EP0462126B1 - Regulating drive for safety and control valves - Google Patents
Regulating drive for safety and control valves Download PDFInfo
- Publication number
- EP0462126B1 EP0462126B1 EP90903765A EP90903765A EP0462126B1 EP 0462126 B1 EP0462126 B1 EP 0462126B1 EP 90903765 A EP90903765 A EP 90903765A EP 90903765 A EP90903765 A EP 90903765A EP 0462126 B1 EP0462126 B1 EP 0462126B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- spindle
- safety
- pressure
- brake
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000001105 regulatory effect Effects 0.000 title claims abstract 7
- 230000004044 response Effects 0.000 claims abstract description 12
- 230000009471 action Effects 0.000 claims abstract description 9
- 239000007789 gas Substances 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 230000033001 locomotion Effects 0.000 claims description 14
- 238000013461 design Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 230000001960 triggered effect Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000002028 premature Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/141—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
- F01D17/145—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/16—Trip gear
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7758—Pilot or servo controlled
- Y10T137/7761—Electrically actuated valve
Definitions
- the invention relates to an actuator for safety and control valves of safety stations for metering energy flows in the form of gases, vapors or water, in particular in thermal or industrial power plants, according to the preamble of claim 1.
- the object of the invention is to design it in such a way that a safety station with a positive or a negative direction of action can be implemented in principle.
- the security of so-called bypass stations is to be increased, the operating times are to be shortened, the connected loads of the actuators are to be reduced and finally a favorable pricing is to be achieved without loss of functionality.
- FIG. 1 The function of the safety station with its own medium-operated safety function in the positive direction of action is shown in FIG. 1.
- a steam valve with the housing 1 is flown against the throttle body 3 (here, for example, a parabolic throttle body) via the inlet connection 2.
- the steam exerts an axial force on the throttle body 3, the spindle 4 and the spindle nut 5, which is proportional to the effective throttle body cross section and the pressure difference between the inlet connector 2 and the outlet connector Is 6 and acts in the up direction.
- the axial force generated by the own medium (steam) is converted into a torque in the non-self-locking - in contrast to conventional spindle nuts - and rotatably mounted spindle nut 5, which is transmitted to the output shaft journal 8 of the actuator via the spindle nut housing 7, which is firmly connected to the spindle nut 5.
- the torque reaches the planetary gear stage 11, on the one hand, to the non-self-locking worm stage 9, which, in contrast to conventional planetary gears, is braked with the brake device 10 when the pressure is below the safety pressure, and on the other hand to the self-locking worm stage 12 and is compensated there .
- the actuator motor 13 also acts on this self-locking worm stage 12 and, in normal operation — controlled by the control technology — effects the adjustment of the throttle body 3.
- the function of the worm stage 12, the effect of the control motor 13 (also referred to as a drive or servomotor), the torque-dependent control by moving the worm and pressing in the torque spring 14 correspond to the previously proven actuator technology (e.g. Siemens actuators).
- the mechanical coupling of the brake magnets 16 to the brake device 10 in connection with the springs 17 is constructed in such a way that the drop of a brake magnet causes the brake device 10 to be safely vented.
- the axial thrust generated by the internal medium (steam) and acting via the throttle body 3 and the valve spindle 4 is converted into a torque in the non-self-locking spindle nut 5 and sets the spindle nut 5, spindle nut housing 7, output shaft journal 8, planetary gear stage 11 and non-self-locking worm stage 9 in a rotary motion.
- the throttle body 3 and the valve spindle 4 move upward.
- the valve is opened up to the open position.
- the self-actuated opening process (safety stroke) is ended by braking the non-self-locking screw stage 9 via the braking device 10.
- the self-actuated opening process can take place from the firing position and from any intermediate position.
- the self-actuated opening process also takes place when the control motor 13 is actuated simultaneously in the closed direction when the pressure switch 15 is open.
- the compensation takes place via the planetary gear stage 11.
- control motor 13 If the control motor 13 is actuated simultaneously in the open direction (safety direction) when the safety stroke has been triggered, then this actuating movement is additionally superimposed on the self-actuated opening process.
- This causes the pawl 19 of a directional lock RG, which engages in the toothed ratchet wheel or ratchet wheel 10a 'of the braking device 10 and only releases this in the direction of rotation generated by the self-actuated opening process (safety stroke).
- the ratchet wheel 10a ' is rotatably connected to the first brake disc 10a.
- the function of the safety station with its own medium-operated safety function in the negative direction is shown in FIG. 2.
- the steam valve with the housing 1 is flowed through from the inlet port 2a from above via the throttle body 3a (here, for example, a perforated throttle body).
- the steam exerts an axial force on the throttle body 3a, the spindle 4 and the spindle nut 5, which is proportional to the effective throttle body cross section and the pressure difference between the inlet nozzle 2a and the outlet nozzle 6a and acts in the closed direction.
- the steam forces act in the closing direction of the throttle body 3a.
- the safety movement of the throttle body 3a also takes place in this direction, so that now the free-wheel rotation of the directional lock RG takes place in the clockwise direction f4 (in the example according to FIG. 1, the free-wheel rotation takes place in the counter-clockwise direction f3).
- the actuator according to FIG. 2 is constructed like that according to FIG. 1, therefore the same parts are provided with the same reference numerals, and the functional sequence is analogous.
- the mechanical coupling of the brake magnets 16 to the brake device 10 in connection with the springs 17 is constructed in such a way that the drop of a magnet causes the brake device 10 to be ventilated safely.
- the axial thrust generated by the internal medium (steam) and acting via the throttle body 3a and the valve spindle 4 is converted into a torque in the non-self-locking spindle nut 5 and sets the spindle nut 5, spindle nut housing 7, output connector 8, planetary gear stage 11 and non-self-locking worm stage 9 in a rotary movement.
- the throttle body 3a and the valve spindle 4 move downward. The valve is closed until at least one of the switching contacts on the pressure monitors 15 remains open.
- the self-actuated closing process (safety stroke) is ended by braking the non-self-locking screw stage 9 via the braking device 10.
- the self-actuated closing process can from the end position and from any intermediate layer.
- the self-actuated closing process also takes place if, when the pressure switch 15 is open, the control motor 13 is actuated simultaneously in the open direction.
- the compensation takes place via the planetary gear stage 11.
- the exemplary embodiment according to FIG. 3 also relates to a safety station which is suitable for reducing and metering energy flows (gases, water) in process engineering, and at the same time for reliably protecting the system systems from excess pressure, specifically with a self-actuated safety function in the opening direction.
- a safety station which is suitable for reducing and metering energy flows (gases, water) in process engineering, and at the same time for reliably protecting the system systems from excess pressure, specifically with a self-actuated safety function in the opening direction.
- the safety station essentially consists of an operating line and two additional safety lines.
- the safety stroke can be triggered both via the operating line and via each individual safety line.
- the operating line consists of a motorized actuator, a non-self-locking spindle nut and the actuator Throttle body together.
- the two additional, independent, safety lines are arranged between the spindle nut and the actuator of the operating line. They consist of braked, non-self-locking thread steps. In the braked state, the safety lines form a rigid connection between the spindle nut and the actuator of the operating line. In accordance with the direction of flow of the throttle body in the actuator, the safety stroke is actuated by the own medium.
- the motorized actuator is a modification of the proven Siemens two-motor drive with planetary gear.
- the previous point of engagement of the overdrive motor - a self-locking worm stage - is replaced by a non-self-locking worm stage with an electromagnetic braking device on the worm shaft.
- this non-self-locking worm stage remains braked, when the safety function responds, the brake device releases and releases the worm stage for the operating stroke's own-medium-operated safety stroke.
- the torque required to carry out the safety stroke via the operating line is brought to the motorized actuator by the internal medium via the throttle body, the valve spindle, the spindle linkage, the braked safety lines and the non-self-locking spindle nut.
- the safety stroke is carried out via the safety strands by releasing the associated brake devices on the spindle nuts of the non-self-locking thread stages of the safety strands.
- the spindle shafts which are secured against rotation, are pressed into the nuts by the force of their own medium, causing them to rotate when the brake is released, thereby enabling the actuator to be opened safely.
- Both Safety lines work completely independently of each other. To safely open the actuator, it is sufficient to release the brake device on a safety line.
- the operating line BS essentially consists of a motorized actuator, a non-self-locking spindle nut 5 and the actuator 1, 3.
- the two safety lines SSt 1, SSt 2 each consist of a brakeable, non-self-locking screw stage 20a, 23; 20b 23, which are coupled via a suitable spindle linkage 4a, 4b between the spindle nut 5 and the actuator 1, 3.
- a spring element 22 is inserted in the longitudinal axis of the spindle 4 between the safety lever 4a and the housing bridge 4b of the spindle rod assembly.
- a steam valve with the housing 1 is flown against the throttle body 3 (here, for example, a parabolic throttle body) via the inlet connection 2.
- the steam exerts an axial force on the throttle body 3, the spindle 4, the spindle linkage in the form of a safety lever 4a and a housing bridge 4b, the safety spindles 20a and 20b and the spindle nut 5, which is proportional to the effective throttle body cross section and the pressure difference between the inlet connector 2 and is the outlet nozzle 6 and acts in the up direction.
- the self-operated opening process (safety stroke) of the operating line BS can take place from the end position and from any intermediate position.
- the operating medium-operated opening process (safety stroke) of the operating line BS also takes place when the control motor 13 is actuated simultaneously in the closed direction when the pressure switch contact 15a is open.
- the compensation takes place via the planetary gear stage 11.
- two independent safety lines SSt 1, SSt 2, which essentially consist of the non-self-locking safety spindles 20a and 20b with the associated brake magnets 16b and 16c, are connected.
- the safety spindles 20a, 20b are in the extended state (corresponding to the position shown).
- the two safety spindles are braked via the associated safety spindle nuts 23 and the brake magnets 16b and 16c.
- the brake magnets 16b or 16c are de-energized by the pressure monitors 15b or 15c responding, then the rigid connection between the spindle linkages 4a and 4b is released.
- the force of the own medium then pushes the tiltable spindle linkage 4a with the safety spindle 20a or 20b upward through the rotating safety spindle nuts via the first spindle section 4.1.
- the throttle body 3 can always reach the open position as soon as the safety stroke is triggered via a line (operational or safety line). Of course, this also applies when two or three lines are activated at the same time.
- the safety lines can also be checked separately via the hand switches 18b and 18c and the brake magnets 16b and 16c. Here, the check is also possible below the security pressure.
- At least one brake magnet 16a downstream of a pressure monitor 15a is provided, which locks or releases the overdrive device SG, and that at least one additional safety line SSt 1 downstream of a further pressure monitor 15b is provided, which is provided with means 16b, 20a, 4a is provided for moving a first spindle section 4.1 having the throttle body 3 into the open position relative to a spring-elastic (spring 22) coupled to the first spindle section 4.1, which has the non-self-locking spindle drive, when a pressure switch trigger signal is present.
- Two additional safety lines SSt 1, SSt 2 are shown.
- the first spindle section 4.1 is coupled to the second spindle section 4.2 via a compression spring arrangement 22.
- a safety lever 4a is articulated to the end of the first spindle section 4.1 facing away from the throttle body 3, with at least one free end to which an auxiliary spindle 20a, 20b, which runs essentially parallel to the valve spindle 4, is articulated via an elongated hole joint.
- the sub-spindle 20a, 20b includes a non-self-locking sub-spindle drive with at least a first brake disc 24 which is mounted around the spindle nut 23 and a second brake magnet 16b, which normally holds the sub-spindle 20a on its brake disc 24 and, in the event of a trigger signal being supplied by the associated pressure switch 15b Spindle nut 23 for rotation and the secondary spindle 20a for axial movement.
- Safety levers 4a in the form of a rocker are designed with two arms, and an auxiliary spindle 20a, 20b, each with an auxiliary spindle drive, is articulated at its two free ends, the housing 25 of the two auxiliary spindle drives and their associated brake magnets 16b, 16c via a housing bridge 4b and the housing bridge 4b are firmly connected to the second spindle section 4.2 of the valve spindle 4.
- the planetary gear stage is generally designated B in Figures 4 to 6, it has two diametrically opposed planet gears b1 and b2, which mesh on their inner circumference with the sun gear A and mesh their outer circumference with an internal toothing of the ring gear C.
- the latter is part of the overdrive device SG, i.e. if the latter is released by the brake magnet, the output shaft pivot can rotate via the worm drive 9 (FIGS. 1-3) without braking; the throttle body 3 reaches its open position (FIGS. 1 and 3) or its closed position (FIG. 2).
- the table according to FIG. 6 initially shows that in normal operation the sun gear A is driven and the planetary stage B is entrained, whereas the overdrive device SG is braked.
- the internal ring gear of C represents a fixed runway for the planet gears b1, b2.
- an auxiliary closing spring 27, designed as a helical compression spring, is inserted between a collar 28 of the spindle 4 and the holding body 29 fixed to the housing. It has the task of preventing the throttle body 3 from fluttering at low differential pressures between inlet connector 2 and outlet connector 6.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Mechanically-Actuated Valves (AREA)
- Transmission Devices (AREA)
- Lift Valve (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Die Erfindung bezieht sich auf einen Stellantrieb für Sicherheits- und Regelventile von Sicherheitsstationen zur Dosierung von Energieströmen in Form von Gasen, Dämpfen oder Wasser, insbesondere in Wärme- oder Industriekraftwerken, gemäß Oberbegriff des Anspruchs 1.The invention relates to an actuator for safety and control valves of safety stations for metering energy flows in the form of gases, vapors or water, in particular in thermal or industrial power plants, according to the preamble of
In der Verfahrens- und Kraftwerkstechnik müssen Energieströme verschiedenster Art reduziert bzw. dosiert werden. Dies geschieht überwiegend über entsprechende Reduzierventile in Verbindung mit verschiedenartigen Stellantrieben. Gleichzeitig müssen alle Rohrleitungssysteme und Behälter bzw. Komponenten gegen zu hohe Drücke geschützt werden. Diese Aufgaben werden meistens von Sicherheitsventilen der verschiedensten Bauarten übernommen.In process and power plant technology, various types of energy flows must be reduced or dosed. This is mainly done using appropriate reducing valves in connection with various types of actuators. At the same time, all piping systems and tanks or components must be protected against excessive pressures. These tasks are mostly taken over by safety valves of various types.
Sollen dabei von den Sicherheitsventilen die in Strömungsrichtung vor den Sicherheitsventilen liegenden Rohrleitungs- und Behältersysteme vor Überdruck geschützt werden, dann spricht man von Sicherheitsventilen mit positiver Wirkungsrichtung. Dabei müssen die Sicherheitsventile bei Überdruck sicher öffnen. Müssen die in Strömungsrichtung nach den Sicherheitsventilen liegenden Systeme gegen Überdruck geschützt werden, dann spricht man von Sicherheitsventilen mit negativer Wirkungsrichtung. Die Sicherheitsventile müssen hier sicher schließen.If the pipeline and container systems in the flow direction upstream of the safety valves are to be protected from excess pressure by the safety valves, then one speaks of safety valves with a positive direction of action. The safety valves must open safely in the event of overpressure. If the systems downstream of the safety valves have to be protected against excess pressure, then one speaks of safety valves with a negative direction of action. The safety valves must close securely here.
Sicherheitsstationen bzw. die zugehörigen Sicherheitsventile und Stellantriebe sollen beide Aufgaben, nämlich
- definierte Reduzierung bzw. Dosierung der Energieströme
- und Schutz der Anlagensysteme vor Überdrücken
- defined reduction or dosing of energy flows
- and protection of the system systems against overpressures
Ausgehend von einem Stellantrieb der gattungsgemäßen Art, der z.B. durch die Siemens Werbeschrift "Hochdruck- und Niederdruck-Umleitstationen für Kraftwerke mit fossiler Feuerung", Bestell-Nr. A 19 100-E 621-A7-V1 im wesentlichen bekannt ist, liegt der Erfindung die Aufgabe zugrunde, diesen so auszubilden, daß grundsätzlich eine Sicherheitsstation mit positiver oder mit negativer Wirkungsrichtung realisiert werden kann. Insbesondere soll die Sicherheit von sogenannten Bypass-Stationen erhöht werden, die Stellzeiten sollen verkürzt werden, die Anschlußleistungen der Stellantriebe sollen verkleinert und schließlich soll ohne Einbuße an Funktionstüchtigkeit auch eine günstige Preisstellung erreicht werden.Starting from an actuator of the generic type, which e.g. through the Siemens advertising brochure "High-pressure and low-pressure diversion stations for power plants with fossil fuels", order no. A 19 100-E 621-A7-V1 is essentially known, the object of the invention is to design it in such a way that a safety station with a positive or a negative direction of action can be implemented in principle. In particular, the security of so-called bypass stations is to be increased, the operating times are to be shortened, the connected loads of the actuators are to be reduced and finally a favorable pricing is to be achieved without loss of functionality.
Erfindungsgemäß wird die gestellte Aufgabe bei einem Stellantrieb nach dem Oberbegriff des Patentanspruchs 1 durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen sind in den Patentansprüchen 2 bis 16 angegeben.According to the invention the object is achieved in an actuator according to the preamble of
Die mit der Erfindung erzielbaren Vorteile sind vor allem darin zu sehen, daß für den Stellantrieb nun nicht mehr ein gesonderter Schnellgangmotor mit z.B. bis zu 27 kW Leistung verwendet werden muß; der Antrieb der Ventilspindel im Sicherheits-Auslösefall erfolgt vielmehr eigenmediumbetätigt. Es entfallen auch gesonderte Hydraulikantriebe oder druckentlastete Stellglieder, welche stetige Leckverluste aufweisen.The advantages that can be achieved with the invention can be seen primarily in the fact that a separate overdrive motor with e.g. up to 27 kW of power must be used; rather, the valve stem is actuated in the event of a safety trigger. There are also no separate hydraulic drives or pressure-relieved actuators, which have constant leakage losses.
Im folgenden werden anhand der Zeichnung, in welcher drei Ausführungsbeispiele nach der Erfindung dargestellt sind, Aufbau und Funktion dieser Beispiele sowie weitere Merkmale und Vorteile des Erfindungsgegenstandes erläutert. In der Zeichnung zeigen in teils perspektivischer, teils axial geschnittener und teils schematischer Darstellung:
- FIG 1
- einen Stellantrieb für ein Sicherheitsventil mit positiver Wirkungsrichtung, d.h., das Sicherheitsventil öffnet, wenn auf der Zuströmseite des Ventils der Ansprechdruck erreicht wird;
- FIG 2
- in entsprechender Darstellung zu FIG 1 einen Stellantrieb für ein Sicherheitsventil mit negativer Wirkungsrichtung, d.h., das Sicherheitsventil schließt, wenn auf seiner Abströmseite der Ansprechdruck erreicht wird;
- FIG 3
- in entsprechender Darstellung zu FIG 1 und FIG 2 einen Stellantrieb für ein gleichfalls eigenmediumbetätigtes Sicherheitsventil, welches im Prinzip so aufgebaut ist wie dasjenige nach FIG 1, bei dem jedoch zwei zusätzliche Sicherheitsstränge vorgesehen sind;
- FIG 4
- schematisch-vereinfacht ein Planetengetriebe, wie es bei den Stellantrieben nach FIG 1 - 3 Verwendung findet;
- FIG 5
- die Draufsicht auf die Anordnung Hohlrad-Planetenrad-Sonnenrad nach FIG 4 und
- FIG 6
- eine Tabelle zu FIG 4 und 5, aus der sich zusätzliche Hinweise zur Funktion der Schnellgangeinrichtung ergeben.
- FIG. 1
- an actuator for a safety valve with a positive direction of action, ie the safety valve opens when the response pressure is reached on the inflow side of the valve;
- FIG 2
- in a representation corresponding to FIG. 1, an actuator for a safety valve with a negative direction of action, ie the safety valve closes when the response pressure is reached on its outflow side;
- FIG 3
- in a representation corresponding to FIG. 1 and FIG. 2, an actuator for a safety valve which is also operated by the medium and which is in principle constructed like that according to FIG. 1, but in which two additional safety lines are provided;
- FIG 4
- schematically simplified a planetary gear, as is used in the actuators according to FIG 1-3;
- FIG 5
- the top view of the arrangement of the ring gear-planet gear-sun gear according to FIG. 4 and
- FIG 6
- a table for FIG 4 and 5, from which there are additional information on the function of the overdrive device.
Im folgenden werden Aufbau und Funktion der drei Ausführungsbeispiele in der Reihenfolge der Figuren 1 bis 3 und sodann die Figuren 4 bis 6 erläutert.The structure and function of the three exemplary embodiments are explained below in the sequence of FIGS. 1 to 3 and then FIGS. 4 to 6.
Die Funktion der Sicherheitsstation mit eigenmediumbetätigter Sicherheitsfunktion in positiver Wirkungsrichtung zeigt Figur 1. Ein Dampfventil mit dem Gehäuse 1 wird über den Eintrittsstutzen 2 gegen den Drosselkörper 3 (hier z.B. ein Paraboldrosselkörper) angeströmt. Der Dampf übt eine Axialkraft auf den Drosselkörper 3, die Spindel 4 und die Spindelmutter 5 aus, die proportional dem wirksamen Drosselkörperquerschnitt und der Druckdifferenz zwischen dem Eintrittstutzen 2 und dem Austrittsstutzen 6 ist und in Auf-Richtung wirkt.The function of the safety station with its own medium-operated safety function in the positive direction of action is shown in FIG. 1. A steam valve with the
Die vom Eigenmedium (Dampf) erzeugte Axialkraft wird in der nichtselbsthemmenden - im Gegensatz zu herkömmlichen Spindelmuttern - und drehbar gelagerten Spindelmutter 5 in ein Drehmoment umgewandelt, das über das mit der Spindelmutter 5 fest verbundene Spindelmuttergehäuse 7 auf den Abtriebswellenzapfen 8 des Stellantriebs übertragen wird.The axial force generated by the own medium (steam) is converted into a torque in the non-self-locking - in contrast to conventional spindle nuts - and rotatably mounted
Von dem Abtriebswellenzapfen 8 gelangt das Drehmoment über die Planetengetriebestufe 11 einerseits auf die ebenfalls - im Gegensatz zu herkömmlichen Planetengetrieben - nichtselbsthemmende Schneckenstufe 9, die bei Drücken unterhalb des Sicherheitsdruckes mit der Bremsvorrichtung 10 festgebremst ist, und andererseits auf die selbsthemmende Schneckenstufe 12 und wird dort kompensiert.From the
Auf diese selbsthemmende Schneckenstufe 12 wirkt auch der Stellantriebsmotor 13, der im Normalbetrieb - über die Leittechnik angesteuert - die Verstellung des Drosselkörpers 3 bewirkt.The
Die Funktion der Schneckenstufe 12, die Wirkung des Regelmotors 13 (auch als Antriebs- oder Stellmotor bezeichnet), die drehmomentabhängige Absteuerung durch Verschieben der Schnecke und Eindrücken der Drehmomentfeder 14 entsprechen der bisherigen bewährten Stellantriebstechnik (z.B. Siemens Stellantriebe).The function of the worm stage 12, the effect of the control motor 13 (also referred to as a drive or servomotor), the torque-dependent control by moving the worm and pressing in the
Erhöht sich der Druck in dem Eintrittstutzen 2 bzw. in den davorliegenden Systemen über den an den Druckwächtern 15 einer Druckwächteranordnung DA eingestellten Wert, dann öffnen die Schaltkontakte, und die angeschlossenen Bremsmagnete einer Bremsmagnetanordnung EM werden spannungslos und fallen in ihre Ruhelage zurück.If the pressure in the
Die mechanische Kopplung der Bremsmagnete 16 mit der Bremsvorrichtung 10 in Verbindung mit den Federn 17 ist so aufgebaut, daß bereits das Abfallen eines Bremsmagnetes die sichere Lüftung der Bremsvorrichtung 10 bewirkt.The mechanical coupling of the
Mit dem Lüften der Bremsvorrichtung 10 wird die nichtselbsthemmende Schneckenstufe 9 freigegeben.When the
Der vom Eigenmedium (Dampf) erzeugte, über den Drosselkörper 3 und die Ventilspindel 4 wirkende Axialschub wird in der nichtselbsthemmenden Spindelmutter 5 in ein Drehmoment umgewandelt und versetzt Spindelmutter 5, Spindelmuttergehäuse 7, Abtriebswellenzapfen 8, Planetengetriebestufe 11 und nichtselbsthemmende Schneckenstufe 9 in eine Drehbewegung. Entsprechend der Gewindesteigung in der Spindelmutter 5 bewegen sich dabei der Drosselkörper 3 und die Ventilspindel 4 nach oben. Das Ventil wird, solange wenigstens einer der Schaltkontakte an den Druckwächtern 15 geöffnet bleibt, bis zu Aufendlage geöffnet. Bei vorzeitigem Druckabbau und dem hiermit verbundenen Schließen der Kontakte an den Druckwächtern 15 wird durch das Abbremsen der nichtselbsthemmenden Schneckenstufe 9 über die Bremsvorrichtung 10 der eigenmediumbetätigte Öffnungsvorgang (Sicherheitshub) beendet.The axial thrust generated by the internal medium (steam) and acting via the
Es ist auch möglich, über die Handtaste 18 gezielte Teil- oder Vollhubprüfungen unterhalb des Ansprechdruckes der Druckwächter 15 durchzuführen.It is also possible to carry out targeted partial or full stroke tests below the response pressure of the
Der eigenmediumbetätigte Öffnungsvorgang (Sicherheitshub) kann aus der Zuendlage und aus jeder beliebigen Zwischenlage erfolgen.The self-actuated opening process (safety stroke) can take place from the firing position and from any intermediate position.
Bei Ausfall der Versorgungsspannung an den Druckwächtern 15 erfolgt ebenfalls die Freigabe des eigenmediumbetätigten Öffnungsvorgangs (Sicherheitshub).If the supply voltage at the pressure monitors 15 fails, the self-actuated opening process (safety stroke) is also released.
Der eigenmediumbetätigte Öffnungsvorgang (Sicherheitshub) erfolgt auch dann, wenn bei geöffneten Kontakten der Druckwächter 15 der Regelmotor 13 gleichzeitig in Zu-Richtung betätigt wird. Der Ausgleich erfolgt dabei über die Planetengetriebestufe 11.The self-actuated opening process (safety stroke) also takes place when the
Wird der Regelmotor 13 bei ausgelöstem Sicherheitshub gleichzeitig in Auf-Richtung (Sicherheitsrichtung) betätigt, dann wird diese Stellbewegung noch zusätzlich dem eigenmediumbetätigten Öffnungsvorgang überlagert. Dies bewirkt die Klinke 19 eines Richtgesperres RG, die in das gezahnte Klinkenrad bzw. Sperrad 10a' der Bremsvorrichtung 10 eingreift und dieses nur in der vom eigenmediumbetätigten Öffnungsvorgang (Sicherheitshub) erzeugten Drehrichtung freigibt. Das Klinkenrad 10a' ist mit der ersten Bremsscheibe 10a drehfest verbunden.If the
Die Funktion der Sicherheitsstation mit eigenmediumbetätigter Sicherheitsfunktion in negativer Richtung zeigt Figur 2. Das Dampfventil mit dem Gehäuse 1 wird über den Eintrittsstutzen 2a von oben über den Drosselkörper 3a (hier z.B. ein Lochdrosselkörper) angeströmt.The function of the safety station with its own medium-operated safety function in the negative direction is shown in FIG. 2. The steam valve with the
Der Dampf übt eine Axialkraft auf den Drosselkörper 3a, die Spindel 4 und die Spindelmutter 5 aus, die proportional dem wirksamen Drosselkörperquerschnitt und der Druckdifferenz zwischen dem Eintrittsstutzen 2a und dem Austrittsstutzen 6a ist und in Zu-Richtung wirkt. Wie es die Strömungspfeile f2 zeigen, wirken die Dampfkräfte in Schließrichtung des Drosselkörpers 3a. In dieser Richtung erfolgt auch die Sicherheitsbewegung des Drosselkörpers 3a, so daß nun die Freilaufdrehung des Richtgesperres RG in Uhrzeigersinnrichtung f4 erfolgt (im Beispiel nach Figur 1 erfolgt die Freilaufdrehung in Gegenzeigerrichtung f3). Im übrigen ist der Stellantrieb nach Figur 2 so wie derjenige nach Figur 1 aufgebaut, deshalb sind gleiche Teile mit den selben Bezugszeichen versehen, und der Funktionsablauf ist sinngemäß.The steam exerts an axial force on the throttle body 3a, the spindle 4 and the
Erhöht sich der Druck in dem Austrittsstutzen 6a bzw. in den dahinterliegenden Systemen über den an den Druckwächtern 15 eingestellten Wert, dann öffnen die Schaltkontakte 26 und die angeschlossenen Bremsmagnete 16 werden spannungslos und fallen in ihre Ruhelage zurück.If the pressure in the outlet nozzle 6a or in the systems behind it rises above the value set on the pressure monitors 15, then the switching
Die mechanische Kopplung der Bremsmagnete 16 mit der Bremsvorrichtung 10 in Verbindung mit den Federn 17 ist so aufgebaut, daß bereits das Abfallen eines Magnetes die sichere Lüftung der Bremsvorrichtung 10 bewirkt.The mechanical coupling of the
Mit dem Lüften der Bremsvorrichtung 10 wird die nichtselbsthemmende Schneckenstufe 9 freigegeben.When the
Der vom Eigenmedium (Dampf) erzeugte, über den Drosselkörper 3a und die Ventilspindel 4 wirkende Axialschub wird in der nichtselbsthemmenden Spindelmutter 5 in ein Drehmoment umgewandelt und versetzt Spindelmutter 5, Spindelmuttergehäuse 7, Abtriebsstutzen 8, Planetengetriebstufe 11 und nichtselbsthemmende Schneckenstufe 9 in eine Drehbewegung. Entsprechend der Gewindesteigung in der Spindelmutter 5 bewegen sich dabei der Drosselkörper 3a und die Ventilspindel 4 nach unten. Das Ventil wird, solange wenigstens einer der Schaltkontakte an den Druckwächtern 15 geöffnet bleibt, bis zur Zuendlage geschlossen.The axial thrust generated by the internal medium (steam) and acting via the throttle body 3a and the valve spindle 4 is converted into a torque in the non-self-locking
Bei vorzeitigem Druckabbau und dem hiermit verbundenen Schließen der Kontakte an den Druckwächtern 15 wird durch das Abbremsen der nichtselbsthemmenden Schneckenstufe 9 über die Bremsvorrichtung 10 der eigenmediumbetätigte Schließvorgang (Sicherheitshub) beendet.In the event of premature pressure reduction and the associated closing of the contacts on the pressure monitors 15, the self-actuated closing process (safety stroke) is ended by braking the non-self-locking
Es ist auch möglich, über die Handtaster 18 gezielte Teil- oder Vollhubprüfungen unterhalb des Ansprechdrucks der Druckwächter 15 durchzuführen.It is also possible to carry out targeted partial or full stroke tests below the response pressure of the pressure monitors 15 via the hand switches 18.
Der eigenmediumbetätigte Schließvorgang (Sicherheitshub) kann aus der Aufendlage und aus jeder beliebigen Zwischenlage erfolgen.The self-actuated closing process (safety stroke) can from the end position and from any intermediate layer.
Bei Ausfall der Versorgungsspannung an den Druckwächtern 15 erfolgt ebenfalls die Freigabe des eigenmediumbetätigten Schließvorgangs (Sicherheitshub).If the supply voltage at the pressure switches 15 fails, the self-actuated closing process (safety stroke) is also released.
Der eigenmediumbetätigte Schließvorgang (Sicherheitshub) erfolgt auch dann, wenn bei geöffneten Kontakten der Druckwächter 15 der Regelmotor 13 gleichzeitig in Auf-Richtung betätigt wird. Der Ausgleich erfolgt dabei über die Planetengetriebestufe 11.The self-actuated closing process (safety stroke) also takes place if, when the
Wird der Regelmotor 13 bei ausgelöstem Sicherheitshub gleichzeitig in Zu-Richtung (Sicherheitsrichtung) betätigt, dann wird diese Stellbewegung noch zusätzlich dem eigenmediumbetätigten Schließvorgang überlagert. Dies bewirkt die Klinke 19a, die in das gezahnte Klinkenrad bzw. Sperrad 10a der Bremsvorrichtung 10 eingreift und dieses nur in der vom eigenmediumbetätigten Öffnungsvorgang (Sicherheitshub) erzeugten Drehrichtung freigibt. Bei der Sicherheitsfunktion in negativer Richtung ist diese Drehrichtung entgegengesetzt zu derjenigen bei der Sicherheitsfunktion in positiver Richtung.If the
Das Ausführungsbeispiel nach Figur 3 bezieht sich ebenfalls auf eine Sicherheitsstation, die geeignet ist, in der Verfahrenstechnik Energieströme (Gase, Wasser) zu reduzieren, zu dosieren und gleichzeitig die Anlagensysteme sicher vor Überdruck zu schützen, und zwar mit eigenmediumbetätigter Sicherheitsfunktion in Öffnungsrichtung.The exemplary embodiment according to FIG. 3 also relates to a safety station which is suitable for reducing and metering energy flows (gases, water) in process engineering, and at the same time for reliably protecting the system systems from excess pressure, specifically with a self-actuated safety function in the opening direction.
Die Sicherheitsstation besteht im wesentlichen aus einem Betriebsstrang und zwei zusätzlichen Sicherheitssträngen. Die Auslösung des Sicherheitshubes kann sowohl über den Betriebsstrang als auch über jeden einzelnen Sicherheitsstrang bewirkt werden. Der Betriebsstrang setzt sich aus einem motorischen Stellantrieb, einer nichtselbsthemmenden Spindelmutter und dem Stellorgan mit Drosselkörper zusammen.The safety station essentially consists of an operating line and two additional safety lines. The safety stroke can be triggered both via the operating line and via each individual safety line. The operating line consists of a motorized actuator, a non-self-locking spindle nut and the actuator Throttle body together.
Die beiden zusätzlichen, voneinander unabhängigen, Sicherheitsstränge sind zwischen der Spindelmutter und dem Stellorgan des Betriebsstranges angeordnet. Sie bestehen aus festbremsbaren, nichtselbsthemmenden Gewindestufen. Im festgebremsten Zustand bilden die Sicherheitsstränge eine starre Verbindung zwischen der Spindelmutter und dem Stellorgan des Betriebsstranges. Entsprechend der Anströmrichtung des Drosselkörpers im Stellorgan erfolgt die Betätigung des Sicherheitshubes durch das Eigenmedium.The two additional, independent, safety lines are arranged between the spindle nut and the actuator of the operating line. They consist of braked, non-self-locking thread steps. In the braked state, the safety lines form a rigid connection between the spindle nut and the actuator of the operating line. In accordance with the direction of flow of the throttle body in the actuator, the safety stroke is actuated by the own medium.
Der motorische Stellantrieb ist eine Abwandlung des bewährten Siemens Zweimotorenantriebes mit Planetengetriebe. Die bisherige Eingriffsstelle des Schnellgangmotors - eine selbsthemmende Schneckenstufe - wird durch eine nichtselbsthemmende Schneckenstufe mit einer elektromagnetischen Bremsvorrichtung an der Schneckenwelle ersetzt. Während des Normalbetriebs bleibt diese nichtselbsthemmende Schneckenstufe festgebremst, beim Ansprechen der Sicherheitsfunktion lüftet die Bremsvorrichtung und gibt die Schneckenstufe zum eigenmediumbetätigten Sicherheitshub des Betriebsstrangs frei.The motorized actuator is a modification of the proven Siemens two-motor drive with planetary gear. The previous point of engagement of the overdrive motor - a self-locking worm stage - is replaced by a non-self-locking worm stage with an electromagnetic braking device on the worm shaft. During normal operation, this non-self-locking worm stage remains braked, when the safety function responds, the brake device releases and releases the worm stage for the operating stroke's own-medium-operated safety stroke.
Das zum Ausführen des Sicherheitshubes über den Betriebsstrang erforderliche Drehmoment wird durch dar Eigenmedium über den Drosselkörper, die Ventilspindel, das Spindelgestänge, die festgebremsten Sicherheitsstränge und die nichtselbsthemmende Spindelmutter auf den motorischen Stellantrieb gebracht.The torque required to carry out the safety stroke via the operating line is brought to the motorized actuator by the internal medium via the throttle body, the valve spindle, the spindle linkage, the braked safety lines and the non-self-locking spindle nut.
Die Ausführung des Sicherheitshubs über die Sicherheitsstränge erfolgt durch Lüften der zugehörigen Bremsvorrichtungen an den Spindelmuttern der nichtselbsthemmenden Gewindestufen der Sicherheitsstränge. Die verdrehsicher befestigten Spindelwellen werden durch die Kraft des Eigenmediums in die Muttern gedrückt, versetzen diese bei gelüfteter Bremse in eine Drehbewegung und ermöglichen dadurch das sichere Öffnen des Stellorgans. Beide Sicherheitsstränge arbeiten dabei vollkommen unabhängig voneinander. Zum sicheren Öffnen des Stellorgans genügt bereits das Lüften der Bremsvorrichtung an einem Sicherheitsstrang.The safety stroke is carried out via the safety strands by releasing the associated brake devices on the spindle nuts of the non-self-locking thread stages of the safety strands. The spindle shafts, which are secured against rotation, are pressed into the nuts by the force of their own medium, causing them to rotate when the brake is released, thereby enabling the actuator to be opened safely. Both Safety lines work completely independently of each other. To safely open the actuator, it is sufficient to release the brake device on a safety line.
Der Betriebsstrang BS besteht im wesentlichen aus einem motorischen Stellantrieb, einer nichtselbsthemmenden Spindelmutter 5 und dem Stellorgan 1, 3.The operating line BS essentially consists of a motorized actuator, a non-self-locking
Die beiden Sicherheitsstränge SSt 1, SSt 2 bestehen aus je einer festbremsbaren, nichtselbsthemmenden Schneckenstufe 20a, 23; 20b 23, die angekoppelt über ein geeignetes Spindelgestänge 4a, 4b zwischen der Spindelmutter 5 und dem Stellorgan 1, 3 angeordnet sind. In der Längsachse der Spindel 4 ist zwischen dem Sicherheitshebel 4a und der Gehäusebrücke 4b des Spindelgestänges ein Federelement 22 eingefügt.The two
Ein Dampfventil mit dem Gehäuse 1 wird über den Eintrittsstutzen 2 gegen den Drosselkörper 3 (hier z.B. ein Paraboldrosselkörper) angeströmt. Der Dampf übt eine Axialkraft auf den Drosselkörper 3, die Spindel 4, die Spindelgestänge in Form eines Sicherheitshebels 4a und einer Gehäusebrücke 4b, die Sicherheitsspindeln 20a und 20b und die Spindelmutter 5 aus, die proportional dem wirksamen Drosselkörperquerschnitt und der Druckdifferenz zwischen dem Eintrittstutzen 2 und dem Austrittsstutzen 6 ist und in Auf-Richtung wirkt.A steam valve with the
Die vom Eigenmedium (Dampf) erzeugte Axialkraft wird in der nichtselbsthemmenden und drehbar gelagerten Spindelmutter 5 in ein Drehmoment umgewandelt, und auch die weiteren Erläuterungen zum ersten Ausführungsbeispiel nach Figur 1 in den Absätzen 2 bis 6 der Seite 4 gelten für dieses Ausführungsbeispiel.The axial force generated by the own medium (steam) is converted into a torque in the non-self-locking and rotatably mounted
Mit dem Lüften der Bremsvorrichtung wird die nichtselbsthemmende Schneckenstufe 9 freigegeben.When the brake device is released, the non-self-locking
Der vom Eigenmedium (Dampf) erzeugte, über den Drosselkörper 3, die Ventilspindel 4, das Spindelgestänge 4a und 4b mit den Sicherheitsspindeln 20a und 20b wirkende Axialschub wird in der nichtselbsthemmenden Spindelmutter 5 in ein Drehmoment umgewandelt und versetzt Spindelmutter 5, Spindelmuttergehäuse 7, Abtriebswellenzapfen 8, nichtselbsthemmende Schneckenstufe 9 und Planetenstufe 11 in eine Drehbewegung. Entsprechend der Gewindesteigung in der Spindelmutter 5 bewegen sich dabei der Drosselkörper 3, die Ventilspindel 4 und das Spindelgestänge 4a und 4b mit den Sicherheitsspindeln 20a und 20b nach oben. Das Ventil wird, wenn der Schaltkontakt des Druckwächters 15a so lange geöffnet bleibt, bis zur Aufendlage geöffnet.The generated by the own medium (steam), via the
Bei vorzeitigem Druckabbau und dem hiermit verbundenen Schließen des Druckwächterkontaktes 15a wird durch das Abbremsen der nichtselbsthemmenden Schneckenstufe 9 über die Bremsvorrichtung 10 der eigenmediumbetätigte Öffnungsvorgang des Betriebsstranges BS (Sicherheitshub) beendet.In the event of premature pressure reduction and the associated closing of the
Es ist auch möglich, über den Handtaster 18a gezielte Teil- oder Vollhubprüfungen unterhalb des Ansprechdruckes des Druckwächters 15a durchzuführen.It is also possible to carry out targeted partial or full stroke tests below the response pressure of the
Der eigenmediumbetätigte Öffnungsvorgang (Sicherheitshub) des Betriebsstrangs BS kann aus der Zuendlage und aus jeder beliebigen Zwischenlage erfolgen.The self-operated opening process (safety stroke) of the operating line BS can take place from the end position and from any intermediate position.
Bei Ausfall der Versorgungsspannung an dem Druckwächter 15a erfolgt ebenfalls die Freigabe des eigenmediumbetätigten Öffnungsvorgangs (Sicherheitshub) über den Betriebsstrang BS.If the supply voltage at the
Der eigenmediumbetätigte Öffnungsvorgang (Sicherheitshub) des Betriebsstrangs BS erfolgt auch dann, wenn bei geöffnetem Druckwächterkontakt 15a der Regelmotor 13 gleichzeitig in Zu-Richtung betätigt wird. Der Ausgleich erfolgt dabei über die Planetengetriebestufe 11.The operating medium-operated opening process (safety stroke) of the operating line BS also takes place when the
Wird der Regelmotor 13 bei ausgelöstem Sicherheitshub des Betriebsstrangs gleichzeitig in Auf-Richtung (Sicherheitsrichtung) betätigt, dann wird diese Stellbewegung noch zusätzlich dem eigenmediumbetätigten Öffnungsvorgang überlagert. Dies bewirkt die Klinke 19 des Richtgesperrs RS, die in das gezahnte Klinkenrad bzw. Sperrad 10a' der Bremsvorrichtung 10 eingreift und dieses nur in der vom eigenmediumbetätigten Öffnungsvorgang (Sicherheitshub) erzeugten Drehrichtung freigibt. Die gleiche Wirkung kann auch mit einem Freilauf erzielt werden (anstatt Klinke 19 und Sperrad 10a').If the
Zusätzlich zum Betriebsstrang BS sind noch zwei unabhängige Sicherheitsstränge SSt 1, SSt 2, die im wesentlichen aus den nichtselbsthemmenden Sicherheitsspindeln 20a und 20b mit den zugehörigen Bremsmagneten 16b und 16c bestehen, verbunden.In addition to the operating line BS, two independent
Im normalen Betriebszustand befinden sich die Sicherheitsspindeln 20a, 20b im ausgefahrenen Zustand (entsprechend der gezeichneten Stellung). Gleichzeitig sind die beiden Sicherheitsspindeln über die zugehörigen Sicherheitsspindelmuttern 23 und den Bremsmagneten 16b bzw. 16c festgebremst. Dadurch besteht eine starre Verbindung zwischen dem Spindelgestänge 4a und 4b und damit auch zwischen einem ersten und einem zweiten Spindelabschnitt 4.1, 4.2. Werden aber durch Ansprechen der Druckwächter 15b oder 15c die Bremsmagnete 16b oder 16c spannungslos, dann wird die starre Verbindung zwischen dem Spindelgestänge 4a und 4b aufgehoben. Die Kraft des Eigenmediums schiebt dann über den ersten Spindelabschnitt 4.1 das kippbar gelagerte Spindelgestänge 4a mit der Sicherheitsspindel 20a oder 20b durch die sich drehende Sicherheitsspindelmuttern nach oben.In the normal operating state, the
Der Drosselkörper 3 kann immer die Aufendlage erreichen, sobald über einen Strang (Betriebs- oder Sicherheitsstrang) der Sicherheitshub ausgelöst wird. Dies gilt natürlich auch beim gleichzeitigen Ansprechen von zwei oder drei Strängen.The
Die Sicherheitsstränge sind ebenfalls über die Handtaster 18b und 18c, sowie die Bremsmagnete 16b und 16c getrennt prüfbar. Hier ist die Prüfung ebenfalls unterhalb des Sicherheitsdrucks möglich.The safety lines can also be checked separately via the hand switches 18b and 18c and the
Aus Figur 3 erkennt man, daß wenigstens ein einem Druckwächter 15a nachgeschalteter Bremsmagnet 16a vorgesehen ist, welcher die Schnellgangeinrichtung SG arretiert oder freigibt, und daß wenigstens ein einem weiteren Druckwächter 15b über eine Signalleitung nachgeschalteter zusätzlicher Sicherheitsstrang SSt 1 vorgesehen ist, welcher mit Mitteln 16b, 20a, 4a zum Verlagern eines den Drosselkörper 3 aufweisenden ersten Spindelabschnitts 4.1 in die Öffnungsstellung relativ zu einem federelastisch (Feder 22) mit dem ersten Spindelabschnitt 4.1 gekuppelten zweiten Spindelabschnitt 4.2, der den nichtselbsthemmenden Spindeltrieb aufweist, versehen ist, wenn ein Druckwächter-Auslösesignal ansteht. Dargestellt sind zwei zustätzliche Sicherheitsstränge SSt 1, SSt 2. Der erste Spindelabschnitt 4.1 ist mit dem zweiten Spindelabschnitf 4.2 über eine Druckfeder-Anordnung 22 gekoppelt. An das dem Drosselkörper 3 abgewandte Ende des ersten Spindelabschnitts 4.1 ist ein Sicherheitshebel 4a angelenkt, mit wenigstens einem freien Ende, an welches eine im wesentlichen parallel zur Ventilspindel 4 verlaufende Nebenspindel 20a, 20b über ein Langloch-Gelenk angelenkt ist. Zu der Nebenspindel 20a, 20b gehört ein nichtselbsthemmender Nebenspindeltrieb mit wenigstens einer ersten mit der Spindelmutter 23 umlaufend gelagerten Bremsscheibe 24 und ein zweiter Bremsmagnet 16b, welcher normalerweise die Nebenspindel 20a an ihrer Bremsscheibe 24 festhält und im Falle der Zuführung eines Auslösesignals vom zugehörigen Druckwächter 15b die Spindelmutter 23 zur Drehung und die Nebenspindel 20a zur Axialbewegung freigibt. Das Gehäuse 25 von Nebenspindeltrieb und zweitem Bremsmagnet 16b ist mit dem zweiten Spindelabschnitt 4.2 starr gekoppelt und mit diesem längsverschieblich gelagert. Entsprechendes gilt für den zweiten Sicherheitsstrang SSt 2. Deshalb ist bevorzugt der Sicherheitshebel 4a nach Art einer Wippe zweiarmig ausgebildet und an seine beiden freien Enden sind je eine Nebenspindel 20a, 20b mit je einem Nebenspindeltrieb angelenkt, wobei die Gehäuse 25 der beiden Nebenspindeltriebe und ihre zugehörigen Bremsmagnete 16b, 16c über eine Gehäusebrücke 4b miteinander und die Gehäusebrücke 4b mit dem zweiten Spindelabschnitt 4.2 der Ventilspindel 4 fest verbunden sind.From FIG. 3 it can be seen that at least one
Die Planetengetriebestufe ist in den Figuren 4 bis 6 generell mit B bezeichnet, sie weist zwei diametral einander gegenüberliegende Planetenräder b1 und b2 auf, die an ihrem inneren Umfang mit dem Sonnenrad A kämmen und ihrem Außenumfang mit einer Innenverzahnung des Hohlrades C kämmen. Letzteres gehört zur Schnellgangeinrichtung SG, d.h., wenn letztere vom Bremsmagneten freigegeben ist, kann die Drehung des Abtriebswellenzapfens über den Schneckentrieb 9 (Figuren 1 - 3) ungebremst erfolgen; der Drosselkörper 3 gelangt in seine Öffnungsstellung (Figur 1 bzw. 3) oder in seine Schließstellung (Figur 2).The planetary gear stage is generally designated B in Figures 4 to 6, it has two diametrically opposed planet gears b1 and b2, which mesh on their inner circumference with the sun gear A and mesh their outer circumference with an internal toothing of the ring gear C. The latter is part of the overdrive device SG, i.e. if the latter is released by the brake magnet, the output shaft pivot can rotate via the worm drive 9 (FIGS. 1-3) without braking; the
Die Tabelle nach Figur 6 zeigt zunächst, daß im Regelbetrieb das Sonnenrad A angetrieben wird und die Planetenstufe B mitnimmt, wogegen die Schnellgangeinrichtung SG festgebremst ist. Dabei stellt der Innenzahnkranz von C eine feste Rollbahn für die Planetenräder b1, b2 dar.The table according to FIG. 6 initially shows that in normal operation the sun gear A is driven and the planetary stage B is entrained, whereas the overdrive device SG is braked. The internal ring gear of C represents a fixed runway for the planet gears b1, b2.
Erfolgt nun ein Signal "Ansprechdruck erreicht" durch einen der Druckwächter, so wird der entsprechende Bremsmagnet gelüftet, d.h., die Schnellgangeinrichtung SG wird freigegeben, vgl. die rechte Spalte der Tabelle nach Figur 6. Die vom Abtriebswellenzapfen angetriebene Planetengetriebestufe nimmt über den Schneckentrieb die Welle der Schnellgangeinrichtung SG mit, wobei es gleichgültg ist, ob das Sonnenrad A von der Regeleinrichtung bewegt wird oder nicht. In diesem Betriebsfall (Ansprechen der Sicherheitseinrichtung) stellt das Sonnenrad A eine Rollbahn für die Planetenräder b1, b2 dar, die entweder feststeht (wenn kein Regelbefehl vorliegt) oder sich selbst bewegt.If a "response pressure reached" signal is now issued by one of the pressure monitors, the corresponding brake magnet is released, ie the overdrive device SG is released, cf. the right-hand column of the table according to FIG. 6. The planetary gear stage driven by the output shaft journal takes along the shaft of the overdrive device SG via the worm drive, it being indifferent whether the sun gear A is moved by the control device or not. In this operating case (activation of the safety device), the sun gear A a runway for the planet gears b1, b2, which is either fixed (if there is no control command) or moving itself.
Die Druckfeder-Anordnung 22 im Beispiel nach Figur 3 hat insbesondere folgende Aufgaben:
- a) Dämpfung der Bewegung des
Drosselkörpers 3, vor allem bei hohen Dampfdrücken des Dampfes, so daß der Drosselkörper 3 nicht aufdas Gehäuse 1 "aufschlagen" kann. Dies ist bei den relativ hohen Dampfkräften von 10 t bis 20 t von Bedeutung; - b) Verstellung des Spindelabschnitts 4.2 des Betriebsstranges BS in die Auf-Endlage, wenn einer oder beide Sicherheitsstränge SSt 1,
SSt 2 vor dem Betriebsstrang BS ansprechen sollten, und - c) Rückstellung
der Sicherheitsstränge SSt 1,SSt 2, in ihre dargestellte Ausgangsposition.
- a) damping the movement of the
throttle body 3, especially at high steam pressures of the steam, so that thethrottle body 3 cannot "hit" thehousing 1. This is important for the relatively high steam forces of 10 t to 20 t; - b) adjustment of the spindle section 4.2 of the operating line BS into the open-end position if one or both of the
safety lines SSt 1,SSt 2 should respond before the operating line BS, and - c) Resetting the safety strands SSt 1,
SSt 2, in their starting position shown.
Zu Figur 1 ist noch nachzutragen, daß dort eine Hilfsschließfeder 27, ausgebildet als Schraubendruckfeder, zwischen einem Bund 28 der Spindel 4 und dem gehäusefesten Haltekörper 29 eingefügt ist. Sie hat die Aufgabe, bei geringen Differenzdrücken zwischen Eintrittsstutzen 2 und Austrittsstutzen 6 ein Flattern des Drosselkörpers 3 zu verhindern.It must also be added to FIG. 1 that an auxiliary closing spring 27, designed as a helical compression spring, is inserted between a collar 28 of the spindle 4 and the holding
Claims (16)
- Servo drive for safety and regulating valves of safety stations for metering energy flows in the form of gases, steam or water, in particular in thermal or industrial power plants, the safety valve having at least one restrictor body (3, 3a) which is adjustable relative to a valve seat and, when a response pressure which reaches or exceeds a permissible pressure on the inflow or outflow side of the safety valve occurs, opens or closes the restrictor cross-section through which the working medium flows, comprising- a spindle drive (4, 5, 7, 8) for the restrictor body (3, 3a) and- a planetary gear stage (11), coupled to the spindle drive (4, 5, 7, 8), for the superimposable introduction of a first drive torque from a regulating drive having a regulating motor (13) and of a second drive torque via a rapid-travel mechanism (SG) to rapidly open or close the valve when the response pressure is reached or exceeded,
characterized in that the drive force for the safety movement of the restrictor body (3, 3a) is derived from the working-medium pressure difference acting on the restrictor body, and in that to this end- the spindle drive (4, 5, 7) is constructed so as to be non-self-locking and- the rapid-travel mechanism (SG) is also coupled via a non-self-locking gear unit (9) to the planetary gear stage (11) and has at least one shaft (9a) normally securely braked by a releasable brake device (10), the brake device (10), when the response pressure occurs, releasing the rapid-travel mechanism (SG) to perform the safety movement of the restrictor body (3, 3a) into its required position by means of the inherent medium. - Servo drive according to Claim 1, characterized in that the spindle drive (4, 5, 7, 8) for the restrictor body (3, 3a) has a spindle nut (5), rotatably mounted on a valve spindle (4), and a spindle-nut housing (7), rotatably mounting but axially fixing the spindle nut (5), and furthermore an output-shaft journal (8) on the spindle-nut housing (7) for converting a rotation of the output-shaft journal (8) via spindle-nut housing (7) and spindle nut (5) into an axial thrust of spindle (4) and restrictor body (3, 3a) or vice versa.
- Servo drive according to Claim 1 or 2, characterized in that the planetary gear stage (11) is connected to the output-shaft journal (8) and its planet gears (b1, b2) on the one hand mesh with the outer periphery of a sun gear (A), which can be moved by the regulating drive (13), and on the other hand mesh with the inner periphery of a ring gear (C) which is coupled to the rapid-travel mechanism (SG).
- Servo drive according to any of Claims 1 to 3, characterized in that the rapid-travel mechanism (SG) is coupled to the planetary gear stage (11) via a non-self-locking worm drive (9).
- Servo drive according to any of Claims 1 to 4, characterized in that the shaft (9a) of the rapid-travel mechanism (SG) can be securely braked by at least one brake device (10), in that the braking engagement of the brake device (10) is releasable in a remotely actuated manner when the response pressure occurs, and in that the shaft (9a) is coupled to a free-wheel mechanism (RG) which permits rotation of the shaft (9a) only in a direction of rotation corresponding to the safety movement of the restrictor body.
- Servo drive according to Claim 5, characterized in that the shaft (9a) of the rapid-travel mechanism (SG) has at least one brake device (10) having a first brake disc (10a), sitting securely on the shaft (9a) and rotating with the same, and a second brake disc (10b) normally in braking engagement with the first brake disc (10a) and mounted so as to be axially displaceable but non-rotatable, which second brake disc (10b) is mounted in such a way that it can be moved into and out of braking engagement, and in that, furthermore, a directional locking mechanism (RG) is allocated to the shaft (9a), which directional locking mechanism (RG), in the not securely braked state of the shaft (9a), permits the latter to rotate only in a direction of rotation which corresponds to the safety movement of the restrictor body (3, 3a).
- Servo drive according to Claim 5 or 6, characterized by at least one ratchet wheel (10a'), sitting securely on the shaft (9a) of the rapid-travel mechanism (SG), and at least one pawl (19, 19a) engaging in a spring-loaded manner into the ratchet tooth system of the ratchet wheel (10a') and pivotably mounted about a pawl axis parallel to the shaft axis.
- Servo drive according to any of Claims 1 to 7, characterized in that, to monitor the actual pressure and to trip the brake device (10) when the response pressure is reached, a pressure-monitoring arrangement (DA) is connected in a pressure-transmitting manner to a working-medium pipeline (2b) of the safety valve, and in that the tripping signals produced by the pressure monitors (15) can be supplied to an electromagnet arrangement (EM) which normally holds the brake device (10) for the shaft (9a) of the rapid-travel mechanism (SG) in braking engagement and lifts the brake device (10) when the tripping signals are supplied.
- Servo drive according to Claim 8, characterized by at least two pressure monitors (15; 15a, 15b, 15c) and at least two brake magnets (16; 16a, 16b, 16c) of the electromagnetic arrangement (EM), of which each brake magnet is in each case connected downstream from one of the pressure monitors, and in that at least two brake magnets (16), to control the second brake disc (10b), are coupled to the latter via a common transmission member (21) in such a way that the brake disc (10b) is lifted when at least one brake magnet responds or when at least one tripping signal from the pressure monitors (15; 15a, 15b, 15c) is present.
- Servo drive according to Claim 9, characterized in that, in a three-channel arrangement having one pressure monitor/brake magnet pair each per channel, a one-of-three tripping action of the brake magnets (16; 16a, 16b, 16c) by the pressure monitors (15; 15a, 15b, 15c) and a one-of-three tripping action of the second brake disc (10b) by the brake magnets is provided.
- Servo drive according to any of Claims 1 to 10, characterized in that the associated safety valve is designed as an opening valve for protection against excess pressure in the components or pipelines (2b) connected to its inflow side, and accordingly the permitted direction of rotation of the rapid-travel mechanism (SG) corresponds to the valve opening direction (f1).
- Servo drive according to any of Claims 1 to 10, characterized in that the associated safety valve is designed as a closing valve for protection against excess pressure in the components or pipelines (2c) connected to its outflow side, and accordingly the permitted direction of rotation of the rapid-travel mechanism (SG) corresponds to the valve closing direction (f2).
- Servo drive according to any of Claims 1 to 8 and 11, characterized in that at least one brake magnet (16a) connected downstream from a pressure monitor (15a) is provided, which brake magnet (16a) locks or releases the rapid-travel mechanism (SG), and in that at least one additional safety leg (SSt 1) connected downstream from a further pressure monitor (15b) via a signal line is provided, which additional safety leg (SSt 1) has means (16b, 20a, 4a) for displacing a first spindle section (4.1), having the restrictor body (3), into the open position relative to a second spindle section (4.2), coupled in a flexible manner (spring 22) to the first spindle section (4.1) and having the non-self-locking spindle drive, when a pressure-monitor tripping signal is present.
- Servo drive according to Claim 13, characterized in that the first spindle section (4.1) is coupled to the second spindle section (4.2) via a compression-spring arrangement (22), and in that a safety lever (4a) is linked to the end of the first spindle section (4.1) remote from the restrictor body (3), which safety lever (4a) has at least one free end to which a secondary spindle (20a, 20b) running essentially parallel to the valve spindle (4) is linked via a slot joint, and in that a non-self-locking secondary spindle drive belongs to the secondary spindle (20a, 20b) which non-self-locking secondary spindle drive has at least one first brake disc (24), mounted so as to rotate with the spindle nut (23), and a second brake magnet (16b) which normally holds the secondary spindle (20a) in place on its brake disc (24) and, in the event of a tripping signal being supplied from the associated pressure monitor (15b), releases the spindle nut (23) for rotation and the secondary spindle (20a) for axial movement.
- Servo drive according to Claim 14, characterized in that a housing (25) of secondary spindle drive and second brake magnet (16b) is rigidly coupled to the second spindle section (4.2) and is mounted together with the latter in a longitudinally displaceable manner.
- Servo drive according to Claim 15, characterized in that the safety lever (4a) is of two-arm design like a rocker, and one secondary spindle (20a, 20b) each, having one secondary spindle drive each, is linked to its two free ends, the housings (25) of the two secondary spindle drives and their associated brake magnets (16b, 16c) being connected to one another via a housing bridge (4b), and the housing bridge (4b) being firmly connected to the second spindle section (4.2) of the valve spindle (4).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3907289A DE3907289A1 (en) | 1989-03-07 | 1989-03-07 | ACTUATOR FOR SAFETY VALVES |
DE3907289 | 1989-03-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0462126A1 EP0462126A1 (en) | 1991-12-27 |
EP0462126B1 true EP0462126B1 (en) | 1993-11-10 |
Family
ID=6375717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90903765A Expired - Lifetime EP0462126B1 (en) | 1989-03-07 | 1990-03-06 | Regulating drive for safety and control valves |
Country Status (8)
Country | Link |
---|---|
US (1) | US5152316A (en) |
EP (1) | EP0462126B1 (en) |
JP (1) | JPH04503988A (en) |
KR (1) | KR920701613A (en) |
CN (1) | CN1023148C (en) |
AU (1) | AU631406B2 (en) |
DE (2) | DE3907289A1 (en) |
WO (1) | WO1990010783A1 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5735456A (en) * | 1994-09-07 | 1998-04-07 | The Steam-O-Stat Company | Universal retrofit valve actuator and system |
US5806553A (en) * | 1995-07-17 | 1998-09-15 | Sidwell; Herbert R. | Fluid pressure control and relief apparatus |
DE19652583C1 (en) * | 1996-12-17 | 1997-11-20 | Holter Gmbh & Co | Electric actuator drive for valve |
RU2241866C2 (en) * | 2000-03-21 | 2004-12-10 | Вейнберг Вениамин Яковлевич | Automatic control device |
RU2178842C1 (en) * | 2001-01-09 | 2002-01-27 | Саяпин Вадим Васильевич | Pneumatic drive, jet motor (versions) and electropneumatic control unit |
RU2201537C1 (en) * | 2002-04-23 | 2003-03-27 | Общество с ограниченной ответственностью "АРМ ГАРАНТ" | Fluid-motor pneumatic actuator |
DE20311032U1 (en) * | 2003-07-17 | 2004-11-25 | Cooper Cameron Corp., Houston | driving device |
US7287541B2 (en) * | 2004-01-16 | 2007-10-30 | Battelle Energy Alliance, Llc | Method, apparatus and system for controlling fluid flow |
US20060278836A1 (en) * | 2005-06-14 | 2006-12-14 | Vincent Raymond A | Valve mechanism for a plumbing device |
US9163479B2 (en) * | 2007-08-03 | 2015-10-20 | Baker Hughes Incorporated | Flapper operating system without a flow tube |
US7703532B2 (en) * | 2007-09-17 | 2010-04-27 | Baker Hughes Incorporated | Tubing retrievable injection valve |
CA2688212C (en) * | 2008-04-18 | 2014-12-09 | F.W. Oventrop Gmbh & Co. Kg | Valve assembly for regulating the flow rate or differential pressure |
DE102009053829A1 (en) * | 2009-11-18 | 2011-05-19 | Mahle International Gmbh | Actuator and use |
JP5863362B2 (en) * | 2011-09-28 | 2016-02-16 | 三菱重工コンプレッサ株式会社 | Steam turbine |
US20130245840A1 (en) * | 2012-03-16 | 2013-09-19 | Gerard S. Lazzara | Modulated Reset Relief Valve |
CN102679523A (en) * | 2012-06-06 | 2012-09-19 | 上海华东电脑系统工程有限公司 | Dynamic airflow adjusting air valve with gear structure |
CN102678993A (en) * | 2012-06-06 | 2012-09-19 | 上海华东电脑系统工程有限公司 | Dynamic airflow adjusting air valve |
US9958083B1 (en) * | 2016-10-27 | 2018-05-01 | National Enviornmental Products, Ltd. | Force limited valve actuator and method therefor |
DE202020102558U1 (en) | 2020-05-06 | 2021-08-09 | Karl Morgenbesser | Setting device for systems with flowing fluid as well as systems with setting device |
DE202020102557U1 (en) | 2020-05-06 | 2021-08-09 | Karl Morgenbesser | Setting device for systems with flowing fluid as well as systems with setting device |
CN112856226B (en) * | 2021-01-12 | 2022-01-14 | 佛冈鼎立气体有限公司 | Gas cylinder valve capable of realizing intelligent control |
CN113057015B (en) * | 2021-03-23 | 2022-02-11 | 中国水产科学研究院渔业机械仪器研究所 | Breed raft frame lifting rope trip gear |
US12345349B2 (en) * | 2021-03-29 | 2025-07-01 | Austin Verissimo | Retrofitted flood irrigation valve actuating apparatus |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1927509C3 (en) * | 1969-05-30 | 1975-02-13 | Bochumer Maschinenfabrik Arthur Schneider, 4630 Bochum | Steam pressure reducing valve and steam cooling valve with quick release device |
-
1989
- 1989-03-07 DE DE3907289A patent/DE3907289A1/en not_active Withdrawn
-
1990
- 1990-03-06 WO PCT/DE1990/000160 patent/WO1990010783A1/en active IP Right Grant
- 1990-03-06 JP JP2503884A patent/JPH04503988A/en active Pending
- 1990-03-06 DE DE90903765T patent/DE59003479D1/en not_active Expired - Fee Related
- 1990-03-06 KR KR1019910701006A patent/KR920701613A/en not_active Withdrawn
- 1990-03-06 AU AU51695/90A patent/AU631406B2/en not_active Ceased
- 1990-03-06 EP EP90903765A patent/EP0462126B1/en not_active Expired - Lifetime
- 1990-03-07 CN CN90102135A patent/CN1023148C/en not_active Expired - Fee Related
-
1991
- 1991-09-09 US US07/757,045 patent/US5152316A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR920701613A (en) | 1992-08-12 |
EP0462126A1 (en) | 1991-12-27 |
DE3907289A1 (en) | 1990-09-13 |
DE59003479D1 (en) | 1993-12-16 |
US5152316A (en) | 1992-10-06 |
AU631406B2 (en) | 1992-11-26 |
JPH04503988A (en) | 1992-07-16 |
CN1023148C (en) | 1993-12-15 |
CN1048094A (en) | 1990-12-26 |
AU5169590A (en) | 1990-10-09 |
WO1990010783A1 (en) | 1990-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0462126B1 (en) | Regulating drive for safety and control valves | |
DE3142583C2 (en) | Actuator | |
EP1084357B1 (en) | Dual-safety valve | |
DE1916876A1 (en) | Combined shut-off and control valve | |
EP0928388B1 (en) | Turbine valve | |
EP1111227B1 (en) | Exhaust gas recirculation valve | |
DE2558959B1 (en) | HYDRAULIC ACTUATOR FOR VALVES | |
DE2842736C3 (en) | Clutch-operated sound barrier for pressure medium-operated gearboxes, in particular for motor vehicles | |
DE102017115191A1 (en) | Valve, in particular servo valve | |
DE3239046C2 (en) | ||
WO2019137795A1 (en) | Valve drive with snap function | |
DE69807234T2 (en) | ROTATING VALVE ACTUATOR WITH HIGH-LOW-HIGH TORQUE | |
DE102012020067A1 (en) | Actuator for process stream valve for controlling vapor supply for turbine in power plant region, has spindle drivable through drive shaft, and clutches making spindle to be in operative engagement at certain stroke with shaft | |
EP0462130B1 (en) | Reducing station with safety operation in the negative direction | |
WO2009052954A2 (en) | Vacuum brake force booster and method for the adjustment thereof | |
DE102008010571B4 (en) | Electromotive driven valve | |
CH627239A5 (en) | Device for controlling shut-off and reversing valves acted upon by internal medium | |
EP1649202B1 (en) | Pressure release device for application in pressurised systems in power stations | |
DE2812484A1 (en) | SAFETY SHUT-OFF VALVE | |
DE1923543B2 (en) | Interrupter valve for pneumatic systems with several consumers | |
DE19944808C1 (en) | Pressure relief and pressure relief valve for air brake systems of motor vehicles | |
DE19505333C2 (en) | Hydraulic drive | |
DE102010041704A1 (en) | Regulating valve for controlling flow volume inside pipeline, is arranged in pipeline rotatable around rotational axis and corresponding to its rotational position decontrols flow cross-section inside pipeline | |
EP0983442B1 (en) | Manually operated emergency control actuation device | |
EP0866761B1 (en) | Power steering gear intended in particular for motor vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI SE |
|
17Q | First examination report despatched |
Effective date: 19930426 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 59003479 Country of ref document: DE Date of ref document: 19931216 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 90903765.7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970224 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19970321 Year of fee payment: 8 Ref country code: FR Payment date: 19970321 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970521 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970620 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980307 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980331 Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980331 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980306 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90903765.7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050306 |