[go: up one dir, main page]

EP0459813A2 - Ultrasonic imaging apparatus indicating dispersion of characteristic parameter of medium - Google Patents

Ultrasonic imaging apparatus indicating dispersion of characteristic parameter of medium Download PDF

Info

Publication number
EP0459813A2
EP0459813A2 EP91304922A EP91304922A EP0459813A2 EP 0459813 A2 EP0459813 A2 EP 0459813A2 EP 91304922 A EP91304922 A EP 91304922A EP 91304922 A EP91304922 A EP 91304922A EP 0459813 A2 EP0459813 A2 EP 0459813A2
Authority
EP
European Patent Office
Prior art keywords
statistical information
plane
imaging apparatus
ultrasonic imaging
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91304922A
Other languages
German (de)
French (fr)
Other versions
EP0459813B1 (en
EP0459813A3 (en
Inventor
Isamu Yamada
Akira Shiba
Shinichi Amemiya
Keiichi Murakami
Takaki Shimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of EP0459813A2 publication Critical patent/EP0459813A2/en
Publication of EP0459813A3 publication Critical patent/EP0459813A3/en
Application granted granted Critical
Publication of EP0459813B1 publication Critical patent/EP0459813B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Definitions

  • the present invention relates to an ultrasonic imaging apparatus which functions to display an image of a two-dimensional distribution of a tissue characterization parameter of a tissue, for example, an ultrasonic attenuation coefficient, in a realtime mode.
  • a tissue characterization parameter of a tissue for example, an ultrasonic attenuation coefficient
  • the two-dimensional distribution of the tissue characterization parameters for example, an ultrasonic attenuation coefficient, an ultrasonic reflection coefficient, an elasticity parameter, are used to diagnose a condition of the tissue.
  • the value of the ultrasonic attenuation coefficient of tissue of a liver suffering from hepatitis is small compared with a normal tissue, and the value of the ultrasonic attenuation coefficient of a fatty liver is large compared with a normal tissue. Since high accuracy is required in ultrasonic diagnosis, the tissue characterization parameters must be determined precisely.
  • the ultrasonic imaging apparatus which functions to display an image of a two-dimensional distribution of a tissue characterization parameter of a tissue in a realtime mode is disclosed in the Japanese Unexamined Patent Publication No.62-109553, and the U.S.Patent No.4,836,210 of Shiba et al, dated June 6, 1989.
  • a pulsed beam of an ultrasound is generated to inject the beam into a tissue in a certain direction, and ultrasound which is reflected at various depths of the tissue in the same direction are detected.
  • the direction of the pulsed ultrasound is scanned so that a plane is scanned by the pulsed ultrasound during one plane scan cycle.
  • a two-dimensional distribution of the tissue characterization parameter on the plane is obtained.
  • the above injection and detection of the ultrasound is carried out through an ultrasonic transducer array.
  • the operator applies a probe containing the transducer array on a skin of a human body to diagnose the condition of the tissue under the skin.
  • the obtained values of the above tissue characterization parameters fluctuate due to subtle movements of the probe or the tissue which is subject to the diagnosis.
  • the values of the ultrasonic attenuation coefficient, which are obtained as above greatly vary when a structure which is different from the tissue which is to be diagnosed, e.g., a vascular tract, exists in the scanned cross section.
  • the obtained values of the tissue characterization parameters are significant only when the obtained values are stable.
  • the values of the tissue characterization parameters must be obtained on a cross section of the tissue where the obtained values are stable. Nevertheless, conventionally, it is difficult for the operator to determine whether or not an obtained value of a tissue characterization parameter is stable. Therefore, in conventional ultrasonic imaging apparatuses, the credibility of the obtained values of the tissue characterization parameters is low.
  • An object of the present invention is to provide an ultrasonic imaging apparatus whereby an operator can easily determine stability of a value of a tissue characterization parameter which is obtained from the apparatus.
  • Another object of the present invention is to provide an ultrasonic imaging apparatus whereby an operator can easily determine a cross section which gives the most stable value of a tissue characterization parameter which is to be obtained, among a plurality of cross sections from which values of the tissue characterization parameter are most recently obtained.
  • an ultrasonic imaging apparatus which comprises: an ultrasound generating unit for generating a pulsed ultrasound to externally output in a certain direction for each output of the pulsed ultrasound; an ultrasound detecting unit for detecting reflected ultrasound which is generated by reflection of the pulsed ultrasound at various points outside of the ultrasonic imaging apparatus in the above direction, and reaches the ultrasound detecting unit after the above output of pulsed ultrasound; a scanning unit for scanning the direction of the pulsed ultrasound which is generated by the ultrasound generating unit and the reflected ultrasound which reaches the ultrasound detecting unit, so that a plane is scanned by the pulsed ultrasound which is generated by the ultrasound generating unit during one plane scan cycle; a two-dimensional distribution obtaining unit for obtaining a two-dimensional distribution of a predetermined characteristic parameter of a medium of the ultrasound at various points in the plane, wherein distances from the ultrasound detecting unit to the various points in the plane at which the reflected ultrasound are generated, are determined by measuring times which elapsed after the pulsed ultrasound is output from the ultrasound
  • the ultrasonic imaging apparatus further comprises a statistic information indicating unit for indicating the statistic information.
  • the ultrasonic imaging apparatus further comprises a statistic information storing unit for storing the statistic information for a predetermined number of planes.
  • the ultrasonic imaging apparatus further comprises a stored statistic information indicating unit for indicating the statistic information which is stored in the statistic information storing unit.
  • the ultrasonic imaging apparatus further comprises a two-dimensional distribution storing unit for storing the two-dimensional distributions of the predetermined characteristic parameter of the medium for a predetermined number of planes.
  • the ultrasonic imaging apparatus further comprises a stored distribution indicating unit for indicating the two-dimensional distributions which are stored in the two-dimensional distribution storing unit.
  • the statistic information storing unit stores the statistic information for a predetermined number of planes for which the two-dimensional distribution of the predetermined characteristic parameter of the medium are most recently obtained by the two-dimensional distribution obtaining unit.
  • the ultrasonic imaging apparatus further comprises a stored statistic information indicating unit for indicating the statistic information which is stored in the statistic information storing unit.
  • the ultrasonic imaging apparatus further comprises a two-dimensional distribution storing unit for storing the two-dimensional distributions of the predetermined characteristic parameter of the medium for a predetermined number of planes which are most recently obtained by the two-dimensional distribution obtaining unit.
  • the ultrasonic imaging apparatus further comprises a stored distribution indicating unit for indicating one of the two-dimensional distributions which are stored in the two-dimensional distribution storing unit.
  • the ultrasonic imaging apparatus further comprises a storage freezing unit for freezing an operation renewing the statistic information storing unit and the two-dimensional distribution storing unit.
  • the ultrasonic imaging apparatus further comprises a frozen plane designating unit for designating one of the planes for which the statistic information and the two-dimensional distributions are stored in the statistic information storing unit and the two-dimensional distribution storing unit, respectively, after the statistical information storing means and the two-dimensional distribution storing means are frozen.
  • the ultrasonic imaging apparatus further comprises a designated information indicating unit for indicating the statistic information and the two-dimensional distribution for the plane which are designated by the frozen plane designating unit.
  • the ultrasonic imaging apparatus further comprises: a plane designating unit for designating one of the planes for which the statistic information and the two-dimensional distributions are stored in the statistic information storing unit and the two-dimensional distribution storing unit, and a history information indicating unit for indicating a recent history of the statistic information from a plane for which the two-dimensional distribution is most recently obtained, to the plane which is designated by the plane designating unit.
  • the ultrasonic imaging apparatus may further comprise: a minimum standard deviation plane determining unit for determining a plane for which the minimum standard deviation is obtained by the standard deviation obtaining unit, among planes for which the statistic information and the two-dimensional distributions are stored in the statistic information storing unit and the two-dimensional distribution storing unit; and a minimum standard deviation plane indicating unit for indicating the plane for which the minimum standard deviation is obtained by the standard deviation obtaining unit.
  • the ultrasonic imaging apparatus further comprises an optimum two-dimensional distribution indicating unit for indicating a two-dimensional distribution for the plane for which the minimum standard deviation is obtained by the standard deviation obtaining unit.
  • the statistic information includes an average of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • the statistic information includes a standard deviation of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • the statistic information includes a skewness of a frequency distribution of values of the tissue characterization parameter which was obtained in the parameter calculation circuit within the region of interest of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • the statistic information includes a kurtosis of a frequency distribution of the values of the tissue characterization parameter of the medium at the various points in the region of interest of the plane.
  • the ultrasonic imaging apparatus further comprises: a region of interest redesignating unit for designating a region of interest other than the region of interest which is designated by the region of interest designating unit, in the plane; and a statistic information reobtaining unit for obtaining statistic information on a dispersing characteristic of the predetermined characteristic parameter of the medium at the various points in the region of interest which is designated by the region of interest redesignating unit.
  • Figure 1 is a block diagram showing a construction of the embodiment of the present invention.
  • reference numeral 1 denotes an ultrasonic transducer array, 21, 22, 23, ... 2 n and 61, 62, 63, ... 6 n each denote an amplifier, 31, 32, 33, ... 3 n and 71, 72, 73, ...
  • 7 n each denote a delay circuit
  • 4 denotes a pulse generator
  • 5 denotes a timing generator
  • 8 denotes a summing amplifier
  • 9 denotes a LOG amplifier
  • 9' denotes a time gain control circuit
  • 10 denotes a detector
  • 11 denotes a low pass filter
  • 12 denotes an analog to digital converter
  • 100 denotes a parameter calculation circuit
  • 200 denotes a characteristic portion of the embodiment of the present invention
  • 300 denotes a display unit.
  • the timing generator 5 generates a timing signal at a constant rate, and the pulse generator 4 generates a pulse signal to generate an ultrasound pulse.
  • the ultrasonic transducer array 1 comprises a plurality of transducer elements.
  • Each transducer element comprises a piezo-electric element which converts an electric signal to a mechanical deformation to generate an ultrasound, and generates an electric signal when the element receives an ultrasound.
  • the transducer array 1 is manually applied to a skin over a region of tissue of the human body in which a doctor is interested, to diagnose the region.
  • the above outputs of the series connections parallel connection are respectively applied to the plurality of transducer elements of the ultrasonic transducer array 1.
  • the LOG amplifier 9 amplifies the summed signal.
  • the gain of the LOG amplifier 9 is controlled by the time gain control circuit 9' so that the gain of the LOG amplifier 9 is increased with a time which is elapsed from each time of the above generation of the ultrasound in the transducer array 1 in accordance with a logarithm line.
  • the output of the LOG amplifier 9 is applied in parallel to the detector 10 and the parameter calculation circuit 100.
  • the envelope of the above output of the LOG amplifier 9 is detected in the detector 10, and the detected signal is input into the low pass filter 11.
  • the output of the low pass filter 11 corresponds to image data of ultrasonograph.
  • the output of the low pass filter 11 is converted to a digital form by the analog to digital converter 12.
  • the digital data is supplied to the characteristic portion 200.
  • Figure 2 is a block diagram showing a construction of an example of the parameter calculation circuit 100 in Fig. 1.
  • reference numeral 54 denotes a gradient calculation circuit
  • 55 denotes a center frequency detector
  • 56 denotes a divider
  • 57 denotes a multiplier.
  • the gradient calculation circuit 54 obtains a gradient of an envelope of the above output of the LOG amplifier 9 in a digital form, and the center frequency detector 55 detects a center frequency of the output of the LOG amplifier 9 in a digital form.
  • the divider 56 divides the output of the gradient calculation circuit 54 by the output of the center frequency detector 55, and the multiplier 57 multiplies the output of the divider 56 by a constant -1/2c to obtain the ultrasonic attenuation coefficient.
  • the obtained ultrasonic attenuation coefficient is supplied to the above characteristic portion 200.
  • the detail of the construction for obtaining the ultrasonic attenuation coefficient is disclosed in the Japanese Unexamined Patent Publication No. 62-109553.
  • the parameter calculation circuit 100 may be another construction for obtaining an ultrasonic reflection coefficient, or another elasticity parameter. These constructions for obtaining the ultrasonic reflection coefficient, and the other elasticity parameters are conventionally known.
  • FIG. 3 is a block diagram showing a construction of the characteristic portion of the embodiment of the present invention.
  • reference numeral 31 denotes a frame memory for the two-dimensional distribution of a tissue characterization parameter
  • 32 denotes a statistic calculation circuit
  • 33 denotes a frequency distribution obtaining circuit
  • 34 denotes a scroll memory
  • 35 denotes a memory
  • 36 denotes a digital scan converter
  • 37 denotes a region of interest designation circuit
  • 38 denotes a frame designation circuit
  • 39 denotes a minimum dispersion frame obtaining circuit
  • 40 denotes a freeze control circuit
  • 41 denotes a frame memory for image data of ultrasonograph
  • 42 denotes a CRT.
  • the above digital image data of ultrasonograph is stored in the frame memory 41, and the above digital tissue characterization parameter is stored in the frame memory 31.
  • These frame memories respectively hold the data of a plurality of frames which have been most recently observed.
  • the statistic calculation circuit 32 obtains statistic information on a dispersing characteristic of the characteristic parameter of the tissue at the various points in a region of interest of each cross section.
  • the region of interest is designated by the region of interest designation circuit 37 as explained later.
  • the statistic information is, for example, an average of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section, a standard deviation of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section, a skewness of a frequency distribution of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section, or the kurtosis of a frequency distribution of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section.
  • the average m is obtained by the following equation (1).
  • the variance ⁇ 2 is obtained by the following equation (2).
  • the third order center moment ⁇ 3 is obtained as the following equation (4).
  • the fourth order center moment ⁇ 4 is obtained by the following equation (5).
  • the kurtosis K of the frequency distribution of the values of the tissue characterization parameter in the region of interest indicates flatness of the frequency distribution, and is obtained by the following equation (6).
  • K ⁇ 4/ ⁇ 4 -3
  • the results of the statistic calculations as above are input into the scroll memory 34 for each frame (cross section).
  • the scroll memory 34 stores the statistic information for a predetermined number of frames which are most recently observed.
  • the frequency distribution obtaining circuit 33 obtains a frequency distribution of the values of the tissue characterization parameter in the region of interest in each cross section.
  • Figure 4 is a block diagram showing a construction of the frequency distribution obtaining circuit 33 in Fig. 3.
  • reference numeral 50 denotes a decoder, and 511, 512, 513, ... 51 n each denote an accumulator.
  • the values of the tissue characterization parameter are sorted into a plurality of ranks (ranges of the values) to obtain a histogram of the frequency distribution.
  • the accumulators 511, 512, 513, ... 51 n are provided for the respective ranks.
  • the decoder 50 receives respective values of the tissue characterization parameter which are stored in the frame memory 31.
  • the decoder 50 has a plurality of outputs corresponding to the plurality of ranks to realize the function of the sorting. One of the outputs of the decoder 50 corresponding to one of the ranks to which the received value is to be sorted, becomes active when the enable signal is active.
  • the enable signal is generated by the region of interest designation circuit 37, and is made active when values of the tissue characterization parameter in the region of interest are output from the frame memory 31.
  • a reset signal is applied to the plurality of accumulators 511, 512, 513, ... 51 n when the accumulators should be reset.
  • the accumulation is carried out for example, for each scanning cycle (each cross section), or for a predetermined number of successive scanning cycles.
  • Figure 5 is an example histogram showing a frequency distribution of values of the tissue characterization parameter in the region of interest. The above obtained frequency distribution is input into the memory 35 for each frame (cross section).
  • the memory 35 stores the data of the frequency distributions for a predetermined number of frames which are most recently observed.
  • Figure 6 is a diagram showing an example of the display of the two-dimensional distribution of detected values of a tissue characterization parameter and an indication of the designated region of interest.
  • the operator can designate a desired region of interest, for example, by a pointing device.
  • the region of interest designation circuit 37 controls the operation reading the values of the tissue characterization parameter from the frame memory 31 and the operation writing the values into the statistic calculation circuit 32 and the frequency distribution obtaining circuit 33 by supplying corresponding addresses and reading and writing signals.
  • the technique of designating a region of interest is well-known.
  • a recent history of one or more of the aforementioned statistic information in a predetermined number of successive frames ending with a current frame is indicated in a real time mode as shown in Figs. 7 to 11.
  • the above history data is supplied from the scroll memory 34 and the armory 35.
  • each statistic information in the history may be calculated for a predetermined number of successive frames instead of one frame.
  • Figure 7 is a diagram showing an example indication of a recent history of an average of a frequency distribution of detected values of a tissue characterization parameter in a region of interest
  • Figure 8 is a diagram showing an example indication of a recent history of a standard deviation of a frequency distribution of detected values of a tissue characterization parameter in a region of interest
  • Figure 9 is a diagram showing an example indication of a recent history of the skewness of a frequency distribution of detected values of the tissue characterization parameter in a region of interest
  • Figure 10 is a diagram showing an example indication of a recent history of the kurtosis of a frequency distribution of detected values of the tissue characterization parameter in a region of interest
  • Figure 11 is a diagram showing an example indication of a recent history of the frequency distribution of detected values of a tissue characterization parameter in a region of interest.
  • the lines for the frequency distributions of the different frames may be indicated by the different types of lines, respectively, for example, by using different colors.
  • the operator can view the above indication while manipulating the probe. Therefore, for example, the operator can recognize whether or not a most recently variation of a position of the probe gives a better (more stable and credible) result, and can avoid to take unstable data based on the above history indications.
  • the operator can freeze an operation renewing the contents of the scroll memory 34 and the memory 35, and thus, can freeze the history indication.
  • the freezing operation can be carried out through the freeze control circuit 40.
  • the freeze control circuit 40 receives a command to effect the freeze operation, the freeze control circuit 40 supplies a freeze control signal to the frame memories 31 and 41, the scroll memory 34, and the memory 35 to freeze these elements, as shown in Fig. 3.
  • Figure 12 is a diagram showing an example indication in an operation designating a frame by an operator using a cursor.
  • the operator can designate one of the frames for which the history of the statistic information is indicated, based on the indication, by moving a cursor to the frame in the history indication using a pointing device (not shown).
  • This operation is realized through the frame designation circuit 38.
  • the frame designation circuit 38 can control the frame memories 31 and 41, the scroll memory 34, and the memory 35, so that these memories output contents thereof regarding the designated frame, to the digital scan converter 36. Further, the frame designation circuit 38 can send the information on the designated frame to the digital scan converter 36 so that the above cursor indication is realized.
  • the aforementioned region of interest designation circuit 37 can be operated again to reobtain statistic information on the dispersing characteristic of the predetermined characteristic parameter in a region of interest which is different from the region of interest which was first designated. Redesignating the new region of interest through the region of interest designation circuit 37 after freezing the above memories in Fig. 3, the above statistical information can be obtained by using the frozen data of the tissue characterization parameter, and operating the statistic calculation circuit 32 and/or the frequency distribution obtaining circuit 33.
  • the most stable frame among a plurality of frames which have been most recently observed can be automatically obtained by using the recent history data of the statistic information.
  • the minimum dispersion frame obtaining circuit 39 obtains a frame of a minimum standard deviation.
  • the minimum dispersion frame obtaining circuit 39 may comprise registers for holding a frame number of a temporarily minimum standard deviation, and the temporarily minimum standard deviation, and a comparator for comparing a standard deviation of a current frame with the held standard deviation, and the minimum dispersion frame obtaining circuit 39 replace the held frame number and the standard deviation with the current frame number and the standard deviation of the current frame when the current standard deviation is not larger than the held standard deviation.
  • the minimum dispersion frame obtaining circuit 39 sends a marker indication data to the digital scan converter 36.
  • the marker indication data indicates how many frames before the current frame the frame of the minimum standard deviation is.
  • a marker indication is shown superimposed on the above history indication of the statistic information.
  • Figure 13 is a diagram showing an example indication of a frame which is designated as a frame which gives the minimum standard deviation among a plurality of frames which has been most recently observed.
  • a histogram indicating a frequency distribution of the values of the tissue characterization parameter in a current frame can be indicated and superimposed on another histogram indicating a frequency distribution of the values of the tissue characterization parameter in the above frame of the minimum standard deviation, as shown in Fig. 14.
  • This indication is realized by controlling the memory 35 through the frame designation circuit 38 by another output of the minimum dispersion frame obtaining circuit 39.
  • the output of the minimum dispersion frame obtaining circuit 39 includes information of the frame of the minimum standard deviation.
  • the frame designation circuit 38 When the frame designation circuit 38 receives the above output, the frame designation circuit 38 receives the above output, the frame designation circuit 38 can control the frame memories 31 and 41, the scroll memory 34, and the memory 35, so that these memories output contents thereof regarding the frame of the minimum standard deviation, to the digital scan converter 36.
  • the ultrasonic imaging apparatus of Fig. 1 it is possible to set the ultrasonic imaging apparatus of Fig. 1 so that the apparatus automatically indicates the image of the ultrasonograph and the two-dimensional distribution image of the tissue characterization parameter of the frame of the minimum standard deviation by controlling the frame memories 31 and 41 through the frame designation circuit 38.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An ultrasonic imaging apparatus for obtaining a two-dimensional distribution of a predetermined characteristic parameter of a medium of the ultrasound at various points in a plane. The apparatus contains a unit (37) for designating a region of interest in said plane, and a unit (32, 33, 34, 35, 36) for obtaining and indicating statistical information on a dispersing characteristic of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane. In addition, the apparatus contains a unit (32, 33, 34, 35, 36) for obtaining and indicating a recent history of the dispersing characteristics during the operation of obtaining the two-dimensional distributions which are most recently carried out. Further, the apparatus contains a unit (39) for obtaining and indicating the plane for which the minimum standard deviation is obtained, and a unit (31, 36) for indicating the two-dimensional distribution for the plane.

Description

    BACKGROUND OF THE INVENTION (1) Field of the Invention
  • The present invention relates to an ultrasonic imaging apparatus which functions to display an image of a two-dimensional distribution of a tissue characterization parameter of a tissue, for example, an ultrasonic attenuation coefficient, in a realtime mode.
  • In the field of the ultrasonic diagnosis, the two-dimensional distribution of the tissue characterization parameters, for example, an ultrasonic attenuation coefficient, an ultrasonic reflection coefficient, an elasticity parameter, are used to diagnose a condition of the tissue. For example, the value of the ultrasonic attenuation coefficient of tissue of a liver suffering from hepatitis is small compared with a normal tissue, and the value of the ultrasonic attenuation coefficient of a fatty liver is large compared with a normal tissue. Since high accuracy is required in ultrasonic diagnosis, the tissue characterization parameters must be determined precisely.
  • (2) Description of the Related Art
  • Conventionally, the ultrasonic imaging apparatus which functions to display an image of a two-dimensional distribution of a tissue characterization parameter of a tissue in a realtime mode is disclosed in the Japanese Unexamined Patent Publication No.62-109553, and the U.S.Patent No.4,836,210 of Shiba et al, dated June 6, 1989.
  • In ultrasonic imaging apparatuses, a pulsed beam of an ultrasound is generated to inject the beam into a tissue in a certain direction, and ultrasound which is reflected at various depths of the tissue in the same direction are detected. The direction of the pulsed ultrasound is scanned so that a plane is scanned by the pulsed ultrasound during one plane scan cycle. Thus, a two-dimensional distribution of the tissue characterization parameter on the plane (cross section of the tissue) is obtained. The above injection and detection of the ultrasound is carried out through an ultrasonic transducer array. The operator (doctor) applies a probe containing the transducer array on a skin of a human body to diagnose the condition of the tissue under the skin.
  • However, the obtained values of the above tissue characterization parameters fluctuate due to subtle movements of the probe or the tissue which is subject to the diagnosis. Further, for example, the values of the ultrasonic attenuation coefficient, which are obtained as above, greatly vary when a structure which is different from the tissue which is to be diagnosed, e.g., a vascular tract, exists in the scanned cross section. Generally, it is considered that the obtained values of the tissue characterization parameters are significant only when the obtained values are stable. Thus, generally, the values of the tissue characterization parameters must be obtained on a cross section of the tissue where the obtained values are stable. Nevertheless, conventionally, it is difficult for the operator to determine whether or not an obtained value of a tissue characterization parameter is stable. Therefore, in conventional ultrasonic imaging apparatuses, the credibility of the obtained values of the tissue characterization parameters is low.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide an ultrasonic imaging apparatus whereby an operator can easily determine stability of a value of a tissue characterization parameter which is obtained from the apparatus.
  • Another object of the present invention is to provide an ultrasonic imaging apparatus whereby an operator can easily determine a cross section which gives the most stable value of a tissue characterization parameter which is to be obtained, among a plurality of cross sections from which values of the tissue characterization parameter are most recently obtained.
  • According to the aspect of the present invention, there is provided an ultrasonic imaging apparatus which comprises: an ultrasound generating unit for generating a pulsed ultrasound to externally output in a certain direction for each output of the pulsed ultrasound; an ultrasound detecting unit for detecting reflected ultrasound which is generated by reflection of the pulsed ultrasound at various points outside of the ultrasonic imaging apparatus in the above direction, and reaches the ultrasound detecting unit after the above output of pulsed ultrasound; a scanning unit for scanning the direction of the pulsed ultrasound which is generated by the ultrasound generating unit and the reflected ultrasound which reaches the ultrasound detecting unit, so that a plane is scanned by the pulsed ultrasound which is generated by the ultrasound generating unit during one plane scan cycle; a two-dimensional distribution obtaining unit for obtaining a two-dimensional distribution of a predetermined characteristic parameter of a medium of the ultrasound at various points in the plane, wherein distances from the ultrasound detecting unit to the various points in the plane at which the reflected ultrasound are generated, are determined by measuring times which elapsed after the pulsed ultrasound is output from the ultrasound generating unit until the corresponding reflected ultrasound are detected in the ultrasound detecting unit; a region of interest designating unit for designating a region of interest in the plane; and a statistic information obtaining unit for obtaining statistic information on a dispersing characteristic of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • The ultrasonic imaging apparatus further comprises a statistic information indicating unit for indicating the statistic information.
  • The ultrasonic imaging apparatus further comprises a statistic information storing unit for storing the statistic information for a predetermined number of planes.
  • The ultrasonic imaging apparatus further comprises a stored statistic information indicating unit for indicating the statistic information which is stored in the statistic information storing unit.
  • The ultrasonic imaging apparatus further comprises a two-dimensional distribution storing unit for storing the two-dimensional distributions of the predetermined characteristic parameter of the medium for a predetermined number of planes.
  • The ultrasonic imaging apparatus further comprises a stored distribution indicating unit for indicating the two-dimensional distributions which are stored in the two-dimensional distribution storing unit.
  • The statistic information storing unit stores the statistic information for a predetermined number of planes for which the two-dimensional distribution of the predetermined characteristic parameter of the medium are most recently obtained by the two-dimensional distribution obtaining unit.
  • The ultrasonic imaging apparatus further comprises a stored statistic information indicating unit for indicating the statistic information which is stored in the statistic information storing unit.
  • The ultrasonic imaging apparatus further comprises a two-dimensional distribution storing unit for storing the two-dimensional distributions of the predetermined characteristic parameter of the medium for a predetermined number of planes which are most recently obtained by the two-dimensional distribution obtaining unit.
  • The ultrasonic imaging apparatus further comprises a stored distribution indicating unit for indicating one of the two-dimensional distributions which are stored in the two-dimensional distribution storing unit.
  • The ultrasonic imaging apparatus further comprises a storage freezing unit for freezing an operation renewing the statistic information storing unit and the two-dimensional distribution storing unit.
  • The ultrasonic imaging apparatus further comprises a frozen plane designating unit for designating one of the planes for which the statistic information and the two-dimensional distributions are stored in the statistic information storing unit and the two-dimensional distribution storing unit, respectively, after the statistical information storing means and the two-dimensional distribution storing means are frozen.
  • The ultrasonic imaging apparatus further comprises a designated information indicating unit for indicating the statistic information and the two-dimensional distribution for the plane which are designated by the frozen plane designating unit.
  • The ultrasonic imaging apparatus further comprises: a plane designating unit for designating one of the planes for which the statistic information and the two-dimensional distributions are stored in the statistic information storing unit and the two-dimensional distribution storing unit, and a history information indicating unit for indicating a recent history of the statistic information from a plane for which the two-dimensional distribution is most recently obtained, to the plane which is designated by the plane designating unit.
  • When the statistic information obtaining unit comprises a standard deviation obtaining unit for obtaining a standard deviation of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane, the ultrasonic imaging apparatus may further comprise: a minimum standard deviation plane determining unit for determining a plane for which the minimum standard deviation is obtained by the standard deviation obtaining unit, among planes for which the statistic information and the two-dimensional distributions are stored in the statistic information storing unit and the two-dimensional distribution storing unit; and a minimum standard deviation plane indicating unit for indicating the plane for which the minimum standard deviation is obtained by the standard deviation obtaining unit.
  • The ultrasonic imaging apparatus further comprises an optimum two-dimensional distribution indicating unit for indicating a two-dimensional distribution for the plane for which the minimum standard deviation is obtained by the standard deviation obtaining unit.
  • The statistic information includes an average of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • The statistic information includes a standard deviation of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • The statistic information includes a skewness of a frequency distribution of values of the tissue characterization parameter which was obtained in the parameter calculation circuit within the region of interest of the predetermined characteristic parameter of the medium at the various points in the region of interest of the plane.
  • The statistic information includes a kurtosis of a frequency distribution of the values of the tissue characterization parameter of the medium at the various points in the region of interest of the plane.
  • The ultrasonic imaging apparatus further comprises: a region of interest redesignating unit for designating a region of interest other than the region of interest which is designated by the region of interest designating unit, in the plane; and a statistic information reobtaining unit for obtaining statistic information on a dispersing characteristic of the predetermined characteristic parameter of the medium at the various points in the region of interest which is designated by the region of interest redesignating unit.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings:
    • Figure 1 is a block diagram showing a construction of the embodiment of the present invention;
    • Figure 2 is a block diagram showing a construction of an example of the parameter calculation circuit 100 in Fig. 1;
    • Figure 3 is a block diagram showing a construction of the characteristic portion of the embodiment of the present invention;
    • Figure 4 is a block diagram showing a construction of the frequency distribution obtaining circuit 33 in Fig. 3;
    • Figure 5 is a histogram showing a frequency distribution of values of a tissue characterization parameter in a region of interest;
    • Figure 6 is a diagram showing an example of the display of the two-dimensional distribution of detected values of a tissue characterization parameter and an indication of the designated region of interest;
    • Figure 7 is a diagram showing an example indication of a recent history of the average of detected values of a tissue characterization parameter in a region of interest;
    • Figure 8 is a diagram showing an example indication of a recent history of the standard deviation of detected values of a tissue characterization parameter in a region of interest;
    • Figure 9 is a diagram showing an example indication of a recent history of the skewness of a frequency distribution of detected values of the tissue characterization parameter in a region of interest;
    • Figure 10 is a diagram showing an example indication of a recent history of the kurtosis of a frequency distribution of detected values of the tissue characterization parameter in a region of interest;
    • Figure 11 is a diagram showing an example indication of a recent history of the frequency distribution of detected values of a tissue characterization parameter in a region of interest;
    • Figure 12 is a diagram showing an example indication in an operation designating a frame by an operator using a cursor;
    • Figure 13 is a diagram showing an example indication of a frame which is designated as a frame which gives the minimum standard deviation among a plurality of frames which has been most recently observed; and
    • Figure 14 is a diagram showing an example indication of a frequency distribution of values of a tissue characterization parameter in a current frame, where a frequency distribution of values of the tissue characterization parameter in the frame which gives the minimum standard deviation is superimposed on the frequency distribution in the current frame.
    DESCRIPTION OF THE PREFERRED EMBODIMENTS Fig. 1
  • Figure 1 is a block diagram showing a construction of the embodiment of the present invention. In Fig. 1, reference numeral 1 denotes an ultrasonic transducer array, 2₁, 2₂, 2₃, ... 2n and 6₁, 6₂, 6₃, ... 6n each denote an amplifier, 3₁, 3₂, 3₃, ... 3n and 7₁, 7₂, 7₃, ... 7n each denote a delay circuit, 4 denotes a pulse generator, 5 denotes a timing generator, 8 denotes a summing amplifier, 9 denotes a LOG amplifier, 9' denotes a time gain control circuit, 10 denotes a detector, 11 denotes a low pass filter, 12 denotes an analog to digital converter, 100 denotes a parameter calculation circuit, 200 denotes a characteristic portion of the embodiment of the present invention, and 300 denotes a display unit.
  • The timing generator 5 generates a timing signal at a constant rate, and the pulse generator 4 generates a pulse signal to generate an ultrasound pulse. Each delay circuit 3i and 7i (i=1, 2, ... n) is connected in series to a corresponding one of the amplifiers 2i and 6i (i=1, 2, ... n). The pulse signal is input in parallel to the respective series connections of the delay circuits 3i (i=1, 2, ... n) and the amplifiers 2i (i=1, 2, ... n). The ultrasonic transducer array 1 comprises a plurality of transducer elements. Each transducer element comprises a piezo-electric element which converts an electric signal to a mechanical deformation to generate an ultrasound, and generates an electric signal when the element receives an ultrasound. The transducer array 1 is manually applied to a skin over a region of tissue of the human body in which a doctor is interested, to diagnose the region. The above outputs of the series connections parallel connection are respectively applied to the plurality of transducer elements of the ultrasonic transducer array 1. Delay times in the above delay circuits 3i (i=1, 2, ... n) are controlled so that the ultrasound which is generated at the above transducer elements are synthesized to form an ultrasound beam directed in a certain direction for each cycle of the output of the ultrasound, and the direction is moved to scan a cross section of the tissue for each scanning cycle.
  • The electric signals which are output from the plurality of transducer elements are respectively input in parallel into the series connections of the delay circuits 7i (i=1, 2, ... n) and the amplifiers 6i (i=1, 2, ... n). The outputs of the series connections of the delay circuits 7i (i=1, 2, ... n) and the amplifiers 6i (i=1, 2, ... n) are summed in the summing amplifier 8 to apply the summed signal to the LOG amplifier 9. Delay times in the above delay circuits 7i (i=1, 2, ... n) are controlled so that the summed signal corresponds to ultrasound which is received in the transducer array 1 from the above direction of the above ultrasound beam which is generated in the transducer array 1, and the direction is moved to scan a cross section of the tissue for each scanning cycle, synchronized with the above scanning operation by the delay circuits 3i (i=1, 2, ... n). The LOG amplifier 9 amplifies the summed signal. The gain of the LOG amplifier 9 is controlled by the time gain control circuit 9' so that the gain of the LOG amplifier 9 is increased with a time which is elapsed from each time of the above generation of the ultrasound in the transducer array 1 in accordance with a logarithm line. The output of the LOG amplifier 9 is applied in parallel to the detector 10 and the parameter calculation circuit 100.
  • The envelope of the above output of the LOG amplifier 9 is detected in the detector 10, and the detected signal is input into the low pass filter 11. The output of the low pass filter 11 corresponds to image data of ultrasonograph. The output of the low pass filter 11 is converted to a digital form by the analog to digital converter 12. The digital data is supplied to the characteristic portion 200.
  • Parameter Calculation Circuit (Fig. 2)
  • Figure 2 is a block diagram showing a construction of an example of the parameter calculation circuit 100 in Fig. 1. In Fig. 2, reference numeral 54 denotes a gradient calculation circuit, 55 denotes a center frequency detector, 56 denotes a divider, and 57 denotes a multiplier.
  • The gradient calculation circuit 54 obtains a gradient of an envelope of the above output of the LOG amplifier 9 in a digital form, and the center frequency detector 55 detects a center frequency of the output of the LOG amplifier 9 in a digital form. The divider 56 divides the output of the gradient calculation circuit 54 by the output of the center frequency detector 55, and the multiplier 57 multiplies the output of the divider 56 by a constant -1/2c to obtain the ultrasonic attenuation coefficient. The obtained ultrasonic attenuation coefficient is supplied to the above characteristic portion 200. The detail of the construction for obtaining the ultrasonic attenuation coefficient is disclosed in the Japanese Unexamined Patent Publication No. 62-109553. The parameter calculation circuit 100 may be another construction for obtaining an ultrasonic reflection coefficient, or another elasticity parameter. These constructions for obtaining the ultrasonic reflection coefficient, and the other elasticity parameters are conventionally known.
  • Characteristic Portion (Fig. 3)
  • Figure 3 is a block diagram showing a construction of the characteristic portion of the embodiment of the present invention. In Fig. 3, reference numeral 31 denotes a frame memory for the two-dimensional distribution of a tissue characterization parameter, 32 denotes a statistic calculation circuit, 33 denotes a frequency distribution obtaining circuit, 34 denotes a scroll memory, 35 denotes a memory, 36 denotes a digital scan converter, 37 denotes a region of interest designation circuit, 38 denotes a frame designation circuit, 39 denotes a minimum dispersion frame obtaining circuit, 40 denotes a freeze control circuit, 41 denotes a frame memory for image data of ultrasonograph, and 42 denotes a CRT.
  • The above digital image data of ultrasonograph is stored in the frame memory 41, and the above digital tissue characterization parameter is stored in the frame memory 31. These frame memories respectively hold the data of a plurality of frames which have been most recently observed. The statistic calculation circuit 32 obtains statistic information on a dispersing characteristic of the characteristic parameter of the tissue at the various points in a region of interest of each cross section. The region of interest is designated by the region of interest designation circuit 37 as explained later.
  • Statistic Information
  • The statistic information is, for example, an average of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section, a standard deviation of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section, a skewness of a frequency distribution of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section, or the kurtosis of a frequency distribution of the values of the tissue characterization parameter which was obtained in the parameter calculation circuit 100 within the region of interest in each cross section. When the values of the tissue characterization parameter in the region of interest are denoted by xi (i=1,2, ... N) where N denotes the number of the obtained values in the region of interest.
  • The average m is obtained by the following equation (1).
    Figure imgb0001
  • The variance σ² is obtained by the following equation (2).
    Figure imgb0002
  • The standard deviation σ is obtained by the following equation (3). σ = √σ²
    Figure imgb0003
  • The third order center moment µ₃ is obtained as the following equation (4).
    Figure imgb0004
  • The fourth order center moment µ₄ is obtained by the following equation (5).
    Figure imgb0005
  • The skewness S of the frequency distribution of the values of the tissue characterization parameter in the region of interest indicates asymmetry of the frequency distribution, and is obtained by the following equation (6). S=µ₃/σ³
    Figure imgb0006
  • The kurtosis K of the frequency distribution of the values of the tissue characterization parameter in the region of interest indicates flatness of the frequency distribution, and is obtained by the following equation (6). K=µ₄/σ⁴ -3
    Figure imgb0007
  • The results of the statistic calculations as above are input into the scroll memory 34 for each frame (cross section). The scroll memory 34 stores the statistic information for a predetermined number of frames which are most recently observed.
  • Frequency Distribution Obtaining Circuit (Fig. 4)
  • The frequency distribution obtaining circuit 33 obtains a frequency distribution of the values of the tissue characterization parameter in the region of interest in each cross section. Figure 4 is a block diagram showing a construction of the frequency distribution obtaining circuit 33 in Fig. 3. In Fig. 4, reference numeral 50 denotes a decoder, and 51₁, 51₂, 51₃, ... 51n each denote an accumulator.
  • The values of the tissue characterization parameter are sorted into a plurality of ranks (ranges of the values) to obtain a histogram of the frequency distribution. The accumulators 51₁, 51₂, 51₃, ... 51n are provided for the respective ranks. The decoder 50 receives respective values of the tissue characterization parameter which are stored in the frame memory 31. The decoder 50 has a plurality of outputs corresponding to the plurality of ranks to realize the function of the sorting. One of the outputs of the decoder 50 corresponding to one of the ranks to which the received value is to be sorted, becomes active when the enable signal is active. The enable signal is generated by the region of interest designation circuit 37, and is made active when values of the tissue characterization parameter in the region of interest are output from the frame memory 31. A reset signal is applied to the plurality of accumulators 51₁, 51₂, 51₃, ... 51n when the accumulators should be reset. The accumulation is carried out for example, for each scanning cycle (each cross section), or for a predetermined number of successive scanning cycles. Figure 5 is an example histogram showing a frequency distribution of values of the tissue characterization parameter in the region of interest. The above obtained frequency distribution is input into the memory 35 for each frame (cross section). The memory 35 stores the data of the frequency distributions for a predetermined number of frames which are most recently observed.
  • Fig. 6
  • Figure 6 is a diagram showing an example of the display of the two-dimensional distribution of detected values of a tissue characterization parameter and an indication of the designated region of interest. Viewing the display, the operator can designate a desired region of interest, for example, by a pointing device. The region of interest designation circuit 37 controls the operation reading the values of the tissue characterization parameter from the frame memory 31 and the operation writing the values into the statistic calculation circuit 32 and the frequency distribution obtaining circuit 33 by supplying corresponding addresses and reading and writing signals. The technique of designating a region of interest is well-known.
  • Indication of History of Statistics (Figs.3, 7, 8, 9, and 10)
  • In an indication mode, a recent history of one or more of the aforementioned statistic information in a predetermined number of successive frames ending with a current frame is indicated in a real time mode as shown in Figs. 7 to 11. The above history data is supplied from the scroll memory 34 and the armory 35. In the above indication, each statistic information in the history may be calculated for a predetermined number of successive frames instead of one frame. Figure 7 is a diagram showing an example indication of a recent history of an average of a frequency distribution of detected values of a tissue characterization parameter in a region of interest, Figure 8 is a diagram showing an example indication of a recent history of a standard deviation of a frequency distribution of detected values of a tissue characterization parameter in a region of interest, Figure 9 is a diagram showing an example indication of a recent history of the skewness of a frequency distribution of detected values of the tissue characterization parameter in a region of interest, Figure 10 is a diagram showing an example indication of a recent history of the kurtosis of a frequency distribution of detected values of the tissue characterization parameter in a region of interest, and Figure 11 is a diagram showing an example indication of a recent history of the frequency distribution of detected values of a tissue characterization parameter in a region of interest. In Fig. 11, the lines for the frequency distributions of the different frames may be indicated by the different types of lines, respectively, for example, by using different colors. The operator can view the above indication while manipulating the probe. Therefore, for example, the operator can recognize whether or not a most recently variation of a position of the probe gives a better (more stable and credible) result, and can avoid to take unstable data based on the above history indications.
  • Freeze Control and Frame Designation (Figs. 3 and 12)
  • When the operator finds in the above history indication that credible data has been obtained, the operator can freeze an operation renewing the contents of the scroll memory 34 and the memory 35, and thus, can freeze the history indication. The freezing operation can be carried out through the freeze control circuit 40. When the freeze control circuit 40 receives a command to effect the freeze operation, the freeze control circuit 40 supplies a freeze control signal to the frame memories 31 and 41, the scroll memory 34, and the memory 35 to freeze these elements, as shown in Fig. 3.
  • Figure 12 is a diagram showing an example indication in an operation designating a frame by an operator using a cursor. As shown in Fig. 12, the operator can designate one of the frames for which the history of the statistic information is indicated, based on the indication, by moving a cursor to the frame in the history indication using a pointing device (not shown). This operation is realized through the frame designation circuit 38. Responding to the designation by the operator, the frame designation circuit 38 can control the frame memories 31 and 41, the scroll memory 34, and the memory 35, so that these memories output contents thereof regarding the designated frame, to the digital scan converter 36. Further, the frame designation circuit 38 can send the information on the designated frame to the digital scan converter 36 so that the above cursor indication is realized.
  • Further, the aforementioned region of interest designation circuit 37 can be operated again to reobtain statistic information on the dispersing characteristic of the predetermined characteristic parameter in a region of interest which is different from the region of interest which was first designated. Redesignating the new region of interest through the region of interest designation circuit 37 after freezing the above memories in Fig. 3, the above statistical information can be obtained by using the frozen data of the tissue characterization parameter, and operating the statistic calculation circuit 32 and/or the frequency distribution obtaining circuit 33.
  • Calculation of Most Stable Frame (Figs. 3, 13, and 14)
  • The most stable frame among a plurality of frames which have been most recently observed, can be automatically obtained by using the recent history data of the statistic information.
  • The minimum dispersion frame obtaining circuit 39 obtains a frame of a minimum standard deviation. Although not shown, the minimum dispersion frame obtaining circuit 39 may comprise registers for holding a frame number of a temporarily minimum standard deviation, and the temporarily minimum standard deviation, and a comparator for comparing a standard deviation of a current frame with the held standard deviation, and the minimum dispersion frame obtaining circuit 39 replace the held frame number and the standard deviation with the current frame number and the standard deviation of the current frame when the current standard deviation is not larger than the held standard deviation. When a command to indicate the frame of the minimum standard deviation which is determined by the minimum dispersion frame obtaining circuit 39 is input, the minimum dispersion frame obtaining circuit 39 sends a marker indication data to the digital scan converter 36. The marker indication data indicates how many frames before the current frame the frame of the minimum standard deviation is. When the aforementioned control circuit of the digital scan converter 36 receives the marker indication data, a marker indication is shown superimposed on the above history indication of the statistic information. Figure 13 is a diagram showing an example indication of a frame which is designated as a frame which gives the minimum standard deviation among a plurality of frames which has been most recently observed.
  • Further, a histogram indicating a frequency distribution of the values of the tissue characterization parameter in a current frame can be indicated and superimposed on another histogram indicating a frequency distribution of the values of the tissue characterization parameter in the above frame of the minimum standard deviation, as shown in Fig. 14. This indication is realized by controlling the memory 35 through the frame designation circuit 38 by another output of the minimum dispersion frame obtaining circuit 39. The output of the minimum dispersion frame obtaining circuit 39 includes information of the frame of the minimum standard deviation. When the frame designation circuit 38 receives the above output, the frame designation circuit 38 receives the above output, the frame designation circuit 38 can control the frame memories 31 and 41, the scroll memory 34, and the memory 35, so that these memories output contents thereof regarding the frame of the minimum standard deviation, to the digital scan converter 36.
  • Otherwise, using the function of the minimum dispersion frame obtaining circuit 39, it is possible to set the ultrasonic imaging apparatus of Fig. 1 so that the apparatus automatically indicates the image of the ultrasonograph and the two-dimensional distribution image of the tissue characterization parameter of the frame of the minimum standard deviation by controlling the frame memories 31 and 41 through the frame designation circuit 38.
  • Although not shown, all the above operations in the embodiment can be realized by either a hardware logic circuit or software on a microcomputer.

Claims (22)

  1. An ultrasonic imaging apparatus comprising:
       ultrasound generating means (1, 2₁, 2₂, 2₃, ... 2n, 3₁, 3₂, 3₃, ... 3n, 4, 5) for generating a pulsed ultrasound to externally output in a certain direction of each output of said pulsed ultrasound;
       ultrasound detecting means (1, 6₁, 6₂, 6₃, ... 6n,7₁, 7₂, 7₃, ... 7n, 8, 9) for detecting reflected ultrasound which is generated by reflection of said pulsed ultrasound at various points outside of said ultrasonic imaging apparatus in said direction, and reaches the ultrasound detecting means after said each output of pulsed ultrasound;
       scanning means (3₁, 3₂, 3₃, ... 3n and 7₁, 7₂, 7₃, ... 7n) for scanning said direction of said pulsed ultrasound which is generated by said ultrasound generating means and said reflected ultrasound which reaches said ultrasound detecting means, so that a plane is scanned by the pulsed ultrasound which is generated by said ultrasound generating means during one plane scan cycle;
       two-dimensional distribution obtaining means (100, 41) for obtaining a two-dimensional distribution of a predetermined characteristic parameter of a medium of the ultrasound at various points in said plane, wherein distances from the ultrasound detecting means to the various points in the plane at which said reflected ultrasound are generated, are determined by measuring times which elapsed after said pulsed ultrasound is output from the ultrasound generating means until the corresponding reflected ultrasound are detected in said ultrasound detecting means; and
       region of interest designating means (37) for designating a region of interest in said plane; characterized in that
       statistical information obtaining means (32, 33) for obtaining statistical information on a dispersing characteristic of said predetermined characteristic parameter of the medium at various points in the region of interest of said plane.
  2. An ultrasonic imaging apparatus according to claim 1, further comprising statistical information indicating means (36, 42) for indicating said statistical information.
  3. An ultrasonic imaging apparatus according to claim 1, further comprising statistical information storing means (34, 35) for storing said statistical information for a predetermined number of planes.
  4. An ultrasonic imaging apparatus according to claim 3, further comprising stored statistical information indicating means (36, 42) for indicating said statistical information which is stored in said statistical information storing means.
  5. An ultrasonic imaging apparatus according to claim 3, further comprising two-dimensional distribution storing means (31) for storing the two-dimensional distributions of the predetermined characteristic parameter of the medium for a predetermined number of planes.
  6. An ultrasonic imaging apparatus according to claim 5, further comprising stored distribution indicating means (36, 38) for indicating one of said two-dimensional distributions which are stored in said two-dimensional distribution storing means.
  7. An ultrasonic imaging apparatus according to claim 3, wherein said statistical information storing means (34, 35) stores said statistical information for a predetermined number of planes for which the two-dimensional distribution of the predetermined characteristic parameter of the medium are most recently obtained by the two-dimensional distribution obtaining means.
  8. An ultrasonic imaging apparatus according to claim 7, further comprising stored statistical information indicating means (36, 38) for indicating said statistical information which is stored in said statistical information storing means.
  9. An ultrasonic imaging apparatus according to claim 7, further comprising two-dimensional distribution storing means (31) for storing the two-dimensional distributions of the predetermined characteristic parameter of the medium for a predetermined number of planes which are most recently obtained by the two-dimensional distribution obtaining means.
  10. An ultrasonic imaging apparatus according to claim 9, further comprising stored distribution indicating means (36, 38) for indicating one of said two-dimensional distributions which are stored in said two-dimensional distribution storing means.
  11. An ultrasonic imaging apparatus according to claim 9, further comprising storage freezing means (40) for freezing an operation of renewing said statistical information storing means and said two-dimensional distribution storing means.
  12. An ultrasonic imaging apparatus according to claim 11, further comprising frozen plane designating means (38) for designating one of planes for which the statistical information and the two-dimensional distributions are stored in said statistical information storing means (34, 35) and said two-dimensional distribution storing means (31), respectively, after said statistical information storing means (34, 35) and said two-dimensional distribution storing means (31) are frozen.
  13. An ultrasonic imaging apparatus according to claim 12, further comprising designated information indicating means (34, 35, 36) for indicating said statistical information and said two-dimensional distribution for the plane which is designated by said frozen plane designating means (38).
  14. An ultrasonic imaging apparatus according to claim 9, further comprising:
       plane designating means (38) for designating one of the planes for which the statistical information and the two-dimensional distributions are stored in said statistical information storing means and said two-dimensional distribution storing means, respectively, and
       history information indicating means (34, 35, 36) for indicating a recent history of said statistical information from a plane for which the two-dimensional distribution is most recently obtained, to the plane which is designated by said plane designating means (38).
  15. An ultrasonic imaging apparatus according to claim 9, wherein said statistical information obtaining means (32, 33) comprises standard deviation obtaining means (32) for obtaining a standard deviation of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane;
       said ultrasonic imaging apparatus further comprising:
          minimum standard deviation plane determining means (39) for determining a plane for which the minimum standard deviation is obtained by said standard deviation obtaining means (32), among planes for which the statistical information and the two-dimensional distributions are stored in said statistical information storing means (34, 35) and said two-dimensional distribution storing means (31); and
          minimum standard deviation plane indicating means (39, 34, 36) for indicating the plane for which the minimum standard deviation is obtained by said standard deviation obtaining means (32).
  16. An ultrasonic imaging apparatus according to claim 15, further comprising two-dimensional distribution indicating means (36, 42) for indicating the two-dimensional distribution for the plane for which the minimum standard deviation is obtained by said standard deviation obtaining means.
  17. An ultrasonic imaging apparatus according to claim 1, wherein said statistical information includes an average of values of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane.
  18. An ultrasonic imaging apparatus according to claim 1, wherein said statistical information includes a standard deviation of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane.
  19. An ultrasonic imaging apparatus according to claim 1, wherein said statistical information includes a skewness of a frequency distribution of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane.
  20. An ultrasonic imaging apparatus according to claim 1, wherein said statistical information includes a kurtosis of a frequency distribution of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane.
  21. An ultrasonic imaging apparatus according to claim 9, further comprising:
       region of interest redesignating means (37) for designating a region of interest other than said region of interest which is designated by said region of interest designating means, in said plane; and
       statistical information reobtaining means (32) for obtaining statistical information on a dispersing characteristic of said predetermined characteristic parameter of the medium at the various points in said region of interest which is designated by said region of interest redesignating means.
  22. An ultrasonic imaging apparatus according to claim 1, wherein said statistical information includes a histogram indicating a distribution of the obtained values of said predetermined characteristic parameter of the medium at the various points in the region of interest of said plane.
EP91304922A 1990-05-31 1991-05-31 Ultrasonic imaging apparatus indicating dispersion of characteristic parameter of medium Expired - Lifetime EP0459813B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2142355A JPH0435653A (en) 1990-05-31 1990-05-31 Supersonic diagnosis device
JP142355/90 1990-05-31

Publications (3)

Publication Number Publication Date
EP0459813A2 true EP0459813A2 (en) 1991-12-04
EP0459813A3 EP0459813A3 (en) 1992-05-20
EP0459813B1 EP0459813B1 (en) 1997-11-19

Family

ID=15313448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91304922A Expired - Lifetime EP0459813B1 (en) 1990-05-31 1991-05-31 Ultrasonic imaging apparatus indicating dispersion of characteristic parameter of medium

Country Status (4)

Country Link
US (1) US5224480A (en)
EP (1) EP0459813B1 (en)
JP (1) JPH0435653A (en)
DE (1) DE69128212T2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514202B2 (en) 1998-10-02 2003-02-04 Scimed Life Systems, Inc. Systems and methods for evaluating objects within an ultrasound image
CN101065067B (en) * 2004-08-05 2011-09-07 株式会社日立医药 Method for displaying elastic image and ultrasonograph
CN103097884A (en) * 2010-09-16 2013-05-08 西门子公司 Method and device for determining an orientation of a defect present within a mechanical component
US8545412B2 (en) 2009-05-29 2013-10-01 Boston Scientific Scimed, Inc. Systems and methods for making and using image-guided intravascular and endocardial therapy systems
US9451929B2 (en) 2008-04-17 2016-09-27 Boston Scientific Scimed, Inc. Degassing intravascular ultrasound imaging systems with sealed catheters filled with an acoustically-favorable medium and methods of making and using

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388461A (en) * 1994-01-18 1995-02-14 General Electric Company Beamforming time delay correction for a multi-element array ultrasonic scanner using beamsum-channel correlation
JP4072445B2 (en) * 2003-02-14 2008-04-09 キヤノン株式会社 Image display device
WO2006068079A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Ultrasonic diagnosis apparatus
JP5160227B2 (en) * 2005-05-09 2013-03-13 株式会社日立メディコ Ultrasonic diagnostic apparatus and ultrasonic image display method
JP4966578B2 (en) * 2006-04-19 2012-07-04 株式会社日立メディコ Elastic image generation method and ultrasonic diagnostic apparatus
EP2589341A1 (en) 2010-06-30 2013-05-08 FUJIFILM Corporation Ultrasound diagnostic device and ultrasound diagnostic method
WO2012002421A1 (en) * 2010-06-30 2012-01-05 富士フイルム株式会社 Ultrasound diagnosis device and ultrasound diagnosis method
US10154826B2 (en) 2013-07-17 2018-12-18 Tissue Differentiation Intelligence, Llc Device and method for identifying anatomical structures
US10716536B2 (en) 2013-07-17 2020-07-21 Tissue Differentiation Intelligence, Llc Identifying anatomical structures
US11986341B1 (en) 2016-05-26 2024-05-21 Tissue Differentiation Intelligence, Llc Methods for accessing spinal column using B-mode imaging to determine a trajectory without penetrating the the patient's anatomy
US11701086B1 (en) 2016-06-21 2023-07-18 Tissue Differentiation Intelligence, Llc Methods and systems for improved nerve detection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2514910A1 (en) * 1981-10-19 1983-04-22 Labo Electronique Physique DEVICE FOR TREATING ECHOS IN ULTRASONIC ULTRASONOGRAPHIC MEDIA EXPLORATION APPARATUS AND MEDIUM EXPLORATION APPARATUS COMPRISING SUCH A TREATMENT DEVICE
JPS5883942A (en) * 1981-11-12 1983-05-19 株式会社東芝 Ultrasonic pulse doppler apparatus
US4648276A (en) * 1984-01-27 1987-03-10 Klepper John R Apparatus for measuring the characteristics of an ultrasonic wave medium
JPS60176629A (en) * 1984-02-23 1985-09-10 テルモ株式会社 Ultrasonic measuring method and apparatus
US4662380A (en) * 1985-10-31 1987-05-05 General Electric Company Adaptive time gain compensation system for ultrasound imaging
JPS62109553A (en) * 1985-11-08 1987-05-20 富士通株式会社 Ultrasonic biological characteristic measuring device
US4817015A (en) * 1985-11-18 1989-03-28 The United States Government As Represented By The Secretary Of The Health And Human Services High speed texture discriminator for ultrasonic imaging
US4855911A (en) * 1987-11-16 1989-08-08 Massachusetts Institute Of Technology Ultrasonic tissue characterization
US4852577A (en) * 1988-04-07 1989-08-01 The United States Of America As Represented By The Department Of Health And Human Services High speed adaptive ultrasonic phased array imaging system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514202B2 (en) 1998-10-02 2003-02-04 Scimed Life Systems, Inc. Systems and methods for evaluating objects within an ultrasound image
US6945938B2 (en) 1998-10-02 2005-09-20 Boston Scientific Limited Systems and methods for evaluating objects with an ultrasound image
CN101065067B (en) * 2004-08-05 2011-09-07 株式会社日立医药 Method for displaying elastic image and ultrasonograph
US9451929B2 (en) 2008-04-17 2016-09-27 Boston Scientific Scimed, Inc. Degassing intravascular ultrasound imaging systems with sealed catheters filled with an acoustically-favorable medium and methods of making and using
US8545412B2 (en) 2009-05-29 2013-10-01 Boston Scientific Scimed, Inc. Systems and methods for making and using image-guided intravascular and endocardial therapy systems
CN103097884A (en) * 2010-09-16 2013-05-08 西门子公司 Method and device for determining an orientation of a defect present within a mechanical component
CN103097884B (en) * 2010-09-16 2016-12-28 西门子公司 For measuring the method and apparatus in the orientation of defect present in mechanical part

Also Published As

Publication number Publication date
EP0459813B1 (en) 1997-11-19
DE69128212T2 (en) 1998-03-12
JPH0435653A (en) 1992-02-06
EP0459813A3 (en) 1992-05-20
DE69128212D1 (en) 1998-01-02
US5224480A (en) 1993-07-06

Similar Documents

Publication Publication Date Title
US5224480A (en) Ultrasonic imaging apparatus indicating dispersion of characteristic parameter of medium
US6126605A (en) Ultrasound color flow display optimization by adjusting dynamic range
US6786868B2 (en) Ultrasonic tomograph
US5195521A (en) Tissue measurements
EP1840594B1 (en) Ultrasonic diagnostic apparatus and data analysis and measurement apparatus
US9168021B2 (en) Method and apparatus for measuring heart contractility
US9241689B2 (en) Ultrasonic diagnostic equipment and imaging processing apparatus
JP3410843B2 (en) Ultrasound diagnostic equipment
JP4847665B2 (en) Ultrasonic imaging system for medical diagnosis and method for determining acoustic output parameters of a transmitted ultrasonic beam
JPS6377437A (en) Movable matter examination apparatus by ultrasonic echography
JP7513803B2 (en) ULTRASONIC DIAGNOSTIC APPARATUS AND METHOD FOR CONTROLLING ULTRASONIC DIAGNOSTIC APPARATUS
US5638820A (en) Ultrasound system for estimating the speed of sound in body tissue
WO2000040996A1 (en) Ultrasound color flow display optimization by adjusting color maps
JP3410821B2 (en) Ultrasound diagnostic equipment
JPH0924047A (en) Ultrasonic diagnostic device
US4735211A (en) Ultrasonic measurement apparatus
JP2003061959A (en) Ultrasonic diagnostic apparatus
US6398732B1 (en) Acoustic border detection using power modulation
US8282551B2 (en) Ultrasonic diagnostic apparatus, data analysis method, and data analysis program
JP2023155494A (en) Ultrasonic diagnostic device
US6120451A (en) Ultrasound color flow display optimization by adjustment of threshold
US6500125B1 (en) Ultrasound b/color priority threshold calculation
JPS592341B2 (en) Resolution improvement device for real-time ultrasound imaging equipment
US4475397A (en) Method and means for attaining ultrasonic attenuation by vector sample averaging
KR101167308B1 (en) Adaptive ultrasound imaging system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19920826

17Q First examination report despatched

Effective date: 19940426

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69128212

Country of ref document: DE

Date of ref document: 19980102

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990528

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST