networks are subsequently cured to form a rigid composite without cooling the mold.
- the method of this invention is a method to manufacture a rigid composite for ballistic end use comprising preparing multiple networks of high modulus high strength fibers, impregnating the networks with a high modulus resin, drying the high modulus resin impregnated into the networks, coating the impregnated networks with a low modulus elastomeric resin, plying the dried coated networks together to form multiple layers of the networks, then curing the high modulus resin so that it becomes rigid and so that the elastomeric resin acts as an adhesive between each layer of networks.
- the curing of the high modulus resin can be after plying the networks or before the coating of the impregnated networks with the elastomeric resin. Preferrably between about 2 and about 400 plies of the networks are plied together.
- This invention in detail is an article of manufacture for ballistic end use comprising more than one network of high modulus high strength fibers each network being first impregnated with a high modulus resin capable of being cured to a rigid state, dried, then each impregnated dried network is coated with a low modulus elastomeric resin, then the networks are plied together so that the low modulus elastomeric resin acts as an adhesive between each of the networks. Preferably the plied networks are subsequently cured to form a rigid composite.
- the preferred plies number betweem about 2 and 400, more preferrably between about 4 and about 80.
- the impregnated networks can be individually cured before being coated with the elastomeric resin.
- the high modulus high strength fiber preferrably has a modulus from about 400,000 psi to about 100 x 10 psi and a strength from 100,000 psi to 1,000,000 psi.
- the high modulus resin has a modulus of between about 100,000 and about 1,000,000 psi and the low modulus elastomeric resin has a modulus from between about 10 psi to about 2,000 psi.
- the high modulus high strength fiber is preferrably selected from the group consisting of high molecular weight polyethylene, aramids, high molecular weight polypropylene, graphite, carbon, metals, alumina polyester, nylon and combinations thereof.
- the most preferred fiber is high molecular weight polyethylene.
- the preferred low modulus elastomeric resin is selected from the group consisting of polybutadiene, polyisoprene, natural rubber, ethylene-propylene copolymers, ethylene-propylenediene terpolymers, polysulfide polymers, polyurethane elastomers, chlorosulfonated polyethylene, polychloroprene, plasticized polyvinylchloride, butadiene acrylonitrile elastomers, poly(isobutylene-co-isoprene) , polyacrylates, polyesters, polyethers, fluoro-elastomers, silicone elastomers, thermoplastic elastomers, copolymers of ethylene and combinations thereof.
- the plastizer for polyvinyl chloride can be diallyl or dioctyl phthalate or other plastizers well known in the art.
- the preferred elastomeric resin is a polyurethane, such as Dispercoll E-585 from Mobay.
- the preferred high modulus resin is selected from the group consisting of phenolics, polyesters, epoxies, vinylesters, rigid polyurethanes, polyimides and mixtures or co-polymers thereof.
- the most preferred high modulus resins are vinylesters.
- the method of this invention is a method to manufacture a rigid composite for ballistic end use comprising preparing a multiple networks of high modulus high strength fibers, impregnating the networks with a high modulus resin, drying the high modulus resin impregnated into the networks, coating the impregnated networks with a low modulus elastomeric resin, plying the dried coated networks together to form multiple layers of the networks and curing the high modulus resin so that it becomes rigid and so that the elastomeric resin acts as an adhesive between each layer of networks.
- the curing of the high modulus resin can be after plying or before coating the networks.
- the preferred number of plies is between about 4 and about 90 plies of the networks plied together.
- ballistic end use is meant not only civilian uses such as bullet-proof vests and mats but particularly the military applications such as helmets and armor or hulls used in aircraft, vehicles, ships and other vessels and similar high impact applications.
- network fibers arranged in configurations of various types.
- the plurality of fibers can be grouped together to form a twisted or untwisted yarn.
- the fibers of yarn may be formed as a felt, knitted or woven (plain, basket, satin and crow feet weaves, etc.) into a network, fabricated into a non-woven fabric, arranged in a parallel array, layered, or formed into a fabric by any of a variety of conventional techniques.
- fiber herein, is meant an elongate body the length dimension of which is much greater than the transverse dimensions of width and thickness. Accordingly, the term fiber includes monofilament, multifilament, ribbon, strip, staple and other forms of chopped or cut fiber and the like having regular or irregular cross-sections.
- a high strength high modulus fiber is a fiber having a tensile modulus of at least 20 grams per denier and tensile strength of at least about 7 grams per denier.
- high modulus resin is meant a resin having a modulus of 100,000 to 1,000,000 psi.
- cured is meant the transition from less rigid to more rigid state as by cross-linking with or without catalyst usually with heat.
- rigid is meant stiff in that the impregnated network has structrual integrity and can stand alone.
- low modulus resin is meant the elastomeric resins having a modulus of less than 2,000 psi.
- adhesive By adhesive is meant that the resin must be compatible with the rigid resin which was impregnated in the network and cannot effect by chemical reaction, by dissolving or otherwise the high modulus resin or its carrier.
- the adhesive must improve adherence between layers and maintain structural integrity of the plies.
- the adhesive may be soft or semi-rigid but it must achieve improved transient deformation and delamination properties.
- transient deformation is meant a test as follows.
- the transient deformation is measured on a soft molding clay kept at 13 mm gap behind the target. After shooting, any deformation more than the gap leaves a per enant dent on the clay. The depth of the dent is then measured by a precise gage. The deformation is calculated by adding the 13 mm and the depth of the dent.
- the second coat alone, the elastomeric resin cannot be used alone because of the need to cool the mold in order to remove the result and composite. This is time consuming and becomes uneconomic on a commercial scale.
- the use of the method and article of this invention provides improved adhesion and yet the increased bonding is not at the detriment of ballistics performance. This is contrary to past experience. In the past whenever adhesion became better, the ballistic performance as determined by the V ⁇ Q data became worse.
- the benefit of this invention over simple composites of the prior art using only elastomeric resin is in manufacturing. There is no need for extensive time to cool the mold to remove the composite.
- the laminate had an areal density of 1.67 psf (pounds per square foot).
- the V 5Q of the laminate was 2010 fps for a .22 cal fsp (fragment simulator projectile).
- the peel strength was 433 g/inch.
- EXAMPLE 2 (Comparative) Twenty-seven layers of prepreg of Example 1 were inserted into a medium size helmet mold and pressed under 180 tons at 240°F for 15 minutes. The finished helmet weighed 2.28 pounds. The V 5Q of the helmet was 2150 fps (feet per second). The transient deformation of the helmet was 29mm when tested with a .30 cal 44 grain fsp at speed of 1560 fps.
- EXAMPLE 3 The same fabric as in example 1 was coated with the same manner as in example 1 and with solution which contained 22.4% vinylester Derakane 8084, 4.47% diallyl phthalate, 0.134% Lupersol 256, 36.53% acetone, and 36.53% ethanol. The resin content of the resulting prepreg was 9.9%. This prepreg was then coated again with an aqueous solution which contained 20% of Dispercoll E-585 solids. The total resin content was 23.4%. A laminate was made under identical conditions as shown in example 1. The weight of the laminate was 1.77 psf. The V ⁇ Q was 2067 fps. The peel strength was 1717 g/inch. Compare Example 1. EXAMPLE 4
- the prepreg made as in example 3 was fabricated into a helmet with identical conditions as shown in example 2.
- the helmet weight was 2.31 pounds.
- the V 5Q was 2349 for a .22 cal 17 grain fsp.
- the transient deformation was 18mm when shot with a .30 cal 44 grain fsp at speed of 1559 fps. Significant improvement in delamination of plies was observed.
- EXAMPLE 5 Comparative
- Kevlar 29 fabric style K29/13 from Knytex (Kevlar 29, 3000 denier, 14 oz/sq. yd., 17 x 17 plain weave) was prepreged with the same resin system as shown in example 1.
- the resin content was 14.4%.
- the 15 layers prepreg were then pressed at 240°F, 20 minutes at 624 psi.
- the laminate had an areal density of 1.63 psf.
- the V 50 of the laminate was 1698 fps.
- the peel strength was 346 g/inch.
- Kevlar fabric was formed into a prepreg and fabricated into laminate as shown in example 3.
- the laminate had an areal density of 1.63 psf.
- the V cn was bu 1727 fps.
- the peel strength was 1480 g/inch.
Landscapes
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Cette invention concerne un procédé pour la fabrication d'un article destiné à un usage balistique, constitué de fibres à module et à résistance élevés, chaque réseau étant d'abord imprégné d'une résine à module élevé et durcissable jusqu'à un état rigide. Le réseau imprégné est séché puis chaque réseau imprégné et séché est revêtu d'une résine élastomère à faible module; ensuite les réseaux sont réunis en nappes de sorte que la résine élastomère à faible module serve d'adhésif entre chacun des réseaux. Les réseaux mis en nappes sont ensuite durcis pour former un composite rigide.This invention relates to a method for manufacturing an article intended for ballistic use, consisting of fibers with high modulus and resistance, each network being first impregnated with a resin with high modulus and hardenable to a rigid state. . The impregnated network is dried and then each impregnated and dried network is coated with a low modulus elastomer resin; then the networks are brought together in layers so that the low modulus elastomeric resin serves as an adhesive between each of the networks. The layered networks are then hardened to form a rigid composite.
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US37556289A | 1989-07-05 | 1989-07-05 | |
US375562 | 1989-07-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0480940A1 true EP0480940A1 (en) | 1992-04-22 |
Family
ID=23481363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19900908866 Withdrawn EP0480940A1 (en) | 1989-07-05 | 1990-05-31 | Ballistic resistant composite article and method |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0480940A1 (en) |
JP (1) | JPH04506486A (en) |
AU (1) | AU5675290A (en) |
CA (1) | CA2020392A1 (en) |
WO (1) | WO1991000181A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1006923A3 (en) * | 1993-03-19 | 1995-01-24 | Belport Belgium Besloten Venno | Armour and working method for its manufacture |
PT1241432E (en) * | 2001-03-15 | 2006-12-29 | Teijin Twaron Gmbh | Penetration-resistant material comprising fabric with high linear density ratio of two sets of threads |
US8695112B2 (en) * | 2006-09-26 | 2014-04-15 | Honeywell International Inc. | Flexible body armor with semi-rigid and flexible component |
US10704866B2 (en) * | 2016-09-15 | 2020-07-07 | Honeywell International Inc. | High kinetic energy absorption with low back face deformation ballistic composites |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3993828A (en) * | 1973-02-16 | 1976-11-23 | Akzona Incorporated | Polyester, fiberglass-reinforced composite laminate |
US4115616A (en) * | 1978-02-09 | 1978-09-19 | The United States Of America As Represented By The Secretary Of The Air Force | Self-sealing fuel line assembly |
US4916000A (en) * | 1987-07-13 | 1990-04-10 | Allied-Signal Inc. | Ballistic-resistant composite article |
-
1990
- 1990-05-31 JP JP2508303A patent/JPH04506486A/en active Pending
- 1990-05-31 EP EP19900908866 patent/EP0480940A1/en not_active Withdrawn
- 1990-05-31 WO PCT/US1990/003035 patent/WO1991000181A1/en not_active Application Discontinuation
- 1990-05-31 AU AU56752/90A patent/AU5675290A/en not_active Abandoned
- 1990-07-04 CA CA002020392A patent/CA2020392A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO9100181A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU5675290A (en) | 1991-01-17 |
WO1991000181A1 (en) | 1991-01-10 |
CA2020392A1 (en) | 1991-01-06 |
JPH04506486A (en) | 1992-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1264411A (en) | Ballistic-resistant composite article | |
CA1240604A (en) | Complex composite article having improved impact resistance | |
EP2121301B1 (en) | Cross-plied composite ballistic articles | |
US4748064A (en) | Ballistic-resistant composite article | |
US5587230A (en) | High strength composite | |
US5789327A (en) | Armor panel | |
EP0197279B1 (en) | Complex composite article having improved impact resistance | |
EP2111128B1 (en) | Protective helmets | |
EP1998954B1 (en) | Ceramic faced ballistic panel construction | |
US4883700A (en) | Composite and article using short length fibers at oblique angles | |
EP1989502B1 (en) | Restrained breast plates, vehicle armored plates and helmets | |
US5690526A (en) | High strength, ballistic resistant composites | |
EP2242984B1 (en) | Helmets for protection against rifle bullets | |
WO2007058679A2 (en) | Composite material for stab, ice pick and armor applications | |
CA2722136A1 (en) | Improved ballistic composites having large denier per filament high performance yarns | |
WO2008054843A2 (en) | Improved ceramic ballistic panel construction | |
KR20150001748A (en) | Spall liners in combination with blast mitigation materials for vehicles | |
EP0340877B1 (en) | Ballistic structure | |
EP0480940A1 (en) | Ballistic resistant composite article and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19911210 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT NL |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: LIN, LEROY, CHI-TSUN Inventor name: CHANG, HEH-WON Inventor name: BHATNAGAR, ASHOK Inventor name: LI, HSIN, LANG |
|
17Q | First examination report despatched |
Effective date: 19920518 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19921201 |