EP0454958A1 - Serrure, notamment serrure avec bielle motrice - Google Patents
Serrure, notamment serrure avec bielle motrice Download PDFInfo
- Publication number
- EP0454958A1 EP0454958A1 EP91102726A EP91102726A EP0454958A1 EP 0454958 A1 EP0454958 A1 EP 0454958A1 EP 91102726 A EP91102726 A EP 91102726A EP 91102726 A EP91102726 A EP 91102726A EP 0454958 A1 EP0454958 A1 EP 0454958A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lock
- cuff
- bolt
- housing
- fastening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003780 insertion Methods 0.000 claims abstract description 12
- 230000037431 insertion Effects 0.000 claims abstract description 12
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 description 15
- 230000033001 locomotion Effects 0.000 description 13
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007717 exclusion Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 235000013290 Sagittaria latifolia Nutrition 0.000 description 1
- 241000826860 Trapezium Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 235000015246 common arrowhead Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05B—LOCKS; ACCESSORIES THEREFOR; HANDCUFFS
- E05B59/00—Locks with latches separate from the lock-bolts or with a plurality of latches or lock-bolts
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C9/00—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing
- E05C9/004—Faceplates ; Fixing the faceplates to the wing
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C9/00—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing
- E05C9/04—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing with two sliding bars moved in opposite directions when fastening or unfastening
- E05C9/041—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing with two sliding bars moved in opposite directions when fastening or unfastening with rack and pinion mechanism
-
- E—FIXED CONSTRUCTIONS
- E05—LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
- E05C—BOLTS OR FASTENING DEVICES FOR WINGS, SPECIALLY FOR DOORS OR WINDOWS
- E05C9/00—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing
- E05C9/04—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing with two sliding bars moved in opposite directions when fastening or unfastening
- E05C9/047—Arrangements of simultaneously actuated bolts or other securing devices at well-separated positions on the same wing with two sliding bars moved in opposite directions when fastening or unfastening comprising key-operated locks, e.g. a lock cylinder to drive auxiliary deadbolts or latch bolts
Definitions
- the invention relates to a lock, in particular espagnolette lock, according to the preamble of claim 1.
- locks in particular espagnolette locks, it is known to bend tabs cut free from the edge of the lock base facing the cuff and to connect these to the cuff either by spot welding or by riveting.
- the lock base and cuff thus form a firmly connected unit, which will be assigned to the lock set-up during subsequent assembly.
- Different types of locks require correspondingly designed units consisting of a cuff, lock base and lock fittings.
- Different types of locks can e.g. be formed by the fact that there are different sizes of distance between the handle mandrel and the axis of rotation of the key. Furthermore, they can have different backset dimensions.
- the object of the invention is based on the task of simplifying the manufacture of corresponding locks while increasing the possibility of variation. This object is achieved by the solution specified in claim 1.
- a lock in particular an espagnolette lock, is created, which is of manufacture differently designed locks according to the modular system.
- the lock housings can be prefabricated and assembled using different lock types. The same applies to the gauntlets.
- the corresponding cuff can then be assigned to the lock housing with easy assembly. That means that the cuff z. B. before delivery to the lock housing receiving the lock housing.
- the cuff and lock housing are connected via the fastening projections provided on the rear surface of the cuff and projecting over the narrow side walls of the lock housing. Therefore, there is good accessibility, which allows the cuff to be connected to the lock housing in the short term.
- Bolts which are oriented parallel to the cuff are particularly suitable as a compound. If these are designed as screws, only the corresponding screws need to be brought into joint engagement to fix the cuff to the lock housing.
- the fastening projections By inserting pockets on the narrow side walls for the fastening projections, it is possible to mount the cuff with the fastening projections on it by means of plug-in assembly. Then the bolts are then screwed into the threaded hole of the fastening projections while pushing through the pockets.
- the insertion pockets are formed by bends from the lock base and lock cover. The end sections of the bends of the insertion pocket provided in a narrow side overlap.
- the corresponding overlap area is penetrated by the bolt, which is screwed into the threaded bore of the fastening projection.
- a multiple function is achieved by the fact that the fastening projections on the bearing blocks are provided for the drive rods penetrating them. Separate slot guides in the area of the lock housing can then be omitted for the drive rods.
- the cuff with the drive rods form a firmly connected structural unit before assembly, which makes it easier to attach them to the lock housing.
- the outer surface of the fastening projections, pockets, bearing blocks are designed to be convexly curved or have a corresponding course. The pocket to be incorporated into the door is therefore completely filled by the lock housing with bearing blocks and fastening projections as well as insertion pockets.
- a bolt penetrating the lock base is used, which engages in a further projection protruding on the rear of the cuff.
- This bolt can also be designed as a bolt. However, its alignment is transverse to the other two bolts, so that this course of the three bolts results in a particularly high fastening stability of the cuff on the lock housing.
- the espagnolette lock has a lock housing 2 connected to a cuff 1.
- the cuff 1 fastened to one narrow side of the lock housing 2 has a greater length than the lock housing 2 and extends over an upper and a lower drive rod 3 or, respectively, emerging from the lock housing 2. 4.
- the latter are provided with locking members 5 which cooperate with counter-closing parts, not shown, on the frame.
- bearing blocks 8 extend from the rear surface of the cuff 1 and continue to form a step in rearward-facing fastening projections 9.
- the fastening projections 9 projecting over the narrow side walls 6, 7 have a trapezoidal shape such that the base of the trapezium faces the interior of the lock housing.
- both the lock base 10 and the lock cover 11 running parallel thereto form insertion pockets 12 and 13 on the narrow side walls.
- the pocket 12 formed by the lock base 10 is obtuse-angled.
- the angle section 12 ′′ is equipped with a passage opening 14 which is aligned with a threaded bore 15 of the fastening projection 9. Otherwise, this threaded hole runs parallel to the cuff 1.
- the other insertion pocket 13 in turn also has an angular shape.
- the angle leg 13 'starting directly from the castle ceiling 11 is supported on the facing oblique flank of the trapezoidal fastening projection 9.
- the adjoining angle leg 13' ' extends over the angle leg 12' 'and lies flat on it.
- There the angle leg 13 '' is equipped with a hole 16.
- the outer surface 18 of the bearing blocks 8 is convexly curved. Within this convex curvature also extend the outer surface of the fastening projections 9 and the insertion pockets 12, 13 formed by bends, cf. 5 and 6. This makes it possible to produce pockets on the doors which are adapted to the outline of the lock housing at the height of the bearing blocks 8.
- Each bearing block 8 has a projection 19 with an oval cross section for fixing it on the cuff 1, which is inserted into a shape-adapted recess 20 of the cuff and riveted there, cf. 5 and 14 in particular.
- the bearing blocks 8 form centering brackets 22 which are immersed in shape-matched edge recesses in the lock base 10 and lock cover 11.
- the aforementioned centering tabs 22 are flush with the outer surfaces of the lock base 10 and lock cover 11.
- the lower drive rod 4 is forked in the region of the section crossing the bearing block 8.
- a longitudinal slot 29 is formed by the two fork tines 4 ', 4''.
- Each fork 4 '. 4 ′′ is provided with an angled end section E, E ′, which rest on the lock base 10 and plunge into form-fitting coupling recesses 31, 32 of a drive rod connecting slide 28 lying flat on the lock base 10.
- the aforementioned longitudinal slot 29 extends, moreover, at the level of a through hole 30 of the cuff 1 for a locking cylinder fastening screw 30 '.
- a trap 33 is guided between the upper bearing block 8 and the projection 24. This has a head 33 'which extends through a latch opening 34 of the cuff 1 and is equipped with a latch slope, to which a latch tail 33' 'adjoins the housing.
- a bolt 35 is guided in the lock housing. Its locking head 35 'passes through a cross-section-adapted passage opening 36 of the cuff 1.
- the lock base 10 and the lock cover 11 hold a support plate 37 between them. This supports a toothed ring 39 in its lower region in a bore 38 facing the lock cover 11.
- the axis of rotation of the same is designated M1.
- the bore 38 is crossed by a locking cylinder insertion opening 40.
- the same is adapted to the outer contour of a profile locking cylinder 41.
- the axis of rotation M2 of the cylinder core of the profile locking cylinder used is eccentric to the axis of rotation M1, below the same, cf. Fig. 3.
- the aforementioned ring gear 39 has a radially directed gap 42 for engaging a lock bit 43 of the profile locking cylinder 41, shown in dash-dotted lines.
- two output gears 44, 45 mesh designated bearing pins go in one piece from the carrier plate 37.
- the ring gear 39 meshes with at least one driven gear 44 or 45.
- the rotation of the output gears 44, 45 is transmitted to an end gear 51 with the interposition of further reduction gears 46-50.
- the axle journals for the same are also part of the carrier plate 37.
- the carrier plate 37 thus contains all the pinion functional units.
- the end wheel 51 meshes with the rack 52, which is parallel to the cuff 1 and is located at the free end of the connecting rod connecting slide 28.
- a further drive rod connecting slide 53 is guided in a parallel position opposite the rack 52.
- the latter is assigned to the connecting rod connecting slide 53 in hook engagement 55 according to FIG. 10. In this way, the drive rod connecting slide 28, 53 are driven in opposite directions by the end gear 51 of the gear transmission.
- the aforementioned racks 52, 54 run on both sides of a section 37 ′ of the carrier plate 37 narrowed at the top.
- the drive rod connecting slide 53 controls the bolt closure with the interposition of a pivot lever 56 in such a way that first the drive rod connecting slide 53 leads the bolt exclusion and then the bolt 35 is taken along. As a result, only the locking members 5 can engage and bring about a tightening of the door, so that the locking bar 35 can then move freely into the striking plate recess facing it.
- the bolt 35 has on its bolt tail 35 'an inclined to the direction of movement of the bolt 35 Run-up slope 57. This is formed by a lateral elevation 35 '''of the bolt tail 35'', which elevation 35''' leads on the lock base 10.
- the elevation 35 ''' is surmounted by a guide pin 58 which protrudes into a longitudinal slot 59 of the lock base 10 which extends in the direction of exclusion of the bolt 35.
- the run-up slope 57 is followed by a recess 60 for a control arm 61 of the pivot lever 56.
- the end of the control arm 61 is, as can be seen from the figures, shaped like a club.
- the pivoted lever 56 which is mounted around a material-uniform pin 62 of the carrier plate 37 has on its side facing the connecting rod connecting slide 53 a toothed ring section 63, the teeth of which cooperate with a toothed strip 64 of the connecting rod connecting slide 53.
- the rack 64 is located on an extension 65 of the connecting rod slide 53 or the rack 54. This extension 65 extends with the bolt 35 closed in front of a locking edge 66 of the bolt tail 35 ′′, cf. Fig. 9.
- the lower end edge 65 'of the extension 65 is also formed into an inclined flank which cooperates with the ramp slope 57 in the manner described later.
- the terminal tooth 63 'of the ring gear section is immersed in a recess 67 of the drive rod connecting slide 53 which is approximately extended in accordance with the advance of the connecting rod connecting slide 53. This is a take-away game. When the game is over, the extension 65 has also released the bolt shift.
- the width of the bolt tail 35 ′′ corresponds approximately to that of the lateral elevation 35 ′′ ′′.
- the latter is slightly wider.
- the bolt tail 35 ′′ overlaps the driven wheels 44, 45, which, however, are located on the opposite side of the carrier plate 37.
- the bolt tail 35 ′′ extends in a cutout 68 of the carrier plate facing the lock base 10.
- the pivot pin 70 of an actuating arm 71 of a change lever arrangement W is immersed in an arch slot 69 of the support plate 37 arranged below the bolt 35 concentrically with the axis of rotation M1.
- the actuating arm 71 is designed as a hook pawl pointing in the circumferential direction of the ring gear 39.
- the longer lever arm of the actuating arm 71 forms a hook 72 at the end, which is arranged in the same plane as a support ring shoulder 73 of the ring gear 39.
- the hook 72 is supported on the support ring shoulder 73.
- a rod-shaped intermediate member 75 of the change lever arrangement W which runs approximately parallel to the cuff 1, articulates on the shorter lever arm of the actuating arm 71.
- a leaf spring 77 clamped on the carrier plate 37 then acts on the end of the actuating arm 71 equipped with the hook 72.
- the same endeavors to keep the actuating arm 71 in a neutral basic position, in which the hook 72 lies outside the movement path of the counter hook 74 of the ring gear 39.
- Such a neutral basic position of the actuating arm 71 is shown, for example, in FIG. 16.
- the upper end region 78 of the intermediate member 75 is plate-shaped and represents a plunger.
- An abutment 79 starting from the narrowed section 37 'of the carrier plate 37 and the opposite flank of the carrier plate section 37' serve to guide the end region 78.
- One end of the change lever spring 80 designed as a compression spring is supported on the abutment 79.
- the opposite end of the compression spring 80 is supported on laterally projecting shoulders 81 of the end region 78.
- the fastening pin 83 is located at the free end of the first arm 86 of the deflection member 84. This forms above the end region 78 a driving shoulder 87, which lies in the path of movement of the end region 78 of the intermediate member 75.
- the spring wire 82 that wraps around the fastening pin 83 continues beyond the fastening pin 83 and forms a load there on the latch tail 33 ′′ Torsion spring section 82 '.
- the change lever spring 80 fulfills the function of a latch spring due to its special design. Basically, the change lever spring 80 strives to displace the actuating arm 71 against the direction of the ring gear actuation area.
- a second arm 88 extends from the deflecting member 84, which projects between the fork tines of the forked latch tail 33 ′′.
- Each tine of the forked latch tail 33 ′′ each has a slot 89, 89 ′ which runs perpendicular to the direction of movement of the latch and which slots are offset from one another by the shifting movement.
- a pin 90 extends through the latch-side arm 88 of the deflection member 84 and establishes the driving connection to the latch 33.
- the pin 90 In the retracted position of the latch 33, the pin 90 is aligned with a hole 91 in the lock cover 11. Then the pin 90 designed as a grub screw can be unscrewed and the latch 33 can be turned around its longitudinal axis, so that the screwed-in pin 90 with its projecting end in dips the slot 89 'of the other fork.
- a guide groove 92 is provided on each broad side of the latch tail 33' ', into which a guide projection 93 protrudes from the lock cover 11 and lock base 10.
- the third arm 94 extends to engage a nut actuating slide 95.
- This is located in a space left by the carrier plate 37 within the Lock housing 2 and is loaded by a return spring 96.
- the nut actuating slide 95 meshes with a nut 97 which is rotatably arranged in a two-part bearing housing 98 which is interchangeably inserted in the lock housing 2. Its length corresponds to a multiple of the nut diameter.
- the nut actuating slide 95 forms on the back a plurality of windows 99 for one engagement of a tooth 97 ', the nut 97.
- the tooth 97' engages in the lower two windows 99 arranged one above the other.
- the bearing housing 98 forms the one located below the nut fitting bolt through hole 100 in the form of an elongated hole.
- This bearing housing 98 is designed with the nut 97 and the nut actuating slide 95 as a completely preassembled structural unit which can be inserted into a contour-matched recess A of the lock base and lock cover, in parallel extension to the narrowed support plate section 37 '.
- this unit is set to a distance between the axis of rotation of the nut and that of the cylinder core to 72 mm.
- FIG. 13 shows a modified bearing housing 98 ', which can accommodate a nut 97 and the actuating slide 95 without modifying the same. Then the tooth 97 'of the nut engages in the upper window 99 of the nut actuating slide 95. Below the nut bearing point, a fitting plate screw passage hole 100 'extends within the bearing housing 98'.
- the basic positions of the nut are realized in a known manner by stops. Likewise, the rotary end positions of the nut stops are assigned, which are not dealt with in more detail.
- the third arm 94 of the deflecting element 84 lying in the movement path of the nut actuating slide 95 is forked.
- the fork opening 33 '' ' is penetrated by the connecting rod connecting slide 53.
- the connecting rod connecting slide 53 continues into the area of the latch tail 33 ′′ and merges into an angle leg 101 lying transversely to the cuff 1, which can be moved into the fork opening of the latch tail 33 ′.
- the latch In the shifted-back position the latch travels with its fork opening over the angular section 102 of the connecting rod connecting slide 53 which runs parallel to the cuff 1 and which angular section 102 extends through the fork opening of the third arm 94.
- the angled leg 101 directed towards the cuff 1 has an arrow-shaped profile, cf. 4.
- the arrow head is turned towards the trap 33, and the trap head 33 'forms contour-like grooves 103 on both narrow sides. Seen in the direction of movement of the trap, the trap passage opening 34 of the cuff 1 corresponds to the outline shape of the trap head, which means that the trap is turned over 33 allowed by 180 °.
- the angled leg 101 forms a coupling projection 104 on its free end, which protrudes into a recess 105 adapted to the cross section immersed free end of the upper drive rod 3.
- a displacement of the connecting rod connecting slide 53 is therefore inevitably transferred to this connecting rod 3.
- the upper rear edge of the lock edge of the lock housing 2 forms an approximately angular bulge 106.
- a contour-matched corner angle 107 located between the lock base 10 and the lock cover 11 limits this bulge toward the rear narrow side of the lock housing.
- the end regions of the corner bracket 107 are provided with threaded bores 108, 109 which allow the connection to the lock cover 11 and the lock base 10.
- the bulge 106 framed by the corner bracket 107 forms with its rounded inner apex a fitting plate screw through hole 110.
- One leg of the bulge 106 is oriented vertically and runs parallel to the cuff 1, while the other leg is directed at an acute angle to the cuff and extends in the upward direction.
- the depth of the bulge 106 lying in the facing direction extends over the extension of the connecting line L of the nut 97 and the fitting screw passage hole 100, cf. Fig. 1.
- Another bulge 115 is provided in the area of the lower corner of the lock housing 2. This is formed by the rear contour of the carrier plate 37, which contour the castle ceiling 11 and the castle floor 10 are adapted in the corresponding area.
- the bulge 115 extends rearward of the lock cylinder 41.
- a depth of the bulge 115 is selected such that the bulge bottom 115 'of the lock cylinder longitudinal axis is closer than the distance between the lock cylinder longitudinal axis and the faceplate adjacent through the faceplate screw passage hole 122.
- This having carrier plate 37 forms with its rear narrow side wall the bulge bottom, which runs obliquely towards the cuff 1.
- the depth thereof facing in the facing direction is at least so great that the bulge bottom 116 'is closer to the nut center than the distance between the nut center and the latter Stulpseitg adjacent, from the support plate 37 fitting screw passage hole, which is designed as an elongated hole 120.
- the two aforementioned bulges 115, 116 allow the door to be assigned rosettes 117, 118 indicated by dash-dotted lines in FIG. 1 instead of the long plates in the area of the nut and the locking cylinder.
- One fastening screw 119 for the rosette 117 passes through the elongated hole 120 of the carrier plate 37, while the other fastening screw 121 penetrates the door in the region of the bulge 116.
- the elongated hole 120 and the bulge 116 also permit the use of differently shaped bearing housings 98 for the nut in order to be able to implement different spacing dimensions between the nut bearing point and the axis of rotation of the cylinder core.
- a fastening screw 122 ' which penetrates the through hole 122 of the carrier plate 37 and a fastening screw 123 which is arranged diametrically thereto and which runs in the region of the bulge 115 serve to hold the rosette 118 surrounding the locking cylinder.
- the support plate 37 with the gear transmission and the change lever arrangement W and the bearing housing 98 represent structural units. If drive rod locks with different backset dimensions are to be created, these structural units need not be modified. Rather, it is sufficient to lengthen or shorten the castle floor and castle ceiling, while the rear area remains unchanged including the bulges. Corresponding reductions and extensions are then to be made for the bolt and the latch and the connecting rod connecting slide 28. Due to this slight change, however, a large range of differently designed locks can be manufactured combined with reduced production costs and reduced storage.
- the latch can be withdrawn in the key withdrawal position when the bolt 35 is closed by actuating the lever handle.
- the nut 97 is pivoted into the position illustrated in FIG. 16 via the pusher (not illustrated). Their tooth 97 'shifts the nut actuating slide 95 in the downward direction.
- the third arm 94 of the deflecting element 84 lying in the movement path of the nut actuating slide is acted upon by pivoting the deflecting element 84 clockwise.
- the second arm 88 forming the latch arm pulls the latch 33 via the pin / slot connection back.
- the change lever spring 80 which also serves as a latch spring, is tensioned.
- the change lever spring 80 guides the deflection member 84 into the starting position by relaxing.
- the change lever operation is shown in Fig. 17.
- the end gear 51 is taken along via the gear transmission, which leads to an upward displacement of the connecting rod connecting slide 28, as a result of the tooth engagement.
- the control edge 76 of the connecting rod connecting slide 28 acts on the end 75 'of the intermediate member 75 accompanied by a pivoting of the actuating arm 71 in the clockwise direction, which pivoting is limited by the hook 72 resting on the support ring shoulder 73.
- the hook 72 and the counter-hook 74 come into contact with one another and entrainment of the actuating arm 71, the pivot pin 70 of which moves upward within the arch slot 69 of the carrier plate 37.
- the intermediate link 75 is carried in the upward direction. Its end portion 78, which forms a tappet, acts on the driving shoulder 87 of the first arm 86 of the deflection element 84. As a result, the deflection element 84 pivots and takes the latch 33 with it in the lock-in direction in the direction of the lock. During this process, the change lever spring 80 is charged. If the key is brought into the key withdrawal position after the door has been opened, the ring gear 39 rotates back by the appropriate amount. At the same time, the change lever spring 80 can relax, the deflection member 84 pivots counterclockwise and drives the latch 33 into its forward position.
- the locking of the bolt 35 requires an opposite closing rotation.
- the drive rod connecting slide 28, 53 are driven in opposite directions by meshing.
- the direction of movement of the connecting rod connecting slides 28, 53 is indicated in FIG. 9 by arrows.
- the drive rods 3, 4 with the locking members 5 attached to them are dragged along.
- the pivot lever 56 does not change its position. This means that the connecting rod connecting slides advance with the connecting rods.
- the extension 65 Shortly before, the extension 65 has also released the locking edge 66 of the locking tail 35 ′′. This is the case after turning a key.
- the locking of the bolt 35 therefore only begins when the door has been sufficiently tightened by the corresponding locking members. Accordingly, the bolt can also dip into its associated striking plate recess without interference.
- the pivoting lever 56 is then rotated via the tooth engagement while simultaneously taking the bolt into the pre-closing position illustrated in FIG. 18.
- the control arm 61 acts on a stop 124 of the carrier plate 37. In this pre-locking position, the key can be removed. Any that act on the bolt Push-back forces are directed into the locking cylinder via the tooth mesh.
- the locking of the bolt 35 takes place by means of an opposite closing rotation.
- the drive rod connecting slides 28, 53 are driven in opposite directions in the opposite direction of the arrow via the end wheel 51 and the toothed rack engagement.
- the rack 64 comes out of engagement with the toothing of the pivot lever 56.
- the bolt 35 is closed, since then the rearward displacement is taken over by the extension 65 by the lower, obliquely directed end edge 65 'acting on the run-up slope 57 of the bolt tail 35' 'and thereby forcing the backward displacement with simultaneous entrainment of the bolt 35.
- the extension 65 thereby again comes in front of the locking edge 66 of the bolt tail 35 ′′.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lock And Its Accessories (AREA)
- Saccharide Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Prostheses (AREA)
- Soil Working Implements (AREA)
- Clamps And Clips (AREA)
- Harvester Elements (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93114824A EP0581326B1 (fr) | 1990-05-02 | 1991-02-25 | Serrure crémone |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4014040 | 1990-05-02 | ||
DE4014040A DE4014040A1 (de) | 1990-05-02 | 1990-05-02 | Schloss, insbesondere treibstangenschloss |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93114824.1 Division-Into | 1991-02-25 | ||
EP93114824A Division EP0581326B1 (fr) | 1990-05-02 | 1991-02-25 | Serrure crémone |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0454958A1 true EP0454958A1 (fr) | 1991-11-06 |
EP0454958B1 EP0454958B1 (fr) | 1994-06-22 |
Family
ID=6405552
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93114824A Expired - Lifetime EP0581326B1 (fr) | 1990-05-02 | 1991-02-25 | Serrure crémone |
EP91102726A Expired - Lifetime EP0454958B1 (fr) | 1990-05-02 | 1991-02-25 | Serrure, notamment serrure avec bielle motrice |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93114824A Expired - Lifetime EP0581326B1 (fr) | 1990-05-02 | 1991-02-25 | Serrure crémone |
Country Status (3)
Country | Link |
---|---|
EP (2) | EP0581326B1 (fr) |
AT (2) | ATE107732T1 (fr) |
DE (3) | DE4014040A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0575701A1 (fr) * | 1992-06-25 | 1993-12-29 | Gretsch-Unitas GmbH Baubeschläge | Serrure, notamment serrure à fourreau pour une porte extérieure |
WO2006121056A1 (fr) | 2005-05-12 | 2006-11-16 | Mitsui Chemicals, Inc. | Composition polymere d’acide lactique, article moule fabrique a partir de ladite composition et procede de production d’un tel article moule |
EP3064679A1 (fr) * | 2015-02-19 | 2016-09-07 | Roto Frank Ag | Serrure |
EP2706175A3 (fr) * | 2012-09-06 | 2018-01-24 | Roto Frank Ag | Serrure de verrouillage multi-points |
US20220010590A1 (en) * | 2020-07-01 | 2022-01-13 | Cmech (Guangzhou) Ltd. | Anti-unlatched mechanism and a door lock thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HU214809B (hu) * | 1993-11-22 | 1998-05-28 | János Fehérdi | Zárszerkezet |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4237711A (en) * | 1978-02-10 | 1980-12-09 | Brink's Locking Systems, Inc. | Lock mechanism |
CH647576A5 (de) * | 1979-08-23 | 1985-01-31 | Motohiro Gotanda | Schliessvorrichtung. |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2488318B1 (fr) * | 1980-08-08 | 1985-07-26 | Chauvat Sofranq | Serrure a larder du type trois points |
AT366750B (de) * | 1980-11-13 | 1982-05-10 | Grundmann Rohrbacher Schlosser | Tuerverschluss |
DE3142959C2 (de) * | 1981-08-04 | 1985-06-05 | BKS Sicherheitstechnik GmbH, 5040 Brühl | Treibstangenverschluß für Türen |
AU557075B2 (en) * | 1981-11-19 | 1986-12-04 | Lockwood Security Products Pty Limited | Screen door lock |
GB8517168D0 (en) * | 1985-07-05 | 1985-08-14 | Gkn Crompton | Latch mechanism |
GB8811734D0 (en) * | 1988-05-18 | 1988-06-22 | Goodwin W J & Son Ltd | Improvements in/relating to locking mechanisms |
-
1990
- 1990-05-02 DE DE4014040A patent/DE4014040A1/de not_active Withdrawn
-
1991
- 1991-02-25 EP EP93114824A patent/EP0581326B1/fr not_active Expired - Lifetime
- 1991-02-25 EP EP91102726A patent/EP0454958B1/fr not_active Expired - Lifetime
- 1991-02-25 AT AT91102726T patent/ATE107732T1/de not_active IP Right Cessation
- 1991-02-25 DE DE59101979T patent/DE59101979D1/de not_active Expired - Fee Related
- 1991-02-25 DE DE59109131T patent/DE59109131D1/de not_active Expired - Fee Related
- 1991-02-25 AT AT93114824T patent/ATE180539T1/de not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4237711A (en) * | 1978-02-10 | 1980-12-09 | Brink's Locking Systems, Inc. | Lock mechanism |
CH647576A5 (de) * | 1979-08-23 | 1985-01-31 | Motohiro Gotanda | Schliessvorrichtung. |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0575701A1 (fr) * | 1992-06-25 | 1993-12-29 | Gretsch-Unitas GmbH Baubeschläge | Serrure, notamment serrure à fourreau pour une porte extérieure |
WO2006121056A1 (fr) | 2005-05-12 | 2006-11-16 | Mitsui Chemicals, Inc. | Composition polymere d’acide lactique, article moule fabrique a partir de ladite composition et procede de production d’un tel article moule |
EP2706175A3 (fr) * | 2012-09-06 | 2018-01-24 | Roto Frank Ag | Serrure de verrouillage multi-points |
EP3064679A1 (fr) * | 2015-02-19 | 2016-09-07 | Roto Frank Ag | Serrure |
US20220010590A1 (en) * | 2020-07-01 | 2022-01-13 | Cmech (Guangzhou) Ltd. | Anti-unlatched mechanism and a door lock thereof |
US11572706B2 (en) | 2020-07-01 | 2023-02-07 | Cmech (Guangzhou) Ltd. | Handle-locking mechanism and door lock using such mechanism |
US11661763B2 (en) * | 2020-07-01 | 2023-05-30 | Cmech (Guangzhou) Ltd. | Anti-unlatched mechanism and a door lock thereof |
US12024919B2 (en) | 2020-07-01 | 2024-07-02 | Cmech (Guangzhou) Ltd. | Latch bolt installation structure and door lock using such structure |
US12180745B2 (en) | 2020-07-01 | 2024-12-31 | Cmech (Guangzhou) Ltd. | Door lock with handle |
Also Published As
Publication number | Publication date |
---|---|
DE59101979D1 (de) | 1994-07-28 |
EP0454958B1 (fr) | 1994-06-22 |
DE59109131D1 (de) | 1999-07-01 |
DE4014040A1 (de) | 1991-11-07 |
ATE180539T1 (de) | 1999-06-15 |
ATE107732T1 (de) | 1994-07-15 |
EP0581326A1 (fr) | 1994-02-02 |
EP0581326B1 (fr) | 1999-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0413177B1 (fr) | Serrure pour bielle motrice | |
DE3505379C2 (de) | Treibstangenschloß | |
EP0455944B1 (fr) | Serrure de barre coulissante manoeuvrable d'un barillet | |
EP0454966B1 (fr) | Serrure avec bielle motrice actionnée par cylindre de fermeture | |
EP0783616A1 (fr) | Fermeture a barre | |
EP0358971B1 (fr) | Crémone | |
EP0385213A2 (fr) | Crémone | |
EP0454959B1 (fr) | Serrure de barre coulissante manoeuvrable d'un barillet | |
EP0454960B1 (fr) | Cremone | |
EP0454958A1 (fr) | Serrure, notamment serrure avec bielle motrice | |
DE3148030A1 (de) | Zahnradantrieb in einem schliesszylinderbetaetigbaren treibstangenschloss mit schubriegel | |
EP0454965B1 (fr) | Serrure encatrée notamment avec bielle motrice | |
DE19815671B4 (de) | Treibstangenverschluß | |
DE3427713A1 (de) | Mehrtourig schliessendes treibstangenschloss | |
DE3901957C2 (de) | Treibstangenverschluß, insbesondere für Balkontüren | |
DE4041537A1 (de) | Treibstangenverschluss | |
DE9007786U1 (de) | Schließzylinderbetätigbares Treibstangenschloß | |
EP0602323B1 (fr) | Serrure avec bielle motrice | |
DE4302920A1 (de) | Schloß, insbesondere Einsteckschloß | |
EP0356772A2 (fr) | Crémone | |
CH691983A5 (de) | Treibstangenschloss. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19910919 |
|
17Q | First examination report despatched |
Effective date: 19930824 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 107732 Country of ref document: AT Date of ref document: 19940715 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940622 |
|
REF | Corresponds to: |
Ref document number: 59101979 Country of ref document: DE Date of ref document: 19940728 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20061222 Year of fee payment: 17 Ref country code: DE Payment date: 20061222 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061228 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070612 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061220 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080225 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080225 |