[go: up one dir, main page]

EP0447632A1 - Process for operating a plant for the gasification of solid fuels - Google Patents

Process for operating a plant for the gasification of solid fuels Download PDF

Info

Publication number
EP0447632A1
EP0447632A1 EP90123157A EP90123157A EP0447632A1 EP 0447632 A1 EP0447632 A1 EP 0447632A1 EP 90123157 A EP90123157 A EP 90123157A EP 90123157 A EP90123157 A EP 90123157A EP 0447632 A1 EP0447632 A1 EP 0447632A1
Authority
EP
European Patent Office
Prior art keywords
gasification
dust
container
burners
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90123157A
Other languages
German (de)
French (fr)
Other versions
EP0447632B1 (en
Inventor
Hans-Richard Baumann
Norbert Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Koppers GmbH
Original Assignee
Krupp Koppers GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp Koppers GmbH filed Critical Krupp Koppers GmbH
Publication of EP0447632A1 publication Critical patent/EP0447632A1/en
Application granted granted Critical
Publication of EP0447632B1 publication Critical patent/EP0447632B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/506Fuel charging devices for entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1223Heating the gasifier by burners

Definitions

  • German patent application P 38 37 587.7 which does not belong to the prior art, relates to a method for operating a plant for the gasification of fine-grained to dust-like solid fuels Gasification reactor equipped with gasification burners. Device for the separation of dust from the raw gas.
  • Dust collection container and device for the return of dust in the gasification reactor wherein the gasification burners burn into the gasification reactor with a fuel / reagent jet which is rotationally symmetrical at the gasification burner outlet, a primary reaction zone of high temperature is formed by the fuel / reagent jets in the gasification reactor and the flue dust with its raw gas content and its residual carbon through a conveying gas flow into the axis introduced by at least one fuel / reactant jet, from which the fuel / reactant jet is introduced into the primary reaction zone and is melted down therein.
  • the method according to this earlier patent application is based on the object of carrying out the method in such a way that the fly dust separated dry from the raw gas is completely incorporated into the slag without special treatment and without interfering influence on the gasification process, and at the same time the residual carbon contained in the flying dust is to be burned completely.
  • This is achieved in that the flue dust with its raw gas and residual carbon is introduced through a conveying gas stream into the axis of at least one fuel / reactant jet of a gasification burner, introduced by this into the primary reaction zone and melted in it.
  • the present invention now relates to a further embodiment of the method of operation according to the earlier patent application, by means of which, in particular, the process conditions for the return of airborne dust should be improved.
  • the bulk density of the separated fly dust is determined and taken into account in the regulation of the mass flow of the fly dust supplied to the gasification burners, the feed of the fly dust to the gasification burners being continuously and controlled with a conveying density in the order of 60 to 90% of the fly dust bulk density he follows.
  • the invention is based on the knowledge that the bulk density of the fly dust can vary within wide limits between about 150 kg / m3 and 600 kg / m3 depending on the residual carbon contained therein. If the bulk density is low, there is a fly dust with an excessive residual carbon content, which indicates incomplete gasification in the gasification reactor. If this is the case, then according to the invention the mass flow of the fly dust supplied to the gasification burners is increased accordingly. If the residual carbon content in the fly dust is too low, i.e. high bulk density, conversely, the mass flow can be reduced will. In order to increase the cost-effectiveness of the dust collection and, at the same time, to achieve a high uniformity of the dosage, according to the invention, a conveying density in the order of magnitude of 60 to 90% of the bulk dust density is used.
  • the system shown in the figure consists of the gasification reactor 1, which is equipped, for example, with four gasification burners 2.
  • the raw gas generated in the gasification reactor 1 is drawn off via the line 3 and cooled to a temperature between 200 and 400 ° C. in a waste heat boiler, not shown in the figure, which normally forms a structural unit with the gasification reactor 1.
  • the raw gas loaded with fly dust arrives in the separator 4, in which the carried fly dust is separated dry.
  • a filter can also be used.
  • the separated flying dust falls into the collecting container 5, which is directly connected to the separator 4.
  • a quantity of flying dust can be stored in the collecting container 5. which corresponds approximately to an operating time of the gasification reactor 1 of 1 to 3 hours.
  • the raw gas freed from the bulk of the fly dust is fed via line 6 to its further treatment.
  • the intermediate container 7 is arranged below the collecting container 5 and is connected to the collecting container 5 via the distributor 8 and the line 9.
  • the collecting container 5 is emptied in the gravity flow after pressure equalization.
  • a fluidizing gas can be introduced into the outlet area of the collecting container 5 via the line 10.
  • the intermediate container 7 can of course also be arranged next to the collecting container 5. In this case, the collecting container 5 is then emptied due to the pressure difference between the collecting container 5 and the intermediate container 7.
  • the fluidizing gas supplied via the line 10 is drawn off from the intermediate container 7 via the line 11 after separation of the airborne dust conveyed in the dense flow.
  • the fluidizing gas passes via line 13 into the buffer container 14. From there, the fludging gas can be withdrawn via line 15 and added to the raw gas stream in line 3 or used as a conveying gas via line 26 at the outlet of the supply container 16 .
  • the intermediate container 7 is filled cyclically as required, that is to say at a maximum fill level in the collecting container 5 or at a minimum fill level in the supply container 16.
  • the filling of the intermediate container 7 is controlled by the measuring devices 17 and 18.
  • the measuring device 17 is used to determine the vacancy and the measuring device 18 that of the full level.
  • the dust supply via the line 9 is interrupted and by supplying gas via lines 19 and 20, the required excess pressure for the conveyance to the supply container 16 is built up.
  • the lines 19 and 20 two gene from line 10.
  • a CO2- or N2-rich gas is preferably used as the gas in this line, which gas is supplied via line 10 from a source located outside the system, for example a gas supply device.
  • the dust can be conveyed from the intermediate container 7 via the line 35 into the allotment container 16 as soon as the fill level of the allotment container 16 makes this necessary.
  • the conveyance is carried out with a high delivery density between 100 and 550 kg / m3, so that the delivery density is in the order of 60 to 90% of the fly dust bulk density.
  • a screen (not shown in the figure) is installed in the line 35, if necessary, which serves to separate these impurities.
  • the allocation container 16 is dimensioned such that it can accommodate the entire filling content of the intermediate container 7.
  • the feed container 16 is equipped with a weighing device 21 and the radiometric fill level measurements 22a and 22b, which record the cylindrical part of the feed container 16. With the aid of the weighing device 21, the weight difference between the beginning and the end of the filling of the allotment container 16 can be determined.
  • the mass flow of the flying dust, which is conveyed from the feed container 16 to the gasification burners 2 during the filling process, must also be added to this value.
  • the average bulk density of the dust which - as already explained above - required for a controlled operation becomes.
  • the bulk density is too low, there is a risk that the feed container 16 will be overfilled.
  • the differential pressure between the feed container 16 and the gasification reactor 1 is increased accordingly with the aid of additional gas supply via line 23.
  • the supply of conveying gas in the outlet area of the supply container 16 via the line 24 and in the central outlet line 25 via the line 26 must be increased accordingly in order to set a lower conveying density in the line 27 leading to the gasification burner 2 which is adapted to the reduced bulk density.
  • the delivery density in the central outlet line 25 can be measured and monitored by the radiometric density measurement 28.
  • An increase in the calculated bulk density of the flying dust above the normal value determined under optimized process conditions is not critical for the refilling process of the supply container 16.
  • metering can also be carried out with a lower differential pressure between the feed container 16 and the gasification reactor 1 and a higher delivery density in the central outlet line 25.
  • knowing the bulk density of the fly dust also allows a check of the gasification conditions.
  • the system according to the invention additionally the radiometric level measurements 22a and 22b are provided.
  • 22a and 22b are arranged, for example, at a distance of one meter from one another on the cylindrical part of the distribution container 16. This measuring range is only flowed through once during each filling and emptying process.
  • the bulk density when filling and emptying the distribution container 16 can be calculated if the weight difference between the maximum radiometric level measurement 22b and the minimum radiometric level measurement 22a is determined and at the same time the value for the mass flow of the Airborne dust returned to the gasification reactor 1 is taken into account. There is therefore another method for determining the bulk density to disposal.
  • the system according to the invention differs from the system according to the earlier patent application in that the fly dust is fed to the gasification reactor 1 only from a single supply container 16, the differential pressure between the supply container 16 and the gasification reactor 1 to adapt the gasification reactor 1 supported dust can be changed.
  • the guide variable for the change in the differential pressure is the ratio between the total mass of the fuel which is fed to the gasification reactor 1, that is to say all four gasification burners 2, and the mass flow of the airborne dust which is returned to the gasification reactor 1.
  • the ratio of fuel to recycled flying dust is primarily dependent on the ash content of the fuel used, the degree of C-conversion during gasification and the degree of separation of the flying dust in separator 4, to name only the main influencing factors. This dependency on the individual factors is determined by preliminary tests during the commissioning phase of the system and programmed in the control system of the system.
  • the mass flow can in each case through a Venturi tube installed in the lines 27 with the help a differential pressure meter 30 are checked. This is particularly necessary if, in deviation from the normal case, the fly dust should not be supplied to all gasification burners 2 in an evenly distributed manner, for example because the gasification burners 2 have a different construction or fuel supply in some cases.
  • the required regulation of the mass flow of dust can be carried out with the help of the control valve 31 installed in the line 27.
  • a further radiometric density measurement 32 can be installed in the central outlet line 25.
  • the residual carbon content of the returned fly dust can also be determined.
  • the residual carbon content can serve as a reference variable for the change in the oxygen / carbon ratio in the gasification reactor caused by the fly dust recirculation.
  • the disposal line 33 is connected to the distributor 8. This line is intended for the event of a fault if the fly dust separated in the separator 4 cannot be returned to the gasification reactor 1 as a result of a malfunction and must therefore be removed from the system via the disposal line 33.
  • this flue dust can, if necessary, be passed together with the raw gas drawn off via line 6 into a separator (not shown in the figure), in which the flue dust is separated by moisture, the resulting slurry being thickened and then melted or deposited into a slag.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

The plant for the gasification of solid fuels employs gasification burners which have a feed channel for primary oxygen which is coaxial with the burner axis, a surrounding annular channel for fuel feed and an annular channel surrounding the latter for feeding secondary oxygen. The fine dust deposited from the untreated gas is injected into the axis of at least one fuel/reactant jet, introduced from the latter into the primary reaction zone of the gasification reactor and melted in said zone. According to the invention, the apparent density of the deposited fine dust is determined and taken into account in regulating the mass flow of the fine dust fed to the gasification burners, a feed density of the order of magnitude of 60 to 90% of the fine dust apparent density being employed.

Description

Die nicht zum Stande der Technik gehörende deutsche Patentanmeldung P 38 37 587.7 betrifft ein Verfahren zum Betrieb einer Anlage für die Vergasung feinkörniger bis staubförmiger fester Brennstoffe mit
Vergasungsreaktor, der mit Vergasungsbrennern ausgerüstet ist.
Einrichtung für die Flugstaubabscheidung aus dem Rohgas.
Flugstaubsammelbehälter und Einrichtung für die Flugstaubrückführung in den Vergasungsreaktor,
wobei die Vergasungsbrenner mit einem am Vergasungsbrenneraustritt rotationssymmetrischen Brennstoff/Reaktionsmittel-Strahl in den Vergasungsreaktor hineinbrennen, von den Brennstoff/Reaktionsmittel-Strahlen in dem Vergasungsreaktor eine Primärreaktionszone hoher Temperatur gebildet und der Flugstaub mit seinem Gehalt an Rohgas und seinem Restkohlenstoff durch einen Fördergasstrom in die Achse von zumindest einem Brennstoff/Reaktionsmittel-Strahl eingeführt, von dem Brennstoff/Reaktionsmittel-Strahl in die Primärreaktionszone eingebracht und in dieser eingeschmolzen wird.
German patent application P 38 37 587.7, which does not belong to the prior art, relates to a method for operating a plant for the gasification of fine-grained to dust-like solid fuels
Gasification reactor equipped with gasification burners.
Device for the separation of dust from the raw gas.
Dust collection container and device for the return of dust in the gasification reactor,
wherein the gasification burners burn into the gasification reactor with a fuel / reagent jet which is rotationally symmetrical at the gasification burner outlet, a primary reaction zone of high temperature is formed by the fuel / reagent jets in the gasification reactor and the flue dust with its raw gas content and its residual carbon through a conveying gas flow into the axis introduced by at least one fuel / reactant jet, from which the fuel / reactant jet is introduced into the primary reaction zone and is melted down therein.

Dem Verfahren nach dieser älteren Patentanmeldung liegt dabei die Aufgabe zugrunde, das Verfahren so zu führen, daß der aus dem Rohgas trocken abgeschiedene Flugstaub ohne besondere Aufbereitung und ohne störende Beeinflussung des Vergasungsprozesses vollständig in der Schlacke eingebunden wird, wobei gleichzeitig der im Flugstaub enthaltene Restkohlenstoff vollständig verbrannt werden soll. Dies wird dabei dadurch erreicht, daß der Flugstaub mit seinem Gehalt an Rohgas und seinem Restkohlenstoff durch einen Fördergasstrom in die Achse von zumindest einem Brennstoff/Reaktionsmittel strahl eines Vergasungsbrenners eingeführt, von diesem in die Primärreaktionszone eingebracht und in dieser eingeschmolzen wird.The method according to this earlier patent application is based on the object of carrying out the method in such a way that the fly dust separated dry from the raw gas is completely incorporated into the slag without special treatment and without interfering influence on the gasification process, and at the same time the residual carbon contained in the flying dust is to be burned completely. This is achieved in that the flue dust with its raw gas and residual carbon is introduced through a conveying gas stream into the axis of at least one fuel / reactant jet of a gasification burner, introduced by this into the primary reaction zone and melted in it.

Die vorliegende Erfindung betrifft nun eine weitere Ausgestaltung der Arbeitsweise nach der älteren Patentanmeldung, durch die insbesondere die Verfahrensbedingungen für die Flugstaubrückführung verbessert werden sollen. Hierbei ist erfindungsgemäß vorgesehen, daß die Schüttdichte des abgeschiedenen Flugstaubes ermittelt und bei der Regelung des Massenstromes des den Vergasungsbrennern zugeführten Flugstaubes berücksichtigt wird, wobei die Zuführung des Flugstaubes zu den Vergasungsbrennern kontinuierlich und kontrolliert mit einer Förderdichte in der Größenordnung von 60 bis 90 % der Flugstaubschüttdichte erfolgt.The present invention now relates to a further embodiment of the method of operation according to the earlier patent application, by means of which, in particular, the process conditions for the return of airborne dust should be improved. Here, it is provided according to the invention that the bulk density of the separated fly dust is determined and taken into account in the regulation of the mass flow of the fly dust supplied to the gasification burners, the feed of the fly dust to the gasification burners being continuously and controlled with a conveying density in the order of 60 to 90% of the fly dust bulk density he follows.

Die Erfindung geht dabei von der Erkenntnis aus, daß die Schüttdichte des Flugstaubes in Abhängigkeit von dem darin enthaltenen Restkohlenstoff in weiten Grenzen zwischen etwa 150 kg/m³ und 600 kg/m³ schwanken kann. Bei niedriger Schüttdichte liegt ein Flugstaub mit zu hohem Gehalt an Restkohlenstoff vor, was auf eine unvollständige Vergasung im Vergasungsreaktor schließen läßt. Ist dies der Fall, so wird erfindungsgemäß der Massenstrom des den Vergasungsbrennern zugeführten Flugstaubes entsprechend erhöht. Bei zu geringem Gehalt an Restkohlenstoff im Flugstaub, d .h. hoher Schüttdichte, kann umgekehrt der Massenstrom verringert werden. Um die Wirtschaftlichkeit der Flugstaubrückführung zu erhöhen und gleichzeitig eine hohe Gleichförmigkeit der Dosierung zu erreichen, wird dabei erfindungsgemäß mit einer Förderdichte in der weiter oben angegebenen Größenordnung von 60 bis 90 % der Flugstaubschüttdichte gearbeitet.The invention is based on the knowledge that the bulk density of the fly dust can vary within wide limits between about 150 kg / m³ and 600 kg / m³ depending on the residual carbon contained therein. If the bulk density is low, there is a fly dust with an excessive residual carbon content, which indicates incomplete gasification in the gasification reactor. If this is the case, then according to the invention the mass flow of the fly dust supplied to the gasification burners is increased accordingly. If the residual carbon content in the fly dust is too low, i.e. high bulk density, conversely, the mass flow can be reduced will. In order to increase the cost-effectiveness of the dust collection and, at the same time, to achieve a high uniformity of the dosage, according to the invention, a conveying density in the order of magnitude of 60 to 90% of the bulk dust density is used.

Weitere Einzelheiten der Erfindung ergeben sich aus den vorliegenden Unteransprüchen und sollen nachfolgend an Hand des in der Abbildung dargestellten Fließschemas einer Anlage zur Durchführung des erfindungsgemässen Verfahrens erläutert werden, die im Gegensatz zu der bisher üblichen Ausführungsform nur einen Zuteilbehälter aufweist. Diese Anlage vermeidet gleichzeitig den unkontrollierten Massenstoß, wie er bei der in der älteren Patentanmeldung beschriebenen Anlage bei der Umschaltung eines entleerten Zuteilbehälters auf einen parallel geschalteten gefüllten Zuteilbehälter auftritt.Further details of the invention emerge from the present subclaims and are to be explained below on the basis of the flow diagram shown in the figure of a plant for carrying out the method according to the invention which, in contrast to the previously customary embodiment, has only one allotment container. This system also avoids the uncontrolled mass impact that occurs in the system described in the earlier patent application when switching over an emptied allotment container to a filled allotment container connected in parallel.

Die in der Abbildung dargestellte Anlage besteht aus dem Vergasungsreaktor 1, der beispielsweise mit vier Vergasungsbrennern 2 ausgerüstet ist. Das im Vergasungsreaktor 1 erzeugte Rohgas wird über die Leitung 3 abgezogen und in einem in der Abbildung nicht dargestellten Abhitzekessel, der normalerweise mit dem Vergasungsreaktor 1 eine bauliche Einheit bildet, bis auf eine Temperatur zwischen 200 und 400°C abgekühlt. Mit dieser Temperatur gelangt das mit Flugstaub beladene Rohgas in den Abscheider 4, in dem eine trockene Abscheidung des mitgeführten Flugstaubes erfolgt. Anstelle eines Abscheiders 4 kann dabei auch ein Filter verwendet werden. Der abgeschiedene Flugstaub fällt in den Sammelbehälter 5, der mit dem Abscheider 4 direkt verbunden ist. Im Sammelbehälter 5 kann bei voller Leistung des Vergasungsreaktor 1 eine Flugstaubmenge gespeichert werden, die in etwa einer Betriebsdauer des Vergasungsreaktors 1 von 1 bis 3 Stunden entspricht. Das von der Hauptmenge des Flugstaubes befreite Rohgas wird über die Leitung 6 seiner weiteren Behandlung zugeführt. Unterhalb des Sammelbehälters 5 ist der Zwischenbehälter 7 angeordnet, der über den Verteiler 8 und die Leitung 9 mit dem Sammelbehälter 5 verbunden ist. Der Sammelbehälter 5 wird hierbei nach Druckausgleich im Schwerkraftfluß entleert. Zur Vermeidung einer Brückenbildung des austretenden Flugstaubes kann über die Leitung 10 ein Fluidisiergas in den Austrittsbereich des Sammelbehälters 5 eingeleitet werden. In Abweichung von der Darstellung in der Abbildung kann der Zwischenbehälter 7 selbstverständlich auch neben dem Sammelbehälter 5 angeordnet werden. In diesem Falle erfolgt dann die Entleerung des Sammelbehälters 5 aufgrund der Druckdifferenz zwischen dem Sammelbehälter 5 und dem Zwischenbehälter 7. Das über die Leitung 10 zugeführte Fluidisiergas wird nach Abscheidung des im Dichtstrom geförderten Flugstaubes im Zwischenbehälter 7 über die Leitung 11 aus diesem abgezogen. Nach Abreinigung in einem Kerzenfilter 12 gelangt das Fluidisiergas über die Leitung 13 in den Pufferbehälter 14. Von dort kann das Fludisiergas über die Leitung 15 abgezogen und dem Rohgasstrom in der Leitung 3 zugesetzt oder über die Leitung 26 als Fördergas am Austritt des Zuteilbehälters 16 verwendet werden.The system shown in the figure consists of the gasification reactor 1, which is equipped, for example, with four gasification burners 2. The raw gas generated in the gasification reactor 1 is drawn off via the line 3 and cooled to a temperature between 200 and 400 ° C. in a waste heat boiler, not shown in the figure, which normally forms a structural unit with the gasification reactor 1. At this temperature, the raw gas loaded with fly dust arrives in the separator 4, in which the carried fly dust is separated dry. Instead of a separator 4, a filter can also be used. The separated flying dust falls into the collecting container 5, which is directly connected to the separator 4. When the gasification reactor 1 is at full capacity, a quantity of flying dust can be stored in the collecting container 5. which corresponds approximately to an operating time of the gasification reactor 1 of 1 to 3 hours. The raw gas freed from the bulk of the fly dust is fed via line 6 to its further treatment. The intermediate container 7 is arranged below the collecting container 5 and is connected to the collecting container 5 via the distributor 8 and the line 9. The collecting container 5 is emptied in the gravity flow after pressure equalization. To avoid bridging of the escaping flying dust, a fluidizing gas can be introduced into the outlet area of the collecting container 5 via the line 10. In deviation from the illustration in the figure, the intermediate container 7 can of course also be arranged next to the collecting container 5. In this case, the collecting container 5 is then emptied due to the pressure difference between the collecting container 5 and the intermediate container 7. The fluidizing gas supplied via the line 10 is drawn off from the intermediate container 7 via the line 11 after separation of the airborne dust conveyed in the dense flow. After cleaning in a candle filter 12, the fluidizing gas passes via line 13 into the buffer container 14. From there, the fludging gas can be withdrawn via line 15 and added to the raw gas stream in line 3 or used as a conveying gas via line 26 at the outlet of the supply container 16 .

Das Befüllen des Zwischenbehälters 7 erfolgt zyklisch je nach Bedarf, das heißt, bei maximalem Füllstand im Sammelbehälter 5 oder bei minimalem Füllstand im Zuteilbehälter 16. Die Befüllung des Zwischenbehälters 7 wird durch die Meßgeräte 17 und 18 kontrolliert. Das Maßgerät 17 dient dabei der Ermittlung des Leerstandes und das Meßgerät 18 der des Vollstandes. Sobald der Zwischenbehälter 7 gefüllt ist, wird die Flugstaubzufuhr über die Leitung 9 unterbrochen und durch Gaszufuhr über die Leitungen 19 und 20 der erforderliche Überdruck für die Förderung zum Zuteilbehälter 16 aufgebaut. Die Leitungen 19 und 20 zwei gen hierbei von der Leitung 10 ab. Als Gas in dieser Leitung wird vorzugsweise ein CO₂- oder N₂-reiches Gas verwendet, welches über die Leitung 10 aus einer außerhalb der Anlage befindlichen Quelle, z.B. einer Gasversorgungseinrichtung, zugeführt wird. Mit Hilfe des erzeugten Differenzdruckes kann der Flugstaub aus dem Zwischenbehälter 7 über die Leitung 35 in den Zuteilbehälter 16 gefördert werden, sobald der Füllstand des Zuteilbehälters 16 dies erforderlich macht. Die Förderung erfolgt dabei je nach Qualität des Flugstaubes mit einer hohen Förderdichte zwischen 100 und 550 kg/m³ , damit die Förderdichte in der Größenordnung von 60 bis 90 % der Flugstaubschüttdichte liegt. Mit dem Rohgasstrom können gelegentlich auch größere Schlacketeilchen oder andere Verunreinigungen mit einer Größe zwischen 1 und 10 mm in die Anlage gelangen. Damit derartige gröbere Verunreinigungen nicht zu einer Verstopfung der Vergasungsbrenner 2 führen, wird im Bedarfsfalle in der Leitung 35 ein in der Abbildung nicht dargestelltes Sieb installiert, das der Abscheidung dieser Verunreinigungen dient. Der Zuteilbehälter 16 ist so dimensioniert, daß er den gesamten Füllinhalt des Zwischenbehälters 7 aufnehmen kann. Zur kontrollierten Betriebsführung ist der Zuteilbehälter 16 mit einer Wiegeeinrichtung 21 und den radiometrischen Füllstandsmessungen 22a und 22b ausgerüstet, die den zylindrischen Teil des Zuteilbehälters 16 erfassen. Mit Hilfe der Wiegeeinrichtung 21 kann die Gewichtsdifferenz zwischen dem Beginn und dem Ende der Befüllung des Zuteilbehälters 16 ermittelt werden. Zu diesem Wert ist dabei noch der Massenstrom des Flugstaubes zu addieren, der während des Füllvorganges vom Zuteilbehälter 16 zu den Vergasungsbrennern 2 gefördert wird. Aus dieser Gewichtsdifferenz und dem Füllvolumen des Zwischenbehälters 7, das mit den Abmessungen des Behälters zwischen dem Leer- und dem Vollstand bekannt ist, kann nach Abschluß des Füllvorganges die mittlere Schüttdichte des Flugstaubes berechnet werden, die - wie weiter oben bereits dargelegt wurde - für eine kontrollierte Betriebsführung benötigt wird. Wie bereits erwähnt wurde, liegt bei niedriger Schüttdichte zwischen 150 und 300 kg/m³ ein Flugstaub mit einem hohen Gehalt an Restkohlenstoff vor, was auf eine unvollständige Vergasung des eingesetzten Brennstoffes auf Grund eines falschen Verhältnisses von Sauerstoff zu Kohlenstoff schließen läßt. Außerdem besteht bei zu geringer Schüttdichte die Gefahr, daß der Zuteilbehälter 16 überfüllt wird. Der auf der Basis einer normalen Schüttdichte von ca. 350 kg/m³ an der Wiegeeinrichtung 21 eingestellte Minimal-Grenzwert täuscht dann bereits einen leeren Zuteilbehälter 16 vor, wenn dessen Füllstand auf Grund der geringen Schüttdichte des Flugstaubes noch weit über dem Minimalstand liegt. Bei zu geringer Schüttdichte ist deshalb erfindungsgemäß vorgesehen, den Massenstrom des zum Vergasungsreaktor 1 zurückgeführten Flugstaubes zu erhöhen. Hierzu wird der Differenzdruck zwischen dem Zuteilbehälter 16 und dem Vergasungsreaktor 1 mit Hilfe zusätzlicher Gaszufuhr über die Leitung 23 entsprechend erhöht. Gleichzeitig muß die Zufuhr von Fördergas in den Austrittsbereich des Zuteilbehälters 16 über die Leitung 24 und in die zentrale Auslaufleitung 25 über die Leitung 26 entsprechend gesteigert werden, um eine der verringerten Schüttdichte angepaßte niedrigere Förderdichte in der zum Vergasungsbrenner 2 führenden Leitung 27 einzustellen. Die Förderdichte in der zentralen Auslaufleitung 25 kann durch die radiometrische Dichtemessung 28 gemessen und überwacht werden.The intermediate container 7 is filled cyclically as required, that is to say at a maximum fill level in the collecting container 5 or at a minimum fill level in the supply container 16. The filling of the intermediate container 7 is controlled by the measuring devices 17 and 18. The measuring device 17 is used to determine the vacancy and the measuring device 18 that of the full level. As soon as the intermediate container 7 is filled, the dust supply via the line 9 is interrupted and by supplying gas via lines 19 and 20, the required excess pressure for the conveyance to the supply container 16 is built up. The lines 19 and 20 two gene from line 10. A CO₂- or N₂-rich gas is preferably used as the gas in this line, which gas is supplied via line 10 from a source located outside the system, for example a gas supply device. With the help of the generated differential pressure, the dust can be conveyed from the intermediate container 7 via the line 35 into the allotment container 16 as soon as the fill level of the allotment container 16 makes this necessary. Depending on the quality of the fly dust, the conveyance is carried out with a high delivery density between 100 and 550 kg / m³, so that the delivery density is in the order of 60 to 90% of the fly dust bulk density. With the raw gas stream, larger slag particles or other contaminants with a size between 1 and 10 mm can occasionally get into the system. So that coarser impurities of this type do not lead to a blockage of the gasification burner 2, a screen (not shown in the figure) is installed in the line 35, if necessary, which serves to separate these impurities. The allocation container 16 is dimensioned such that it can accommodate the entire filling content of the intermediate container 7. For controlled operation, the feed container 16 is equipped with a weighing device 21 and the radiometric fill level measurements 22a and 22b, which record the cylindrical part of the feed container 16. With the aid of the weighing device 21, the weight difference between the beginning and the end of the filling of the allotment container 16 can be determined. The mass flow of the flying dust, which is conveyed from the feed container 16 to the gasification burners 2 during the filling process, must also be added to this value. From this weight difference and the filling volume of the intermediate container 7, which is known with the dimensions of the container between the empty and the full level, can be calculated after the completion of the filling process, the average bulk density of the dust, which - as already explained above - required for a controlled operation becomes. As already mentioned, at low bulk density between 150 and 300 kg / m³ there is a fly dust with a high content of residual carbon, which suggests an incomplete gasification of the fuel used due to an incorrect ratio of oxygen to carbon. In addition, if the bulk density is too low, there is a risk that the feed container 16 will be overfilled. The minimum limit set on the basis of a normal bulk density of approx. 350 kg / m 3 at the weighing device 21 already fakes an empty allocation container 16 when its fill level is still well above the minimum level due to the low bulk density of the dust. If the bulk density is too low, provision is therefore made according to the invention to increase the mass flow of the fly dust returned to the gasification reactor 1. For this purpose, the differential pressure between the feed container 16 and the gasification reactor 1 is increased accordingly with the aid of additional gas supply via line 23. At the same time, the supply of conveying gas in the outlet area of the supply container 16 via the line 24 and in the central outlet line 25 via the line 26 must be increased accordingly in order to set a lower conveying density in the line 27 leading to the gasification burner 2 which is adapted to the reduced bulk density. The delivery density in the central outlet line 25 can be measured and monitored by the radiometric density measurement 28.

Ein Anstieg der berechneten Schüttdichte des Flugstaubes über den normalen, bei optimierten Verfahrensbedingungen ermittelten Wert ist für den Nachfüllvorgang des Zuteilbehälters 16 unkritisch. Bei höherer Schüttdichte zwischen 400 und 600 kg/m³ kann aber auch mit geringerem Differenzdruck zwischen dem Zuteilbehälter 16 und dem Vergasungsreaktor 1 sowie einer höheren Förderdichte in der zentralen Auslaufleitung 25 dosiert werden. Neben der Verringerung des Energie- und Gasbedarfs für die Rückführung des Flugstaubes zum Vergasungsreaktor 1 erlaubt die Kenntnis der Schüttdichte des Flugstaubes auch eine Überprüfung der Vergasungsbedingungen.An increase in the calculated bulk density of the flying dust above the normal value determined under optimized process conditions is not critical for the refilling process of the supply container 16. At higher bulk densities between 400 and 600 kg / m³, metering can also be carried out with a lower differential pressure between the feed container 16 and the gasification reactor 1 and a higher delivery density in the central outlet line 25. In addition to reducing the energy and gas requirements for the return of the fly dust to the gasification reactor 1, knowing the bulk density of the fly dust also allows a check of the gasification conditions.

Da der zyklische Nachfüllvorgang des Zuteilbehälters 16 aus dem Zwischenbehälter 7 bei großen Behältervolumina bis zu einer Stunde Zeit in Anspruch nehmen und deshalb während dieser Zeit die Ermittlung der Schüttdichte des Flugstaubes in der weiter oben beschriebenen Weise nicht vorgenommen werden kann, sind bei der erfindungsgemäßen Anlage zusätzlich die radiometrischen Füllstandsmessungen 22a und 22b vorgesehen. Hierbei sind 22a und 22b beispielsweise in einem Abstand von einem Meter voneinander am zylindrischen Teil des Zuteilbehälters 16 angeordnet. Dieser Meßbereich wird bei jedem Füll- und Entleerungsvorgang nur einmal durchflossen. In Verbindung mit der Gewichtsermittlung durch die Wiegeeinrichtung 21 und dem zugehörigen Behältervolumen kann die Schüttdichte beim Befüllen und Entleeren des Zuteilbehälters 16 berechnet werden, wenn die Gewichtsdifferenz zwischen der maximalen radiometrischen Füllstandsmessung 22b und der minimalen radiometrischen Füllstandsmessung 22a ermittelt und gleichzeitig der Wert für den Massenstrom des zum Vergasungsreaktor 1 zurückgeführten Flugstaubes berücksichtigt wird. Es steht somit eine weitere Methode zur Ermittlung der Schüttdichte zur Verfügung.Since the cyclical refilling process of the supply container 16 from the intermediate container 7 takes up to one hour in the case of large container volumes and therefore the determination of the bulk density of the flying dust in the manner described above cannot be carried out during this time, the system according to the invention additionally the radiometric level measurements 22a and 22b are provided. Here, 22a and 22b are arranged, for example, at a distance of one meter from one another on the cylindrical part of the distribution container 16. This measuring range is only flowed through once during each filling and emptying process. In conjunction with the weight determination by the weighing device 21 and the associated container volume, the bulk density when filling and emptying the distribution container 16 can be calculated if the weight difference between the maximum radiometric level measurement 22b and the minimum radiometric level measurement 22a is determined and at the same time the value for the mass flow of the Airborne dust returned to the gasification reactor 1 is taken into account. There is therefore another method for determining the bulk density to disposal.

Wie bereits erwähnt wurde, unterscheidet sich die erfindungsgemäße Anlage von der Anlage nach der älteren Patentanmeldung dadurch, daß der Flugstaub nur aus einem einzigen Zuteilbehälter 16 dem Vergasungsreaktor 1 zugeführt wird, wobei der Differenzdruck zwischen dem Zuteilbehälter 16 und dem Vergasungsreaktor 1 zur Anpassung des zum Vergasungsreaktor 1 geförderten Flugstaubes verändert werden kann. Führungsgröße für die Veränderung des Differenzdrukkes ist hierbei das Verhältnis zwischen der Gesamtmasse des Brennstoffes, der dem Vergasungsreaktor 1, das heißt allen vier Vergasungsbrennern 2, zugeführt wird, und dem Massenstrom des Flugstaubes, der zum Vergasungsreaktor 1 zurückgeführt wird. Das Verhältnis von Brennstoff zu zurückgeführtem Flugstaub ist hierbei in erster Linie abhängig vom Aschegehalt des eingesetzten Brennstoffes, vom C-Umwandlungsgrad während der Vergasung sowie vom Abscheidungsgrad des Flugstaubes im Abscheider 4, um nur die Haupteinflußfaktoren zu nennen. Diese Abhängigkeit von den einzelnen Faktoren wird durch Vorversuche während der Inbetriebnahmephase der Anlage ermittelt und im Leitsystem der Anlage programmiert.As has already been mentioned, the system according to the invention differs from the system according to the earlier patent application in that the fly dust is fed to the gasification reactor 1 only from a single supply container 16, the differential pressure between the supply container 16 and the gasification reactor 1 to adapt the gasification reactor 1 supported dust can be changed. The guide variable for the change in the differential pressure is the ratio between the total mass of the fuel which is fed to the gasification reactor 1, that is to say all four gasification burners 2, and the mass flow of the airborne dust which is returned to the gasification reactor 1. The ratio of fuel to recycled flying dust is primarily dependent on the ash content of the fuel used, the degree of C-conversion during gasification and the degree of separation of the flying dust in separator 4, to name only the main influencing factors. This dependency on the individual factors is determined by preliminary tests during the commissioning phase of the system and programmed in the control system of the system.

Zwischen der zentralen Auslaufleitung 25 und der Leitung 27 ist der Verteiler 29 angeordnet, an den die zu den vier Vergasungsbrennern 2 des Vergasungsreaktors 1 führenden Leitungen 27 angeschlossen sind. In der Abbildung ist nur eine Leitung 27 vollständig eingezeichnet, da im Normalfall der Druckverlust in allen Leitungen 27 in etwa gleich und damit eine ausreichend gleiche Verteilung des rückgeführten Flugstaubes auf alle Vergasungsbrenner 2 gewährleistet ist. Der Massenstrom kann dabei jeweils durch ein in den Leitungen 27 eingebautes Venturirohr mit Hilfe eines Differenzdruckmessers 30 kontrolliert werden. Dies ist insbesondere dann erforderlich, wenn in Abweichung vom Normalfall der Flugstaub nicht allen Vergasungsbrennern 2 gleichmäßig verteilt zugeführt werden soll, z.B. weil die Vergasungsbrenner 2 zum Teil eine unterschiedliche Konstruktion oder Brennstoffzufuhr aufweisen. Die erforderliche Regelung des Flugstaub-Massenstromes kann mit Hilfe der in der Leitung 27 installierten Stellarmatur 31 erfolgen. In der zentralen Auslaufleitung 25 kann eine weitere radiometrische Dichtemessung 32 installiert werden. Mit Hilfe der Korelation der Meßwerte der beiden radiometrischen Dichtemessungen 28 und 32 läßt sich ebenfalls der Restkohlenstoffgehalt des rückgeführten Flugstaubes ermitteln. Der Restkohlenstoffgehalt kann dabei als Führungsgröße für die durch die Flugstaubrückführung bedingte Veränderung des Sauerstoff/ Kohlenstoff-Verhältnisses im Vergasungsreaktor dienen.The distributor 29, to which the lines 27 leading to the four gasification burners 2 of the gasification reactor 1 are connected, is arranged between the central outlet line 25 and the line 27. Only one line 27 is shown completely in the figure, since in normal cases the pressure loss in all lines 27 is approximately the same and thus an adequately equal distribution of the returned flue dust to all gasification burners 2 is ensured. The mass flow can in each case through a Venturi tube installed in the lines 27 with the help a differential pressure meter 30 are checked. This is particularly necessary if, in deviation from the normal case, the fly dust should not be supplied to all gasification burners 2 in an evenly distributed manner, for example because the gasification burners 2 have a different construction or fuel supply in some cases. The required regulation of the mass flow of dust can be carried out with the help of the control valve 31 installed in the line 27. A further radiometric density measurement 32 can be installed in the central outlet line 25. With the help of the correlation of the measured values of the two radiometric density measurements 28 and 32, the residual carbon content of the returned fly dust can also be determined. The residual carbon content can serve as a reference variable for the change in the oxygen / carbon ratio in the gasification reactor caused by the fly dust recirculation.

An den Verteiler 8 ist die Entsorgungsleitung 33 angeschlossen. Diese Leitung ist für den Störfall vorgesehen, wenn der im Abscheider 4 abgeschiedene Flugstaub infolge einer Betriebsstörung nicht in den Vergasungsreaktor 1 zurückgeführt werden kann und deshalb über die Entsorgungsleitung 33 aus der Anlage entfernt werden muß. Hierbei kann dieser Flugstaub gegebenenfalls gemeinsam mit dem über die Leitung 6 abgezogenen Rohgas in einen in der Abbildung nicht dargestellten Abscheider geleitet werden, in dem eine feuchte Abscheidung des Flugstaubes erfolgt, wobei die anfallende Slurry eingedickt und anschließend zu einer Schlacke eingeschmolzen oder deponiert wird.The disposal line 33 is connected to the distributor 8. This line is intended for the event of a fault if the fly dust separated in the separator 4 cannot be returned to the gasification reactor 1 as a result of a malfunction and must therefore be removed from the system via the disposal line 33. In this case, this flue dust can, if necessary, be passed together with the raw gas drawn off via line 6 into a separator (not shown in the figure), in which the flue dust is separated by moisture, the resulting slurry being thickened and then melted or deposited into a slag.

Sofern eine Druckreduzierung im Zuteilbehälter 16 erforderlich wird, so kann überschüssiges Gas über die Leitung 34 in die Leitung 3 abgelassen werden.If a pressure reduction in the supply container 16 is required, excess gas can be discharged via line 34 into line 3.

Claims (4)

Verfahren zum Betrieb einer Anlage für die Vergasung feinkörniger bis staubförmiger fester Brennstoffe mit
Vergasungsreaktor, der mit Vergasungsbrennern ausgerüstet ist,
Einrichtung für die Flugstaubabscheidung aus dem Rohgas,
Flugstaubsammelbehälter und Einrichtung für die Flugstaubrückführung in den Vergasungsreaktor,
wobei die Vergasungsbrenner mit einem am Vergasungsbrenneraustritt rotationssymmetrischen Brennstoff/Reaktionsmittel-Strahl in den Vergasungsreaktor hineinbrennen, von den Brennstoff/Reaktionsmittel-Strahlen in dem Vergasungsreaktor eine Primärreaktionszone hoher Temperatur gebildet und der Flugstaub mit seinem Gehalt an Rohgas und seinem Restkohlenstoff durch einen Fördergasstrom in die Achse von zumindest einem Brennstoff/Reaktionsmittel-Strahl eingeführt, von dem Brennstoff/Reaktionsmittel-Strahl in die Primärreaktionszone eingebracht und in dieser eingeschmolzen wird, dadurch gekennzeichnet, daß die Schüttdichte des abgeschiedenen Flugstaubes ermittelt und bei der Regelung des Massenstromes des den Vergasungsbrennern zugeführten Flugstaubes berücksichtigt wird, wobei die Zuführung des Flugstaubes zu den Vergasungsbrennern kontinuierlich und kontrolliert mit einer Förderdichte in der Größenordnung von 60 bis 90 % der Flugstaubschüttdichte erfolgt.
Process for operating a plant for the gasification of fine-grained to dust-like solid fuels with
Gasification reactor equipped with gasification burners,
Device for the separation of dust from the raw gas,
Dust collection container and device for the return of dust in the gasification reactor,
wherein the gasification burners burn into the gasification reactor with a fuel / reagent jet which is rotationally symmetrical at the gasification burner outlet, a primary reaction zone of high temperature is formed by the fuel / reagent jets in the gasification reactor and the flue dust with its raw gas content and its residual carbon through a conveying gas flow into the axis introduced by at least one fuel / reactant jet, from which the fuel / reactant jet is introduced into the primary reaction zone and is melted in it, characterized in that the bulk density of the separated flying dust is determined and taken into account in the regulation of the mass flow of the flying dust supplied to the gasification burners , whereby the supply of the fly dust to the gasification burners is carried out continuously and in a controlled manner with a delivery density in the order of 60 to 90% of the fly dust bulk density.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei niedriger, im Bereich zwischen 150 und 300 kg/m³ liegender Flugstaub-Schüttdichte der Massenstrom des den Vergasungsbrennern zugeführten Flugstaubes erhöht wird und daß bei hoher, im Bereich zwischen 400 und 600 kg/m³ liegender Flugstaub-Schüttdichte der Massenstrom des den Vergasungsbrennern zugeführten Flugstaubes erniedrigt werden kann.A method according to claim 1, characterized in that at low, in the range between 150 and 300 kg / m³ bulk density of powders, the mass flow of the powders supplied to the gasification burners is increased and in that at high, in the range between 400 and 600 kg / m³ powders - Bulk density the mass flow of the fly dust supplied to the gasification burners can be reduced. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß der Flugstaub aus einem einzigen Zuteilbehälter den Vergasungsbrennern durch Differenzdruckförderung zugeführt wird, wobei die Befüllung des Zuteilbehälters aus einem Zwischenbehälter erfolgt.Method according to claims 1 and 2, characterized in that the fly dust is fed from a single feed container to the gasification burners by differential pressure delivery, the feed container being filled from an intermediate container. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Befüllung des Zuteilbehälters mit einer hohen Förderdichte zwischen 100 und 550 kg/m³ erfolgt.Process according to claims 1 to 3, characterized in that the feed container is filled with a high conveying density between 100 and 550 kg / m³.
EP19900123157 1990-02-16 1990-12-04 Process for operating a plant for the gasification of solid fuels Expired - Lifetime EP0447632B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19904004874 DE4004874A1 (en) 1990-02-16 1990-02-16 METHOD FOR OPERATING A PLANT FOR GASIFYING SOLID FUELS
DE4004874 1990-02-16

Publications (2)

Publication Number Publication Date
EP0447632A1 true EP0447632A1 (en) 1991-09-25
EP0447632B1 EP0447632B1 (en) 1993-06-30

Family

ID=6400319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900123157 Expired - Lifetime EP0447632B1 (en) 1990-02-16 1990-12-04 Process for operating a plant for the gasification of solid fuels

Country Status (7)

Country Link
EP (1) EP0447632B1 (en)
CN (1) CN1030464C (en)
DE (2) DE4004874A1 (en)
DK (1) DK0447632T3 (en)
ES (1) ES2043222T3 (en)
PL (1) PL164897B3 (en)
ZA (1) ZA9010026B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510341A1 (en) * 1991-04-25 1992-10-28 Krupp Koppers GmbH Process for controlling the operation of a gazifying reactor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018108A1 (en) * 2010-04-24 2011-10-27 Uhde Gmbh Apparatus for supplying a plurality of burners with fine-grained fuel
US8721747B2 (en) * 2010-08-11 2014-05-13 General Electric Company Modular tip injection devices and method of assembling same
EP2707663A4 (en) * 2011-05-09 2015-04-08 Hrl Treasury Idgcc Pty Ltd Improvements in integrated drying gasification
DE102011083850A1 (en) * 2011-09-30 2013-04-04 Siemens Aktiengesellschaft Pneumatic fuel supply from a metering vessel to a high differential pressure gasification reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2401982A1 (en) * 1977-08-29 1979-03-30 Combustion Eng MAINTAINED COAL CURRENT GASIFIER
FR2403377A1 (en) * 1977-09-19 1979-04-13 Freiberg Brennstoffinst METHOD AND DEVICE FOR PRESSURIZED GASIFICATION OF PULVERULENT FUELS
EP0335071A1 (en) * 1988-03-26 1989-10-04 Krupp Koppers GmbH Process and apparatus for pneumatically conveying a finely granulated to powdered fuel into a high pressure gasification reactor
EP0350658A1 (en) * 1988-07-14 1990-01-17 Krupp Koppers GmbH Process for metering and controlling the mass flow of fuels in the partial oxidation of finely divided to powdery fuels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL171691C (en) * 1973-02-26 1983-05-02 Shell Int Research PROCESS FOR THE PREPARATION OF HYDROGEN AND / OR CARBON MONOXIDE-CONTAINING GASES BY INCOMPLETE BURNING OF FUELS AND SEPARATION OF THE SOLID PARTICLES THEREFORE.
DE3132506A1 (en) * 1981-08-18 1983-03-03 Hoechst Ag, 6000 Frankfurt METHOD AND DEVICE FOR PRODUCING SYNTHESIS GAS
DE3372867D1 (en) * 1982-11-11 1987-09-10 Shell Int Research Process for the partial combustion of solid fuel with fly ash recycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2401982A1 (en) * 1977-08-29 1979-03-30 Combustion Eng MAINTAINED COAL CURRENT GASIFIER
FR2403377A1 (en) * 1977-09-19 1979-04-13 Freiberg Brennstoffinst METHOD AND DEVICE FOR PRESSURIZED GASIFICATION OF PULVERULENT FUELS
EP0335071A1 (en) * 1988-03-26 1989-10-04 Krupp Koppers GmbH Process and apparatus for pneumatically conveying a finely granulated to powdered fuel into a high pressure gasification reactor
EP0350658A1 (en) * 1988-07-14 1990-01-17 Krupp Koppers GmbH Process for metering and controlling the mass flow of fuels in the partial oxidation of finely divided to powdery fuels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510341A1 (en) * 1991-04-25 1992-10-28 Krupp Koppers GmbH Process for controlling the operation of a gazifying reactor

Also Published As

Publication number Publication date
PL288331A3 (en) 1991-12-02
ES2043222T3 (en) 1993-12-16
DE59001892D1 (en) 1993-08-05
DE4004874C2 (en) 1992-11-19
EP0447632B1 (en) 1993-06-30
ZA9010026B (en) 1991-10-30
CN1054095A (en) 1991-08-28
PL164897B3 (en) 1994-10-31
DK0447632T3 (en) 1993-11-22
CN1030464C (en) 1995-12-06
DE4004874A1 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
DE2831208C2 (en)
EP0235562B1 (en) Process and device for the measured supply of fine solid particles to an industrial furnace
EP0350658B1 (en) Process for metering and controlling the mass flow of fuels in the partial oxidation of finely divided to powdery fuels
DE102007006981B4 (en) Process, gasification reactor and plant for entrained flow gasification of solid fuels under pressure
EP0718553B1 (en) Method of combustion of wastes
DE202005021660U1 (en) Apparatus for the controlled supply of combustible dust in an air flow gasifier
EP0335071B1 (en) Process and apparatus for pneumatically conveying a finely granulated to powdered fuel into a high pressure gasification reactor
WO1986005198A1 (en) Process for the evacuation of particles of residue from a pressure gasification reactor
EP0167014B1 (en) Process for treating fluidized carbon black with gases and fluidizing apparatus for carrying it out
EP0447632B1 (en) Process for operating a plant for the gasification of solid fuels
EP0278287B1 (en) Process and apparatus for treating particulate solids in a fluidized bed
EP0499771A1 (en) Process and apparatus for gasifying finely devided to powdery fuel with recycling of the fly ash
DE69515700T2 (en) STEAM CRACKING METHOD WITH INJECTION OF POWDERS COLLECTED AT A POINT AND DEVICE THEREFOR
DE2701390C3 (en) Arrangement for dosing the charge of a coke oven battery
DE3316368A1 (en) METHOD AND DEVICE FOR DETERMINING AND MONITORING THE FUEL MASS CURRENT WHICH IS ADMITTED TO THE CARBURETOR IN THE PARTIAL OXIDATION (GASIFICATION) OF FINE-GRAINED TO DUST-SHAPED FUELS
DE2642537A1 (en) METHOD FOR DETERMINING THE FUEL FLOW SUPPLIED TO THE CARBURETOR IN PARTIAL OXYDATION (GASIFICATION) OF FINE-GRAINED TO DUST-SHAPED SOLID FUELS
EP0340419B1 (en) Apparatus for gasifying fine granulated to powdery fuels
DE2925441C2 (en) Method and device for gasifying coal in a fluidized bed
EP0059904A1 (en) Plant for feeding coal to metallurgical processing vessels with a plurality of blow-in sites, and method of operating the plant
EP0497088A1 (en) Apparatus and process for convey finely divided to powdery fuel into a gasification reactor under higher pressure
EP0510341B1 (en) Process for controlling the operation of a gazifying reactor
DE2750513C2 (en) Process for the operation of coal heating plants
EP0370201B1 (en) Process for operating a plant for the gasification of solid fuels, and suited operating plant
DE102017126961A1 (en) Process and installation for the thermal treatment of flyable and carbonated starting material
DE2214737C2 (en) Process and device for regulating and safely monitoring the inert gas overpressure in the bunker and allocation system of a plant for the suspension gasification of finely divided solid fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK ES GB NL

17Q First examination report despatched

Effective date: 19921119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK ES GB NL

REF Corresponds to:

Ref document number: 59001892

Country of ref document: DE

Date of ref document: 19930805

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930709

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2043222

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981112

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19981118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991122

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991204

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19991216

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991204

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001213

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020112