[go: up one dir, main page]

EP0461006A1 - Method and apparatus for bending tubes - Google Patents

Method and apparatus for bending tubes Download PDF

Info

Publication number
EP0461006A1
EP0461006A1 EP91401393A EP91401393A EP0461006A1 EP 0461006 A1 EP0461006 A1 EP 0461006A1 EP 91401393 A EP91401393 A EP 91401393A EP 91401393 A EP91401393 A EP 91401393A EP 0461006 A1 EP0461006 A1 EP 0461006A1
Authority
EP
European Patent Office
Prior art keywords
bending
shoe
pipe
angle
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91401393A
Other languages
German (de)
French (fr)
Other versions
EP0461006B1 (en
Inventor
Paul Sanseau
Pierre Vidal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Direction General pour lArmement DGA
Etat Francais
Original Assignee
Direction General pour lArmement DGA
Etat Francais
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Direction General pour lArmement DGA, Etat Francais filed Critical Direction General pour lArmement DGA
Publication of EP0461006A1 publication Critical patent/EP0461006A1/en
Application granted granted Critical
Publication of EP0461006B1 publication Critical patent/EP0461006B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/14Bending rods, profiles, or tubes combined with measuring of bends or lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/02Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment

Definitions

  • the present invention relates to a device for bending pipes. More specifically, the invention relates to shoes for bending pipes and to the method of using the shoe according to the invention.
  • a bending shoe mounted on a bender To bend a pipe with a bending angle ⁇ , a bending shoe mounted on a bender is used.
  • Such shoes have the shape of cylinders, the base surface of which is a circle and the lateral surface of which has a groove, the cross section of which is a semicircle with a diameter equal to the outside diameter of the pipe to be bent.
  • the permanent bending which it is desired to obtain will be denoted ⁇ and the over-bending, that is to say the additional angle whose pipe must be turned around the shoe to obtain the permanent bending ⁇ , will be denoted ⁇ .
  • the bending of a pipe is the angle formed by the neutral fibers of two consecutive straight parts of a pipe, the neutral fiber itself being the geometric location of the centers of the straight sections of the pipe. .
  • the bending radius is the radius of the arc of circumference of the neutral fiber between two consecutive straight parts.
  • the curve described by the neutral fiber between two straight parts may not be a circumference, in this case the mean radius R of bending will be defined by the ratio S / ⁇ in which S is the length of the curve between two straight parts, and ⁇ the bending.
  • S the length of the curve between two straight parts
  • the bending.
  • FIGS. 1 and 2 The state of the art as just described is illustrated in FIGS. 1 and 2.
  • Figure 1 we see a circular shoe 1 on which by means of a jaw 2 is applied the pipe 3.
  • the latter is wound by means of the jaw 2 of an angle ( ⁇ + ⁇ ) 4 equal to the angle 5 that the neutral fiber segments 6 located on either side of the hanger do between them.
  • FIG. 1 illustrates the first phase of pipe forming
  • the second phase will consist in advancing the pipe by a length ⁇ L, possibly turning it on itself, to achieve a bend and then to perform the following bending with possible change of shoe if the desired bending angle for the next hanger requires a shoe of different radius.
  • Figure 2 illustrates the new position of the pipe at the end of phase 2 we essentially see the pipe 3 and its neutral fiber 6 comprising two segments on either side of the hanger, due to the elastic deformation these two segments form between them an angle 7 in principle equal to ⁇ if the overcut ⁇ has been well chosen.
  • the object of the invention is to remedy the aforementioned drawbacks on the one hand by a bending shoe whose mean bending radius is continuously variable and, on the other hand, by a method of using said shoe making it possible to produce bends for which the necessary overbends are better appreciated.
  • a shoe having this periphery therefore offers the possibility of obtaining average radii of curvature for bending the pipes, which are continuously variable between two limits included in the interval between R1 and R2.
  • P0 being fixed P1 is a function of the coefficient k.
  • the length of MoM1 is for an angle ⁇ given a function of Po, k, and also of ⁇ o which determines the point of the spiral from which one begins to bend.
  • the length of MoM1 is only a function of ⁇ 0. It is therefore advisable to ensure during the fixing of P0 and k that equation (2) will always have a solution in ⁇ 0 such that the corresponding point Mo is indeed on a point of the curve 8 that is to say that we need a solution 0 ⁇ 0 ⁇ 2 ⁇ .
  • the coefficient k is small because the necessary spiral taking into account the usual values of the over-bending is close to a circle. Under these conditions we can use the first degree of the limited development of the expression e x , e x ⁇ 1 + x.
  • ⁇ M is the bending start angle for the maximum bending ⁇ M.
  • ⁇ m is the bending start angle for minimum bending, therefore corresponding to radii of curvature of the small shoe.
  • the bore 10 is conventionally intended for adaptation on a bender.
  • the opposite faces 11 and 12 have angular graduations which are not shown.
  • the values in cm of the vector radius of the spiral 8 are indicated below for values of ⁇ from 0 to 350 ° in steps of 10 °.
  • the values of the vector radius corresponding to the bottom of the groove are deduced from the first by subtraction of 1.5 cm.
  • the hose is wound on the shoe from the angle ⁇ 1, to the angle ⁇ 1 + ⁇ 1 + ⁇ 1.
  • the neutral fiber of the pipe has turned well from the angle ⁇ 1 + ⁇ 1, since the spiral has the property that the tangent at a point of the spiral makes with the corresponding vector radius a constant angle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

The technical field of the present invention is that of devices intended for bending pipes. <??>The invention relates to a pipe-bending shoe, of cylindrical shape, from the lateral surface of which a groove is hollowed out whose cross-section is a semi-circle of diameter equal to the diameter of a pipe to be bent, characterised in that the base of the cylinder is delimited, on the one hand, by a logarithmic spiral portion defined in polar coordinates by the formula equation (1) P = Poe<-k> theta , portion delimited by the points theta  = 0 and theta  = 2 pi , and in which P0 and k are positive constants and, on the other hand, by a straight segment joining the points of the spiral for which theta  = 0 and theta  = 2 pi . <??>Application to the accurate bending of pipework. <IMAGE>

Description

La présente invention concerne un dispositif destiné au cintrage des tuyaux. Plus précisément l'invention est relative aux sabots de cintrage de tuyauteries et au procédé d'utilisation du sabot selon l'invention.The present invention relates to a device for bending pipes. More specifically, the invention relates to shoes for bending pipes and to the method of using the shoe according to the invention.

Pour cintrer un tuyau d'un angle de cintrage β, on utilise un sabot de cintrage monté sur une cintreuse. De tels sabots ont la forme de cylindres dont la surface de base est un cercle et dont la surface latérale comporte une gorge dont la section droite est un demi-cercle de diamètre égal au diamètre extérieur du tuyau à cintrer. On applique le tuyau contre le sabot au niveau de la gorge de la surface latérale et l'on tourne le tuyau d'un angle, supérieur à β, égal à (β+α) car on sait qu'après relaxation il va subir une déformation élastique tendant à diminuer le cintrage. Dans la suite du texte le cintrage permanent que l'on souhaite obtenir sera dénoté β et le surcintrage, c'est-à-dire l'angle supplémentaire dont il faut tourner le tuyau autour du sabot pour obtenir le cintrage permanent β sera dénoté α. A toutes fins utiles il est rappelé que le cintrage d'un tuyau est l'angle formé par les fibres neutres de deux parties droites consécutives d'un tuyau, la fibre neutre étant elle-même le lieu géométrique des centres des sections droites du tuyau. Le rayon de cintrage est le rayon de l'arc de circonférence de la fibre neutre comprise entre deux parties droites consécutives. La courbe décrite par la fibre neutre entre deux parties droites peut ne pas être une circonférence, dans ce cas le rayon moyen R de cintrage sera défini par le rapport S/β dans lequel S est la longueur de la courbe comprise entre deux parties droites, et β le cintrage. Lorsque l'on cintre un tuyau sur un sabot circulaire de rayon R, on l'enroule comme expliqué plus haut d'un angle supérieur à l'angle β, l'angle d'enroulement étant alors β+α. De la sorte le rayon de courbure après la déformation élastique est plus grand il devient : R + Δ R = β + α β . R = R ( 1 + α β )

Figure imgb0001
Il en résulte que si l'on veut cintrer une tuyauterie avec précision d'un angle β, le rayon de courbure étant R, il faut utiliser un sabot de cintrage plus petit que R. Il se trouve que le surcintrage β est lui-même une fonction croissante de l'angle β de telle sorte que plus on veut cintrer d'un angle important, plus, pour conserver le même rayon de courbure, le rayon du sabot à utiliser doit être petit. Ce phénomène étant connu on utilise jusqu'à présent pour chaque rayon de cintrage des jeux de sabots et par exemple on peut, pour obtenir un rayon R donné pour des cintrages compris entre 0 et 30°, utiliser un sabot circulaire de rayon R1 tel que R1 < R, puis pour cintrer entre 30° et 60° un sabot de rayon R2 , R2 < R1 et ainsi de suite jusqu'à obtenir la gamme complète des cintrages que l'on souhaite réaliser. Les rayons R1, R2 des sabots que l'on utilise pour les différentes sous-gammes sont déterminés par expérimentation sur des échantillons représentatifs des tuyaux que l'on veut cintrer.To bend a pipe with a bending angle β, a bending shoe mounted on a bender is used. Such shoes have the shape of cylinders, the base surface of which is a circle and the lateral surface of which has a groove, the cross section of which is a semicircle with a diameter equal to the outside diameter of the pipe to be bent. We apply the pipe against the shoe at the level of the groove of the lateral surface and we turn the pipe by an angle, greater than β, equal to (β + α) because we know that after relaxation it will undergo a elastic deformation tending to reduce bending. In the remainder of the text, the permanent bending which it is desired to obtain will be denoted β and the over-bending, that is to say the additional angle whose pipe must be turned around the shoe to obtain the permanent bending β, will be denoted α . For all practical purposes, it is recalled that the bending of a pipe is the angle formed by the neutral fibers of two consecutive straight parts of a pipe, the neutral fiber itself being the geometric location of the centers of the straight sections of the pipe. . The bending radius is the radius of the arc of circumference of the neutral fiber between two consecutive straight parts. The curve described by the neutral fiber between two straight parts may not be a circumference, in this case the mean radius R of bending will be defined by the ratio S / β in which S is the length of the curve between two straight parts, and β the bending. When bending a pipe on a circular shoe of radius R, it is wound as explained above by an angle greater than the angle β, the winding angle then being β + α. In this way the radius of curvature after the elastic deformation is larger it becomes: R + Δ R = β + α β . R = R (1 + α β )
Figure imgb0001
It follows that if one wants to bend a pipe with precision by an angle β, the radius of curvature being R, it is necessary to use a bending shoe smaller than R. It turns out that the overbending β is itself an increasing function of the angle β so that the more you want to bend a large angle, the more, to keep the same radius of curvature, the radius of the shoe to be used must be small. As this phenomenon is known, hoof sets have been used up to now for each bending radius, and for example it is possible, to obtain a given radius R for bending between 0 and 30 °, using a circular shoe of radius R1 such that R1 <R, then to bend a shoe of radius R2, R2 <R1 between 30 ° and 60 ° and so on until obtaining the full range of bends that one wishes to achieve. The radii R1, R2 of the shoes that are used for the different sub-ranges are determined by experimentation on representative samples of the pipes that we want to bend.

L'état de la technique tel qu'il vient d'être décrit est illustré par les figures 1 et 2.The state of the art as just described is illustrated in FIGS. 1 and 2.

Sur la figure 1 on voit un sabot circulaire 1 sur lequel au moyen d'un mors 2 on applique le tuyau 3. Ce dernier est enroulé au moyen du mors 2 d'un angle (β+α) 4 égal à l'angle 5 que font entre eux les segments de fibres neutres 6 situés de part et d'autre du cintre.In Figure 1 we see a circular shoe 1 on which by means of a jaw 2 is applied the pipe 3. The latter is wound by means of the jaw 2 of an angle (β + α) 4 equal to the angle 5 that the neutral fiber segments 6 located on either side of the hanger do between them.

La figure 1 illustre la première phase d'un formage de tuyauterie, la seconde phase va consister à avancer le tuyau d'une longueur Δ L, éventuellement à le tourner sur lui-même, pour réaliser un trévirage puis à réaliser le cintrage suivant avec changement éventuel du sabot si l'angle de cintrage souhaité pour le cintre suivant nécessite un sabot de rayon différent.FIG. 1 illustrates the first phase of pipe forming, the second phase will consist in advancing the pipe by a length Δ L, possibly turning it on itself, to achieve a bend and then to perform the following bending with possible change of shoe if the desired bending angle for the next hanger requires a shoe of different radius.

La figure 2 illustre la nouvelle position du tuyau en fin de phase 2 on y voit essentiellement le tuyau 3 et sa fibre neutre 6 comportant deux segments de part et d'autre du cintre, du fait de la déformation élastique ces deux segments font entre eux un angle 7 en principe égal à β si le surcintrage α a été bien choisi.Figure 2 illustrates the new position of the pipe at the end of phase 2 we essentially see the pipe 3 and its neutral fiber 6 comprising two segments on either side of the hanger, due to the elastic deformation these two segments form between them an angle 7 in principle equal to β if the overcut α has been well chosen.

Cet état de la technique présente deux inconvénients : d'une part, il impose de changer le sabot chaque fois que l'on passe d'une gamme de cintrage à une autre, d'autre part il laisse subsister une erreur sur le rayon de courbure et/ou sur le cintrage du fait que les changements de rayon de sabot (R1, R2...) sont discontinus. Cette erreur peut être importante et inacceptable dans le cas de tuyauteries destinées à être logées en grand nombre dans des emplacements exigus comme des coques de sous-marins. Une part de l'erreur provient de l'outil de cintrage, le sabot circulaire, dont le rayon ne varie que par sauts, une autre part provient de la méconnaissance que l'on a, des surcintrages α à appliquer.This state of the art has two drawbacks: on the one hand, it requires changing the shoe each time one passes from one bending range to another, on the other hand it leaves an error on the radius of curvature and / or on the bending due to the fact that the changes in shoe radius (R1, R2 ...) are discontinuous. This error can be significant and unacceptable in the case of piping intended to be housed in large numbers in cramped locations such as submarine hulls. Part of the error comes from the bending tool, the circular shoe, whose radius varies only by jumps, another part comes from the lack of knowledge that we have, of the overcuts α to apply.

L'invention a pour but de remédier aux inconvénients précités d'une part par un sabot de cintrage dont le rayon moyen de cintrage est variable en continu et, d'autre part, par un procédé d'utilisation du dit sabot permettant de réaliser des cintrages pour lesquels les surcintrages nécessaires sont mieux appréciés.The object of the invention is to remedy the aforementioned drawbacks on the one hand by a bending shoe whose mean bending radius is continuously variable and, on the other hand, by a method of using said shoe making it possible to produce bends for which the necessary overbends are better appreciated.

A cette fin l'invention a pour objet un sabot de cintrage de tuyaux, en forme de cylindre à partir de la surface latérale duquel est creusée une gorge dont la section droite est un demi-cercle de diamètre égal au diamètre du tuyau à cintrer, caractérisé en ce que la base du cylindre est délimitée, d'une part, par une portion de spirale logarithmique définie en coordonnées polaires par l'équation P = P₀ e-kϑ (1), portion délimitée par les points ϑ = 0 et ϑ = 2 π, et dans laquelle P₀ et k sont des constantes positives et, d'autre part, par un segment de droite joignant les points de la spirale pour lesquels ϑ = 0 et ϑ = 2 π.To this end, the subject of the invention is a shoe for bending pipes, in the form of a cylinder from the lateral surface of which a groove is hollowed out, the cross section of which is a semicircle of diameter equal to the diameter of the pipe to be bent, characterized in that the base of the cylinder is delimited, on the one hand, by a portion of logarithmic spiral defined in polar coordinates by the equation P = P₀ e -kϑ (1), portion delimited by the points ϑ = 0 and ϑ = 2 π, and in which P₀ and k are positive constants and, on the other hand, by a line segment joining the points of the spiral for which ϑ = 0 and ϑ = 2 π.

La courbe d'équation (1) est une spirale logarithmique. Cette courbe a pour propriété que le rayon de courbure va en diminuant régulièrement de façon continue de la valeur R1 = P₀ 1 + k ²

Figure imgb0002
lorsque ϑ = 0 à la valeur R2 = P₀ 1 + k² e -k2π
Figure imgb0003
lorsque ϑ = 2π. Un sabot ayant ce pourtour offre donc la possibilité d'obtenir des rayons de courbure moyens pour le cintrage des tuyaux, variables de façon continue entre deux limites comprises dans l'intervalle entre R1 et R2.The equation curve (1) is a logarithmic spiral. This curve has the property that the radius of curvature decreases steadily in a continuous manner R1 = P₀ 1 + k ²
Figure imgb0002
when ϑ = 0 to the value R2 = P₀ 1 + k² e -k2π
Figure imgb0003
when ϑ = 2π. A shoe having this periphery therefore offers the possibility of obtaining average radii of curvature for bending the pipes, which are continuously variable between two limits included in the interval between R1 and R2.

Si les limites R1 et R2 sont bien choisies il sera toujours possible de trouver sur la spirale une portion comprise entre deux rayons vecteurs formant entre eux l'angle β + α et telle que le rayon de courbure moyen de cette portion soit égale à R - ΔR = β β + α R

Figure imgb0004
de telle sorte qu'après relaxation d'un angle α le rayon de courbure soit justement égal à R.If the limits R1 and R2 are well chosen it will always be possible to find a portion on the spiral between two vector radii forming between them the angle β + α and such that the mean radius of curvature of this portion is equal to R - ΔR = β β + α R
Figure imgb0004
so that after relaxation of an angle α the radius of curvature is precisely equal to R.

D'autres caractéristiques et avantages de l'invention ressortiront de la description suivante faite en référence aux dessins annexés dans lesquels :

  • la figure 3 représente une spirale logarithmique et est destinée à illustrer le principe, les avantages de l'invention et le mode de détermination des dimensions du sabot en fonction des caractéristiques des tuyaux à cintrer,
  • la figure 4 est une vue de dessus d'un exemple particulier de sabot réalisé selon l'invention,
  • la figure 5 est une vue latérale du même exemple particulier.
Other characteristics and advantages of the invention will emerge from the following description made with reference to the appended drawings in which:
  • FIG. 3 represents a logarithmic spiral and is intended to illustrate the principle, the advantages of the invention and the method of determining the dimensions of the shoe as a function of the characteristics of the pipes to be bent,
  • FIG. 4 is a top view of a particular example of a shoe produced according to the invention,
  • Figure 5 is a side view of the same particular example.

La figure 3 représente une portion de spirale logarithmique (8) selon l'équation : P = P₀ e -kϑ

Figure imgb0005
Figure 3 represents a portion of logarithmic spiral (8) according to the equation: P = P₀ e -kϑ
Figure imgb0005

Elle va du point B au point A lorsque l'angle ϑ varie de 0 à 2π.It goes from point B to point A when the angle ϑ varies from 0 to 2π.

Le centre des coordonnées polaires est figuré par le point 0. P₀ est égal à OB

Figure imgb0006
P₁ est égal à OA
Figure imgb0007
The center of the polar coordinates is shown by point 0. P₀ is equal to OB
Figure imgb0006
P₁ is equal to OA
Figure imgb0007

P₀ étant fixé P₁ est fonction du coefficient k.P₀ being fixed P₁ is a function of the coefficient k.

Le pourtour du sabot sera entièrement déterminé lorsque P₀ et k auront été fixés. Il va être examiné ci-après la façon de procéder :

  • tout d'abord on détermine sur une gamme d'échantillons représentative des tuyaux de diamètre D à cintrer sur le sabot, les surcintrages α correspondant aux cintrages β souhaités. Pour des rayons de courbure compris entre 2,5D et 3D (cas le plus courant). On peut retenir que le surcintrage peut être déterminé par l'équation linéaire : β = a+bβ
    Figure imgb0008
    où a et b sont des constantes. Par exemple pour un tuyau de diamètre 30 mm, "a" peut être compris entre 1 et 6° et "b" peut varier entre 0,02 et 0,05. Il est utile de noter pour la suite de l'exposé que a et b sont des valeurs moyennes pour une même catégorie de tuyaux réalisés dans la même matière. Ces valeurs sont comprises entre deux valeurs butées a1, a2 et b1, b2. Ces valeurs butées peuvent être assez éloignées l'une de l'autre et l'on ne connaît pas a priori la valeur à retenir pour effectuer un cintrage particulier.
    Ces valeurs sont différentes le long d'un même tuyau ceci en raison du manque d'homogénéité de la matière et surtout en raison de l'ovalisation variable du tuyau. Le fait que le sabot permet une variation en continu du rayon de courbure et donc une meilleure précision au niveau du rayon de courbure rend possible et avantageux un procédé de cintrage qui sera décrit plus loin où l'on tient compte des résultats obtenus sur les cintrages précédents pour effectuer le cintrage suivant.
    Les plages a1, a2 - b1, b2 et les valeurs moyennes a et b étant connues P₀ et k sont déterminés par le calcul de la façon suivante :
  • soit R le rayon de courbure que l'on souhaite obtenir. On sait que : R = S/β
    Figure imgb0009
    Dans cette équation S est la longueur de l'arc de spirale MoM1 (fig. 3) compris entre les rayons vecteurs déterminés par les angles ϑ₀ et (ϑ₀ + β + α).
The periphery of the hoof will be entirely determined when P₀ and k have been fixed. How to proceed will be examined below:
  • firstly, over a range of samples representative of pipes of diameter D to be bent on the shoe, the overcuts α corresponding to the desired bends β are determined. For radii of curvature between 2.5D and 3D (the most common case). It can be remembered that the overcrowding can be determined by the linear equation: β = a + bβ
    Figure imgb0008
    where a and b are constants. For example, for a 30 mm diameter pipe, "a" can be between 1 and 6 ° and "b" can vary between 0.02 and 0.05. It is useful to note for the remainder of the description that a and b are average values for the same category of pipes made of the same material. These values are between two stop values a1, a2 and b1, b2. These stop values can be quite far from each other and we do not know a priori the value to be used to perform a particular bending.
    These values are different along the same pipe this because of the lack of homogeneity of the material and especially because of the variable ovalization of the pipe. The fact that the shoe allows a continuous variation of the radius of curvature and therefore a better precision at the level of the radius of curvature makes possible and advantageous a bending process which will be described below where account is taken of the results obtained on bending previous steps to perform the next bend.
    The ranges a1, a2 - b1, b2 and the average values a and b being known P₀ and k are determined by the calculation as follows:
  • let R be the radius of curvature that we wish to obtain. We know that : R = S / β
    Figure imgb0009
    In this equation S is the length of the spiral arc MoM1 (fig. 3) between the vector radii determined by the angles ϑ₀ and (ϑ₀ + β + α).

La longueur de MoM1 est pour un angle β donné une fonction de Po, k, et également de ϑo qui détermine le point de la spirale à partir duquel on commence à cintrer. Lorsque Po et k sont fixés, c'est-à-dire lorsqu'on utilise un sabot déterminé la longueur de MoM1 n'est plus qu'une fonction de ϑ₀. Il convient donc de s'assurer lors de la fixation de P₀ et k que l'équation (2) aura toujours une solution en ϑ₀ telle que le point Mo correspondant soit bien sur un point de la courbe 8 c'est-à-dire qu'il faut une solution 0 < ϑ₀ < 2π.The length of MoM1 is for an angle β given a function of Po, k, and also of ϑo which determines the point of the spiral from which one begins to bend. When Po and k are fixed, that is to say when using a determined shoe, the length of MoM1 is only a function of ϑ₀. It is therefore advisable to ensure during the fixing of P₀ and k that equation (2) will always have a solution in ϑ₀ such that the corresponding point Mo is indeed on a point of the curve 8 that is to say that we need a solution 0 <ϑ₀ <2π.

Cette simple condition ne suffit pas il faut encore qu'à partir du point Mo défini par l'angle ϑ₀, il soit possible de cintrer d'un angle ( β + α ) tout en restant le long de la courbe (8). Cette condition sera toujours réalisée pour les grands angles de cintrage pour lesquels on a toujours intérêt à choisir des angles de début de cintrage faible, c'est-à-dire voisin de ϑ = 0.This simple condition is not enough it is still necessary that from the point Mo defined by the angle ϑ₀, it is possible to bend by an angle (β + α) while remaining along the curve (8). This condition will always be fulfilled for large bending angles for which it is always advantageous to choose angles for the start of small bending, that is to say close to ϑ = 0.

Par contre, pour les angles de cintrage faible il faudra que ϑ₀ réponde à la condition : ϑ₀ < 2π - ( βm + αm + γ ) dans laquelle γ est définit par le fait que l'angle 2π - γ correspond au point M6 de la courbe 8, point pour lequel la tangente à la courbe 8 passe par le point B. (Pour les commodités du dessin ce point a été représenté sur la figure 4). L'introduction de l'angle γ est nécessaire pour ne pas être gêné par le décrochement de la courbe 8 au voisinage de ϑ = 0.On the other hand, for low bending angles it will be necessary for ϑ₀ to meet the condition: ϑ₀ <2π - (β m + α m + γ) in which γ is defined by the fact that the angle 2π - γ corresponds to point M6 of curve 8, point for which the tangent to curve 8 passes through point B. (For the convenience of the drawing this point has been represented in FIG. 4). The introduction of the angle γ is necessary so as not to be hampered by the drop in the curve 8 in the vicinity of ϑ = 0.

On procède donc de la façon suivante : on connaît le cintrage minimum βm que l'on veut réaliser, à ce cintrage correspond un surcintrage αm et un angle de début de cintrage ϑm. Les points de la spirale 8 correspondant à ϑm et (ϑmmm) sont représentés par M2 et M3. On connaît également le cintrage maximum que l'on veut réaliser soit βm auquel correspond un surcintrage αM et un angle de début de cintrage ϑM. Les points de la spirale 8 correspondant aux angles ϑM et (ϑM + αM + βM) sont représentés par M4 et M5. Pour les deux valeurs de β, l'équation (2) ci-dessus devient en calculant M2M3 et M4M5 selon des méthodes classiques, R = 1 β m 1 + k² k P₀ e -kϑm ( e -k(βm+αm) - 1 )

Figure imgb0010
R = 1 β M 1 + k² k P₀ e -kϑM ( e -k(βM+αM) - 1 )
Figure imgb0011
We therefore proceed as follows: we know the minimum bending β m that we want to achieve, this bending corresponds to an over-bending α m and a bend start angle ϑ m . The points of the spiral 8 corresponding to ϑ m and (ϑ m + β m + α m ) are represented by M2 and M3. We also know the maximum bending that we want to achieve is β m which corresponds to an overbending α M and a bending start angle ϑ M. The points of the spiral 8 corresponding to the angles ϑ M and (ϑ M + α M + β M ) are represented by M4 and M5. For the two values of β, equation (2) above becomes by calculating M2M3 and M4M5 according to conventional methods, R = 1 β m 1 + k² k P₀ e -kϑm (e -k (βm + αm) - 1)
Figure imgb0010
R = 1 β M 1 + k² k P₀ e -kϑM (e -k (βM + αM) - 1)
Figure imgb0011

La division de ces 2 équations membre à membre conduit à une équation (6) où ne figure plus que k soit : (6)   1 = β m β M e -k(ϑM-ϑm) e -k(βM+αM) - 1 e -k(βm+αm) - 1

Figure imgb0012
The division of these 2 member-to-member equations leads to an equation (6) where only k is: (6) 1 = β m β M e -k (ϑM-ϑm) e -k (βM + αM) - 1 e -k (βm + αm) - 1
Figure imgb0012

Le coefficient k est petit car la spirale nécessaire compte tenu des valeurs usuelles du surcintrage est proche d'un cercle. Dans ces conditions on peut utiliser le premier degré du développement limité de l'expression ex soit ex ≈ 1 + x.The coefficient k is small because the necessary spiral taking into account the usual values of the over-bending is close to a circle. Under these conditions we can use the first degree of the limited development of the expression e x , e x ≈ 1 + x.

Avec cette approximation on obtient : (7)   k = 1 ϑ M m ( 1 - β m + α m β M = α M · β M β m )

Figure imgb0013
With this approximation we get: (7) k = 1 ϑ M m (1 - β m + α m β M = α M · β M β m )
Figure imgb0013

ϑM est l'angle de début de cintrage pour le cintrage maximum βM. Pour les grands angles ΔR est petit, on est donc proche des grands rayons vecteurs de la spirale, donc proche des angles voisin de O, ϑM devra être petit, le seul critère à prendre en compte est de ne pas être gêné par le décrochement de la courbe 8 pour ϑ = O.ϑ M is the bending start angle for the maximum bending β M. For large angles ΔR is small, we are therefore close to the large vector rays of the spiral, therefore close to the angles close to O, ϑ M must be small, the only criterion to be taken into account is not to be hampered by the setback of curve 8 for ϑ = O.

ϑm est l'angle de début de cintrage pour le cintrage minimum, donc correspondant à des rayons de courbure du sabot petit. ϑm devra donc être le plus grand possible mais néanmoins inférieur à ( 2π - ( βm + αm + γ )) de telle sorte qu'il soit encore possible de cintrer de l'angle ( βm + αm ) sans être gêné par le décrochement de la courbe 8 au voisinage de ϑ = Oϑ m is the bending start angle for minimum bending, therefore corresponding to radii of curvature of the small shoe. ϑ m must therefore be as large as possible but nevertheless less than (2π - (β m + α m + γ)) so that it is still possible to bend the angle (β m + α m ) without being hindered by the drop in curve 8 in the vicinity of ϑ = O

En prenant par exemple

Figure imgb0014
Taking for example
Figure imgb0014

On obtient les valeurs de k suivantes en fonction de a et b

Figure imgb0015
We obtain the following values of k as a function of a and b
Figure imgb0015

La valeur de P₀ s'obtient par report de la valeur de k dans l'une des équations (4) ou (5)

Figure imgb0016

on trouve P₀ = 0,97 R et
Figure imgb0017
P₁ = 0,82 P₀
Figure imgb0018
The value of P₀ is obtained by carrying over the value of k in one of equations (4) or (5)
Figure imgb0016

we find P₀ = 0.97 R and
Figure imgb0017
P₁ = 0.82 P₀
Figure imgb0018

On voit que P₀ est peu différent de R, on peut donc aussi se fixer P₀ = R et déterminer k en se fixant la valeur minimum de l'angle de cintrage que l'on réalisera sur le sabot en remplaçant P₀ par R dans l'équation (4) ci-dessus.We see that P₀ is little different from R, so we can also set P₀ = R and determine k by setting the minimum value of the bending angle that we will achieve on the shoe by replacing P₀ by R in the equation (4) above.

La réalisation particulière représentée en vue de dessus figure 4 et en vue latérale figure 5 a été effectuée selon ce dernier mode.The particular embodiment shown in top view in FIG. 4 and in side view in FIG. 5 was carried out according to this latter mode.

Il s'agit d'un sabot destiné à cintrer des tuyaux de diamètre D = 30 mm avec un rayon de cintrage R = 2,9 D soit 87 mm. C'est donc la valeur choisie pour P₀ de la spirale 8.Ce sabot permet de cintrer des tuyaux pour lesquels a est compris entre 1° et 2°, b étant variable de 0,01 à 0,05. Le coefficient k étant dans ce cas égal à 0,008. La gorge 9 creusée à partir de la surface latérale a également une forme de spirale.It is a shoe intended to bend pipes of diameter D = 30 mm with a bending radius R = 2.9 D or 87 mm. It is therefore the value chosen for P₀ of the spiral 8. This shoe makes it possible to bend pipes for which a is between 1 ° and 2 °, b being variable from 0.01 to 0.05. The coefficient k being in this case equal to 0.008. The groove 9 hollowed out from the lateral surface also has a spiral shape.

L'alésage 10 est destiné de façon classique à l'adaptation sur une cintreuse. Les faces opposées 11 et 12 comportent des graduations angulaires non représentées.The bore 10 is conventionally intended for adaptation on a bender. The opposite faces 11 and 12 have angular graduations which are not shown.

Les valeurs en cm du rayon vecteur de la spirale 8 sont indiquées ci-après pour des valeurs de ϑ de 0 à 350° par pas de 10°. Les valeurs du rayon vecteur correspondant au fond de gorge se déduisent des premières par soustraction de 1,5 cm.

Figure imgb0019
The values in cm of the vector radius of the spiral 8 are indicated below for values of ϑ from 0 to 350 ° in steps of 10 °. The values of the vector radius corresponding to the bottom of the groove are deduced from the first by subtraction of 1.5 cm.
Figure imgb0019

Le procédé d'emploi de ce sabot est le suivant:The procedure for using this shoe is as follows:

Ayant déterminé par échantillonnage les coefficients a et b relatifs aux tuyaux à cintrer ainsi que leurs plages de variation a1 a2, b1 b2 on réalise un tableau donnant pour chaque valeur de B

  • l'angle α₁ + β₁
  • l'angle de début de cintrage ϑ₁
  • l'angle de fin de cintrage ϑ₁ + α₁ + β₁
  • les plages de variation de chacun de ces trois angles.
Having determined by sampling the coefficients a and b relative to the pipes to be bent as well as their ranges of variation a1 a2, b1 b2 we create a table giving for each value of B
  • the angle α₁ + β₁
  • the bend start angle ϑ₁
  • the end of bending angle ϑ₁ + α₁ + β₁
  • the ranges of variation of each of these three angles.

Le sabot étant gradué dans la même unité que le tableau, on enroule le tuyau sur le sabot à partir de l'angle ϑ₁ , jusqu'à l'angle ϑ₁ + β₁ + α₁ . De la sorte la fibre neutre du tuyau a bien tourné de l'angle β₁ + α₁ , puisque la spirale a pour propriété que la tangente en un point de la spirale fait avec le rayon vecteur correspondant un angle constant.The shoe being graduated in the same unit as the table, the hose is wound on the shoe from the angle ϑ₁, to the angle ϑ₁ + β₁ + α₁. In this way the neutral fiber of the pipe has turned well from the angle β₁ + α₁, since the spiral has the property that the tangent at a point of the spiral makes with the corresponding vector radius a constant angle.

Après relaxation on mesure l'erreur Δβ₁ , cette erreur est utilisée lorqu'elle est négative pour corriger par addition de Δβ₁ , le cintrage qui vient d'être réalisé et dans tous les cas pour affiner la valeur du surcintrage suivant β₂ en prenant Δβ₂ = Δβ₁ β₂ β₁

Figure imgb0020
After relaxation, the error Δβ₁ is measured, this error is used when it is negative to correct by adding Δβ₁, the bending which has just been carried out and in all cases to refine the value of the overbending according to β₂ by taking Δβ₂ = Δβ₁ β₂ β₁
Figure imgb0020

Pour le cintrage suivant, la correction apportée sur β₃ se déduira par extrapolation linéaire des erreurs notées lors des deux cintrages précédents.For the following bending, the correction made on β₃ will be deduced by linear extrapolation of the errors noted during the two previous bends.

Claims (6)

1 - Sabot de cintrage de tuyaux, en forme de cylindre à partir de la surface latérale duquel est creusée une gorge dont la section droite est un demi-cercle de diamètre égal au diamètre du tuyau à cintrer, caractérisé en ce que la base du cylindre est délimitée, d'une part par une portion de spirale logarithmique définie en coordonnées polaires par l'équation de formule (1) P = Poe-kϑ, portion délimitée par les points ϑ = 0 et ϑ = 2π, et dans laquelle Po et k sont des constantes positives et, d'autre part, par un segment de droite joignant les points de la spirale pour lesquels ϑ = 0 et ϑ = 2π. 1 - Pipe bending shoe, in the form of a cylinder from the lateral surface from which a groove is hollowed out, the cross section of which is a semicircle of diameter equal to the diameter of the pipe to be bent, characterized in that the base of the cylinder is delimited, on the one hand, by a portion of logarithmic spiral defined in polar coordinates by the equation of formula (1) P = Poe-kϑ, portion delimited by the points ϑ = 0 and ϑ = 2π, and in which Po and k are positive constants and, on the other hand, by a line segment joining the points of the spiral for which ϑ = 0 and ϑ = 2π. 2 - Sabot selon la revendication 1 caractérisé en ce que la valeur du coefficient k est déterminée en fonction des angles minimum βm et maximum βM que l'on souhaite obtenir, des angles correspondants de surcintrage αm et αM et de début de cintrage ϑm et ϑM par la formule : k = 1 ϑ M m (1 - β m + α m β M + α M · β M β m )
Figure imgb0021
2 - Shoe according to claim 1 characterized in that the value of the coefficient k is determined as a function of the minimum angles β m and maximum β M that it is desired to obtain, of the corresponding angles of overcut α m and α M and of start of bending ϑ m and ϑ M by the formula: k = 1 ϑ M m (1 - β m + α m β M + α M · β M β m )
Figure imgb0021
3 - Sabot selon la revendication 2 caractérisé en ce que la valeur de Po est déterminée par l'équation 4
Figure imgb0022
dans laquelle R représente le rayon de courbure souhaité.
3 - Shoe according to claim 2 characterized in that the value of Po is determined by equation 4
Figure imgb0022
in which R represents the desired radius of curvature.
4 - Sabot selon la revendication 1 caractérisé en ce que le module P₀ est égal au rayon de courbure R que l'on souhaite obtenir. 4 - Shoe according to claim 1 characterized in that the module P₀ is equal to the radius of curvature R that one wishes to obtain. 5 - Sabot selon la revendication 4 caractérisé en ce que le coefficient k est déterminé par la formule 1 = 1 β m 1 + k² k e -kϑm ( e -k(βm+αm ) - 1 )
Figure imgb0023
5 - Shoe according to claim 4 characterized in that the coefficient k is determined by the formula 1 = 1 β m 1 + k² k e -kϑm (e -k (βm + αm ) - 1)
Figure imgb0023
6 - Procédé de cintrage utilisant le dispositif selon la revendication 1 caractérisé en ce que on utilise les erreurs constatées sur les cintrages précédents pour corriger le cintrage suivant par extrapolation linéaire de ces erreurs. 6 - Bending process using the device according to claim 1 characterized in that one uses the errors found on the previous bends to correct the next bending by linear extrapolation of these errors.
EP91401393A 1990-06-08 1991-05-30 Method and apparatus for bending tubes Expired - Lifetime EP0461006B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9006559 1990-06-08
FR9006559A FR2662958B1 (en) 1990-06-08 1990-06-08 METHOD AND DEVICE FOR BENDING PIPING.

Publications (2)

Publication Number Publication Date
EP0461006A1 true EP0461006A1 (en) 1991-12-11
EP0461006B1 EP0461006B1 (en) 1994-05-11

Family

ID=9396970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91401393A Expired - Lifetime EP0461006B1 (en) 1990-06-08 1991-05-30 Method and apparatus for bending tubes

Country Status (4)

Country Link
US (1) US5127248A (en)
EP (1) EP0461006B1 (en)
DE (1) DE69101946T2 (en)
FR (1) FR2662958B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106040802A (en) * 2016-08-10 2016-10-26 上虞市荣迪机械有限公司 Bending device for copper tube

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT227227Y1 (en) * 1992-03-12 1997-09-16 Cml Costr Mecc Liri Srl COUNTER-MACHINE WITH SHAPED THROAT FOR PIPE BENDING WITH ROTATING BENDING HEAD WITH ROTATING PULLEY MATRIX AND COUNTER-MACHINE.
JP2991027B2 (en) * 1994-02-15 1999-12-20 住友金属工業株式会社 Heat exchanger and tube bending method used for manufacturing U-bend tube for heat exchanger
US5694800A (en) * 1995-01-26 1997-12-09 Ineco Industrial Navarra De Equipos Y Comercio, S.A. Perfected counterdie for pipe bending machines
US20040258789A1 (en) * 2003-06-19 2004-12-23 Phillips James D. Tube bending apparatus and method
US7290421B2 (en) * 2003-07-01 2007-11-06 General Motors Corporation Variable curvature tube and draw die therefor
US7251976B2 (en) * 2003-07-01 2007-08-07 Gm Global Technology Operations, Inc. Apparatus and method for the noncircular bending of tubes
US20110101630A1 (en) * 2009-11-04 2011-05-05 Tadashi Sakai Bend shape for anti-roll bar
CN101983789A (en) * 2010-10-22 2011-03-09 王俊强 Manual pipe bender
CN102125965A (en) * 2010-12-10 2011-07-20 王俊强 Pipe bender
JP1527322S (en) * 2014-11-26 2017-06-05
JP1525570S (en) * 2014-11-26 2017-05-22
JP1525571S (en) * 2014-11-26 2017-05-22
JP1525573S (en) * 2014-11-26 2017-05-22
JP1525574S (en) * 2014-11-26 2017-05-22
CN110560529A (en) * 2019-09-10 2019-12-13 广东职业技术学院 Method and system for machining bent pipe by applying polar coordinate method
US20210373524A1 (en) * 2020-06-01 2021-12-02 The Boeing Company Forming stylus tool design and toolpath generation module for 3 axis computer numerical control manufacturing processes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1950127A1 (en) * 1969-10-04 1971-04-22 Peddinghaus Paul Ferd Fa Concrete iron bending machine with electrical adjustment of the bending angle of the bending plate or arm
FR2085483A1 (en) * 1970-04-24 1971-12-24 Vallourec Tube bending appts - allowing for relaxation of the bend dug to the resilience of the tube
WO1987001625A1 (en) * 1985-09-19 1987-03-26 Gardner R F Pipe bending machine
EP0338944A1 (en) * 1988-04-21 1989-10-25 Eaton Leonard Picot S.A. Method and device for controlling the resilience by bending of an elongated element such as a tube.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1714083A (en) * 1926-06-03 1929-05-21 Greenpoint Metallic Bed Co Inc Tube-bending machine
US3584492A (en) * 1968-11-13 1971-06-15 Crawford Fitting Co Tube-bending tool
DE3033300A1 (en) * 1980-09-04 1982-04-01 Rigobert Dipl.-Ing. 5000 Köln Schwarze PIPE BENDING MACHINE
DE3149557A1 (en) * 1981-12-15 1983-07-21 Rigobert Dipl.-Ing. 5000 Köln Schwarze PIPE BENDING MACHINE WITH A SWIVELING BENDING TABLE
SU1189520A1 (en) * 1984-01-09 1985-11-07 Всесоюзный Ордена Трудового Красного Знамени Научно-Исследовательский И Конструкторско-Технологический Институт Трубной Промышленности Method of periodic cold rolling of tubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1950127A1 (en) * 1969-10-04 1971-04-22 Peddinghaus Paul Ferd Fa Concrete iron bending machine with electrical adjustment of the bending angle of the bending plate or arm
FR2085483A1 (en) * 1970-04-24 1971-12-24 Vallourec Tube bending appts - allowing for relaxation of the bend dug to the resilience of the tube
WO1987001625A1 (en) * 1985-09-19 1987-03-26 Gardner R F Pipe bending machine
EP0338944A1 (en) * 1988-04-21 1989-10-25 Eaton Leonard Picot S.A. Method and device for controlling the resilience by bending of an elongated element such as a tube.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106040802A (en) * 2016-08-10 2016-10-26 上虞市荣迪机械有限公司 Bending device for copper tube

Also Published As

Publication number Publication date
US5127248A (en) 1992-07-07
DE69101946T2 (en) 1994-08-18
EP0461006B1 (en) 1994-05-11
FR2662958B1 (en) 1992-08-21
FR2662958A1 (en) 1991-12-13
DE69101946D1 (en) 1994-06-16

Similar Documents

Publication Publication Date Title
EP0461006B1 (en) Method and apparatus for bending tubes
EP0338944B1 (en) Method and device for controlling the resilience by bending of an elongated element such as a tube.
US20140230562A1 (en) Tubular insertion device
FR2536052A1 (en) METHOD AND APPARATUS FOR WINDING FLEXIBLE MATERIAL AND WINDINGS THUS OBTAINED
FR2468105A1 (en) ULTRASONIC COLLAR TRANSDUCER TO BE MOUNTED ON A PIPING
FR2566115A1 (en) METHOD AND DEVICE FOR MEASURING THE WALL THICKNESS OF A LAYER
FR2533544A1 (en) METHOD AND MACHINE FOR THE PRODUCTION OF THE WINDING OF A CROSS COIL
EP1739389A1 (en) Testing process for the coupling zone between the cylindrical part and the clearance of a roller by turbomachine antifriction bearing
FR2492968A1 (en) METHOD AND DEVICE FOR MEASURING THE OVALIZATION OF A CONDUCT
FR2717893A1 (en) Method and device for measuring conical threads.
CN106001218B (en) A kind of bending machine and bending method
JPS6239681B2 (en)
EP1606078B1 (en) Method for trimming a spectacle lens
EP0633100B1 (en) Torque measuring tool, such as an electronic torque wrench
FR2540621A1 (en) DEVICE FOR MEASURING DIMENSIONS, IN CROSS-SECTION, OF HOLLOW CYLINDRICAL PARTS
JPH01203938A (en) Flexural loss measuring instrument for optical fiber
FR2728888A1 (en) PROCESS FOR OBTAINING OPTICAL FIBER PREFORM USING PLASMA RECHARGE
FR2467433A1 (en) METHOD FOR DETECTING THE POSITION OF A TOOL TIP IN RELATION TO A TOOL CARRIER OF A DIGITAL CONTROL MACHINE TOOL, ESPECIALLY A TOWER
EP0021968A1 (en) Precision positioning machine with toothed drive belt and tooth-pitch error compensation
EP0762252A2 (en) Process and device for guidance of a mobile object
EP0605297B1 (en) Device for the measurement of the index profile of a preform for an optical fibre comprising a core and an outer cladding
FR2624038A1 (en) PIPE BENDING TOOL AND METHOD FOR MANUFACTURING A WELDED TIP PIPE
FR2607586A1 (en) DEVICE FOR DETERMINING PNEUMATICALLY THE INNER DIAMETER OF A CIRCULAR SECTION PIPE OF A TEST
FR2497988A1 (en) DEVICE FOR MAGNETIC RECORDING AND REPRODUCTION OF SIGNALS AND MAGNETIC TRANSMISSION HEAD DESIGNED FOR THIS DEVICE
JPH11271584A (en) Manufacture of multi-layered optical fiber cable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

17Q First examination report despatched

Effective date: 19931015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

REF Corresponds to:

Ref document number: 69101946

Country of ref document: DE

Date of ref document: 19940616

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000727

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050530