EP0436944A2 - Epoxy resin composition for fiber reinforced plastic - Google Patents
Epoxy resin composition for fiber reinforced plastic Download PDFInfo
- Publication number
- EP0436944A2 EP0436944A2 EP90125692A EP90125692A EP0436944A2 EP 0436944 A2 EP0436944 A2 EP 0436944A2 EP 90125692 A EP90125692 A EP 90125692A EP 90125692 A EP90125692 A EP 90125692A EP 0436944 A2 EP0436944 A2 EP 0436944A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- resin composition
- weight
- parts
- epoxy resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 23
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 23
- 239000000203 mixture Substances 0.000 title claims abstract description 19
- 229920002430 Fibre-reinforced plastic Polymers 0.000 title claims abstract description 11
- 239000011151 fibre-reinforced plastic Substances 0.000 title claims abstract description 11
- 239000004593 Epoxy Substances 0.000 claims abstract description 55
- 150000001875 compounds Chemical class 0.000 claims abstract description 36
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000007787 solid Substances 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 229920003986 novolac Polymers 0.000 claims abstract description 8
- 229920000459 Nitrile rubber Polymers 0.000 claims abstract description 7
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 7
- 239000011342 resin composition Substances 0.000 description 25
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 4
- 229920003319 Araldite® Polymers 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000012783 reinforcing fiber Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 2
- FVCSARBUZVPSQF-UHFFFAOYSA-N 5-(2,4-dioxooxolan-3-yl)-7-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C(OC2=O)=O)C2C(C)=CC1C1C(=O)COC1=O FVCSARBUZVPSQF-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- QKKPBSUJTJREAB-UHFFFAOYSA-N 3-(1h-imidazol-2-yl)propanenitrile Chemical compound N#CCCC1=NC=CN1 QKKPBSUJTJREAB-UHFFFAOYSA-N 0.000 description 1
- QLQDWOFJALEHSP-UHFFFAOYSA-N 3-(3-chlorophenyl)-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=CC(Cl)=C1 QLQDWOFJALEHSP-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- 241000531908 Aramides Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004844 aliphatic epoxy resin Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- -1 glycidyl ester Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- BMLIZLVNXIYGCK-UHFFFAOYSA-N monuron Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C=C1 BMLIZLVNXIYGCK-UHFFFAOYSA-N 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
- C08G59/38—Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/243—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
Definitions
- the present invention relates to a resin composition for fiber reinforced plastic. More particularly, it relates to a resin composition suitable for fiber reinforced plastic materials wherein fibers of high elasticity are employed.
- the prepreg has a proper adhesiveness (tackiness) so that prepreg sheets adhere to one another at the time of laying up, and a flexibility (draping properties) so that laid up prepreg layers accurately reflect the shape such as a curved surface or cylinder.
- adhesiveness tackiness
- flexibility draping properties
- thermosetting molding by blending a phenol novolak type epoxy resin to such as resin composition, a molded product having no internal voids after the thermosetting molding can be obtained while adequately maintaining the shape-maintaining strength of the prepreg sheets and excellent draping properties (Japanese Patent Application No. 170228/1988).
- Such a resin composition does not create any particular problem when applied to fiber reinforced plastic materials wherein reinforcing fibers of usual physical properties are employed.
- the reinforcing fibers have a high modulus of elasticity, the tackiness tends to be slightly poor, and it frequently happens that the shape after the shape-forming can not be maintained.
- the present inventors have conducted extensive researchs to solve such a problem and as a result have found that the tackiness can be improved by using a combination of two bisphenol A type epoxy resins having specific physical properties and being solid at room temperature, as the high molecular weight components, whereby the conventional problems can be solved, and a resin composition having balanced properties can be obtained.
- the present invention has been accomplished on the basis of this discovery.
- an epoxy resin composition for fiber reinforced plastic comprising the following components A, B, C, D, E and F as essential components and having a viscosity at 40°C of at least 10,000 poise and a viscosity at 80°C of at most 200 poise:
- component A having an epoxy equivalent of at most 250 and being liquid at room temperature
- component A having an epoxy equivalent of at most 250 and being liquid at room temperature
- any such compound may be used so long as it has an epoxy equivalent of at most 1,000, preferably from 400 to 1,000, and a softening point of at most 100°C, preferably from 60 to 100°C.
- the following compounds may be mentioned: "EPOKOTE” 1001, 1002, 1004, manufactured by Yuka Shell Epoxy Company, "D. E.
- any such compound may be used so long as it has an epoxy equivalent of at least 1,100, preferably from 1,100 to 5,000, more preferably from 1,100 to 3,500, and a softening point of at least 110°C, preferably from 110 to 200°C, more preferably from 110 to 160°C.
- the following compounds may be mentioned: "EPIKOTE” 1007, 1009, 1010, manufactured by Yuka Shell Epoxy Company, "D. E.
- the phenol novolak type epoxy compound (component D) means a compound of the formula: wherein n is an integer.
- phenol novolak type epoxy resin component D
- the following compounds may specifically be mentioned: "EPIKOTE” 152, 154, manufactured by Yuka Shell Epoxy Company, “Araldite” EPN1138, EPN1139, manufactured by Ciba Geigy Company, “D.E.N” 431, 438, 439, 485, manufactured by Daw Chemical Company, "EPPN” 201, manufactured by Nippon Kayaku K.K., "EPICRON” N-730, N-738, N-740, manufactured by Dai Nippon Ink Kagaku K.K.
- the nitrile rubber of component E is not particularly restricted, and it is usual to employ the one having an average molecular weight of at least 10,000. Specifically, a copolymer of butadiene and acrylonitrile may be employed. Further, it may be a copolymer having acrylic acid added to butadiene and acrylonitrile. It is usual to employ such copolymer having an average molecular weight of about 50,000. The acrylonitrile content is usually from 15 to 40% by weight.
- the nitrile rubber of component E may be incorporated independently in the form of nitrile rubber to the epoxy resin composition of the present invention. However, it is preferred to preliminarily mixing and reacting it with the epoxy compound of component A so that it may be incorporated in the form of a nitrile rubber-modified epoxy compound thus obtained.
- the above mentioned respective components are essential components, and their proportions are preferably such that relative to 100 parts by weight of component A, component B is from 5 to 40 parts by weight, component C is from 5 to 40 parts by weight, component D is from 50 to 140 parts by weight and component E is from 1 to 8 parts by weight.
- the resin composition of the present invention has a viscosity at 40°C ( ⁇ 40°C) of at least 10,000 poise, preferably from 10,000 to 40,000 poise, more preferably from 10,000 to 30,000 poise and a viscosity at 80°C ( ⁇ 80°C) of at most 200 poise, preferably from 20 to 200 poise, more preferably from 50 to 150 poise.
- the viscosity ( ⁇ 40°C) is less than 10,000 poise, the surface tends to be sticky although the operation efficiency may be improved. On the other hand, if it is too high, the operation efficiency tends to be poor, since the hardness tends to be too high.
- component A and components B and C primarily serve to adjust the viscosity of the resin composition.
- the adhesive properties of the resin composition can be improved by the combined use of components B and C.
- Component E serves primarily to impart excellent operation efficiency and is effective particularly for the improvement of the flexibility of the resin composition.
- Component D serves to prevent formation of voids in the interior of the molded product. If components D and E are not incorporated, it tends to be difficult to impart good flexibility with a proper viscosity during the preparation of prepreg sheets or during the molding operation, and voids tend to form in the interior of the molded product, such being very inconvenient.
- an aliphatic epoxy resin an o-cresol novolak type epoxy resin, a polyglycidyl amine, a bisphenol F type epoxy resin, a brominated bisphenol A type epoxy resin, 1,1,2,2-tetrabis(4-glycidoxyphenyl)ethane, a glycidyl ester type epoxy resin and a monofunctional epoxy compound, may further be incorporated, as the case requires.
- the curing agent of component F may usually be any curing agent. It may be dicyandiamide, an acid anhydride, an aromatic diamine, dimercaptan or a phenol resin. Further, in order to impart storage stability and low temperature curability to the prepreg, it is effective to employ a combination of dicyandiamide and a curing accelerator. Even when dicyandiamide is used alone, no change is required in the operation prior to the molding, provided that the molding compositions such as the curing temperature may vary.
- the curing accelerator may be an imidazole derivative such as 2-ethyl-4-methylimidazole or 2-(2-cyanoethyl)-imidazole, or a urea derivative such as N-(3,4-dichlorophenyl)-N',N'-dimethylurea, N-(4-chlorophenyl)-N',N'-dimethylurea or N-(3-chlorophenyl)-N',N'-dimethylurea.
- an imidazole derivative such as 2-ethyl-4-methylimidazole or 2-(2-cyanoethyl)-imidazole
- a urea derivative such as N-(3,4-dichlorophenyl)-N',N'-dimethylurea, N-(4-chlorophenyl)-N',N'-dimethylurea or N-(3-chlorophenyl)-N',N'-dimethylurea.
- dicyandiamide a combination of dicyandiamide and a curing accelerator
- dicyandiamine is incorporated in an amount of form 0.5 to 10 parts by weight, based on 100 parts by weight of the entire resin mixture
- the curing accelerator is incorporated in an amount of from 0.5 to 10 parts by weight.
- the resin composition of the present invention is useful for fiber reinforced plastics.
- the reinforcing fibers may be glass fibers, carbon fibers, aramide fibers, alumina fibers or boron fibers. It is particularly preferred to employ carbon fibers having a high modulus of elasticity.
- Such fiber reinforced plastics may be prepared by usual methods such as a solution method or a heat melting method.
- a nitrile rubber-modifies epoxy resin obtained by preliminarily mixing and reacting 5 parts by weight of nitrile rubber (acrylonitrile content: 27%) and 95 parts by weight of a bisphenyl A type epoxy compound having an epoxy equivalent of 190 and being liquid at room temperature, 8 parts by weight of the above liquid epoxy compound (component A), 7 parts by weight of a solid epoxy compound having an epoxy equivalent of 460 and a melting point of 68°C (component B), 5 parts by weight of a solid epoxy compound having an epoxy equivalent of 3,000 and a melting point of 148°C (component C), 36 parts by weight of a phenol novolak type epoxy compound (component D), 4 parts by weight of an alicyclic epoxy compound (epoxy equivalent: 140, liquid at room temperature), 4 parts by weight of dicyandiamide as a curing agent (component F) and 3 parts by weight of N-(3,4-dichlorophenyl)-N',N'-
- the viscosity of this composition was 20,000 poise at 40°C and 120 poise at 80°C.
- a resin composition was prepared by uniformly mixing 46 parts by weight of component E, 8 parts by weight of component A, 6 parts by weight of component C, 40 parts by weight of component D, 4 parts by weight of the alicyclic epoxy compound, 3.5 parts by weight of dicyandiamide and 3.8 parts by weight of the curing accelerator.
- the viscosity at 40°C of this resin composition was 6,000 poise.
- a one-directional prepreg prepared by using this resin composition was wound on the mandrel as in Example 1, whereby the end portion of the winding was partially peeled.
- a resin composition was prepared by uniformly mixing 40 parts by weight of component E, 8 parts by weight of component A, 12 parts by weight of component B, 40 parts by weight of component D, 4 parts by weight of the alicyclic epoxy compound, 3.5 parts by weight of component F and 3.8 parts by weight of the curing accelerator.
- the viscosity at 40°C of this resin composition was 8,000 poise.
- a one-directional prepreg prepared by using this resin composition was wound on the mandrel in the same manner as Example 1, whereby the end portion of the winding was partially peeled as in the case of Comparative Example 2.
- a resin composition was prepared by uniformly mixing 27 parts by weight of component E, 8 parts by weight of component A, 25 parts by weight of component B, 40 parts by weight of component D, 4 parts by weight of the alicyclic epoxy compound, 3.5 parts by weight of component F and 3.8 parts by weight of the curing accelerator.
- the viscosity of this resin composition was 22,000 poise at 40°C and 100 poise at 80°C.
- a one-directional prepreg prepared by using this resin composition was wound on the mandrel in the same manner as in Example 1 and cured, whereby the prepreg lacked in flexibility and was poor to follow the shape of the mandrel. After the curing, the cross section was inspected, whereby breakage of fibers was observed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Epoxy Resins (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
- A: a bisphenol A type epoxy compound having an epoxy equivalent of at most 250 and being liquid at room temperature,
- B: a bisphenol A type epoxy compound having an epoxy equivalent of at most 1,000 and a softening point of at most 100°C and being solid at room temperature,
- C: a bisphenol A type epoxy compound having an epoxy equivalent of at least 1,100 and a softening point of at least 110°C and being solid at room temperature,
- D: a phenol novolak type epoxy compound,
- E: a nitrile rubber, and
- F: a curing agent.
Description
- The present invention relates to a resin composition for fiber reinforced plastic. More particularly, it relates to a resin composition suitable for fiber reinforced plastic materials wherein fibers of high elasticity are employed.
- It is well known to impregnate an epoxy resin or an unsaturated polyester resin to a reinforcing material such as carbon fibers or glass fibers, followed by curing to form molded products having various shapes and thicknesses. This method is now being used for the production of cylindrical molded products or shafts for sporting goods or primary or secondary structural materials for aircrafts, or for the production of various materials. The reinforcing material having a resin impregnated and serving as a matrix, is called prepreg and may be in the form of strands, sheets stretched in one direction or fabrics. To obtain a molded product having a desired shape, it is known to use a filament winding method which comprises winding prepreg strands, or a lay-up method which comprises laminating prepreg sheets.
- To laminate prepreg sheets, it is important that the prepreg has a proper adhesiveness (tackiness) so that prepreg sheets adhere to one another at the time of laying up, and a flexibility (draping properties) so that laid up prepreg layers accurately reflect the shape such as a curved surface or cylinder. Under these circumstances, epoxy resin compositions having suitable tackiness and draping properties were proposed in Japanese Examined Patent Publications No. 5925/1983, No. 17535/1983 and No. 40975/1983 and Japanese Unexamined Patent Publications No. 43615/1986 and No. 127317/1987.
- However, such conventional resin compositions had drawbacks that depending upon the shape or various properties such as mechanical and physical properties of the reinforcing material to be used, the operation efficiency depending upon the tackiness and draping properties substantially decreases, and consequently the operation tends to be cumbersome, or it is difficult to obtain a molded product having satisfactory properties. Under such circumstances, the present inventors have previously found that by a combination of resins having specific physical properties, it is possible to obtain a prepreg having excellent draping properties (Japanese Unexamined Patent Publication No. 308026/1988), and further found a resin composition for improving the strength in the direction of 90°C when a on directional prepreg is prepared (Japanese Patent Application No. 40517/1988). They have further found that by blending a phenol novolak type epoxy resin to such as resin composition, a molded product having no internal voids after the thermosetting molding can be obtained while adequately maintaining the shape-maintaining strength of the prepreg sheets and excellent draping properties (Japanese Patent Application No. 170228/1988).
- Such a resin composition does not create any particular problem when applied to fiber reinforced plastic materials wherein reinforcing fibers of usual physical properties are employed. However, in a case where the reinforcing fibers have a high modulus of elasticity, the tackiness tends to be slightly poor, and it frequently happens that the shape after the shape-forming can not be maintained.
- Under the circumstances, the present inventors have conducted extensive researchs to solve such a problem and as a result have found that the tackiness can be improved by using a combination of two bisphenol A type epoxy resins having specific physical properties and being solid at room temperature, as the high molecular weight components, whereby the conventional problems can be solved, and a resin composition having balanced properties can be obtained. The present invention has been accomplished on the basis of this discovery.
- Namely, it is an object of the present invention to provide a resin composition which is excellent in the operation efficiency while maintaining excellent draping properties and the shape-maintaining strength of prepreg sheets and is capable of presenting a molded product having no voids in the interior of the molded product after thermosetting molding and which is most suitable for fiber reinforced plastic materials wherein reinforcing fibers of high modulus of elasticity are employed.
- Such an object can be accomplished by an epoxy resin composition for fiber reinforced plastic comprising the following components A, B, C, D, E and F as essential components and having a viscosity at 40°C of at least 10,000 poise and a viscosity at 80°C of at most 200 poise:
- A: a bisphenol A type epoxy compound having an epoxy equivalent of at most 250 and being liquid at room temperature,
- B: a bisphenol A type epoxy compound having an epoxy equivalent of at most 1,000 and a softening point of at most 100°C and being solid at room temperature,
- C: a bisphenol A type epoxy compound having an epoxy equivalent of at least 1,100 and a softening point of at least 110°C and being solid at room temperature,
- D: a phenol novolak type epoxy compound,
- E: a nitrile rubber, and
- F: a curing agent.
- Now, the present invention will be described in detail.
- With respect to the bisphenol A type epoxy compound (component A) having an epoxy equivalent of at most 250 and being liquid at room temperature to be used in the present invention, there is no particular restriction so long as it has an epoxy equivalent of at most 250, preferably from 180 to 200 and it is liquid at room temperature. Specifically, the following compounds may be mentioned:
"EPIKOTE" 816, 827, 828, manufactured by Yuka Shell Epoxy company,
"Araldite" GY250, GY260, manufactured by Ciba Geigy Company,
"AER" 334, 330, 331, manufactured by Asahi Chemical Industry Co., Ltd.,
"Sumiepoxy" ELA-115, ELA-127, ELA-128, manufactured by Sumitomo Chemical Co., Ltd.,
"EPICLON" 855, 840, 850, manufactured by Dai Nippon Ink Kagaku K.K.,
"EPOTOHTO" YD-115, YD-127, YD-128, manufactured by TOHTO KASEI CO., LTD.,
"EPOMIK" R130, R139, R140, manufactured by Mitsui Petrochemical Industries, Ltd. - With respect to the bisphenol A type epoxy compound (component B) having an epoxy equivalent of at most 1,000 and a softening point of at most 100°C and being solid at room temperature, any such compound may be used so long as it has an epoxy equivalent of at most 1,000, preferably from 400 to 1,000, and a softening point of at most 100°C, preferably from 60 to 100°C. Specifically, the following compounds may be mentioned:
"EPOKOTE" 1001, 1002, 1004, manufactured by Yuka Shell Epoxy Company,
"D. E. R." 661, 662, 664, manufactured by Daw Chemical Company,
"Araldite" 6071, 7072, manufactured by Ciba Geigy Company,
"Sumiepoxy" ESA-011, ESA=014, manufactured by Sumitomo Chemical Co., Ltd.,
"EPOTOHTO" 1050, 4050, manufactured by Dai Nippon Ink Kagaku K.K.,
"EPOTOHTO" YD-011, YD-127, YD-012, YD-014, manufactured by TOHTO KASEI CO., LTD.,
"EPOMIK" R301, R302, R304, manufactured by Mitsui Petrochemical Industries, Ltd. - With respect to the bisphenol A type epoxy compound (component C) having an epoxy equivalent of at least 1,100 and a softening point of at least 110°C and being solid at room temperature, any such compound may be used so long as it has an epoxy equivalent of at least 1,100, preferably from 1,100 to 5,000, more preferably from 1,100 to 3,500, and a softening point of at least 110°C, preferably from 110 to 200°C, more preferably from 110 to 160°C. Specifically, the following compounds may be mentioned:
"EPIKOTE" 1007, 1009, 1010, manufactured by Yuka Shell Epoxy Company,
"D. E. R." 667, 668, 669, manufactured by Dow Chemical Company,
"Araldite" 6097, 6099, manufactured by Ciba Geigy Company,
"Sumiepoxy" ESA-017, ESA-019, manufactured by Sumitomo Chemical Co., Ltd.,
"EPICLON" 7075, 7055, 9050, manufactured by Dai Nippon Ink Kagaku K.K.,
"EPOTOHTO" YD-017, YD-119, manufactured by TOHTO KASEI CO., LTD.,
"EPOMIK" R307, R309, manufactured by Mitsui Petrochemical Industries, Ltd. -
- As such a phenol novolak type epoxy resin (component D), the following compounds may specifically be mentioned:
"EPIKOTE" 152, 154, manufactured by Yuka Shell Epoxy Company,
"Araldite" EPN1138, EPN1139, manufactured by Ciba Geigy Company,
"D.E.N" 431, 438, 439, 485, manufactured by Daw Chemical Company,
"EPPN" 201, manufactured by Nippon Kayaku K.K.,
"EPICRON" N-730, N-738, N-740, manufactured by Dai Nippon Ink Kagaku K.K. - These compounds may be used alone or in combination as a mixture of two or more different types.
- The nitrile rubber of component E is not particularly restricted, and it is usual to employ the one having an average molecular weight of at least 10,000. Specifically, a copolymer of butadiene and acrylonitrile may be employed. Further, it may be a copolymer having acrylic acid added to butadiene and acrylonitrile. It is usual to employ such copolymer having an average molecular weight of about 50,000. The acrylonitrile content is usually from 15 to 40% by weight.
- The nitrile rubber of component E may be incorporated independently in the form of nitrile rubber to the epoxy resin composition of the present invention. However, it is preferred to preliminarily mixing and reacting it with the epoxy compound of component A so that it may be incorporated in the form of a nitrile rubber-modified epoxy compound thus obtained.
- In the present invention, the above mentioned respective components are essential components, and their proportions are preferably such that relative to 100 parts by weight of component A, component B is from 5 to 40 parts by weight, component C is from 5 to 40 parts by weight, component D is from 50 to 140 parts by weight and component E is from 1 to 8 parts by weight. Further, it is important that the resin composition of the present invention has a viscosity at 40°C (η40°C) of at least 10,000 poise, preferably from 10,000 to 40,000 poise, more preferably from 10,000 to 30,000 poise and a viscosity at 80°C (η80°C) of at most 200 poise, preferably from 20 to 200 poise, more preferably from 50 to 150 poise.
- If the viscosity (η40°C) is less than 10,000 poise, the surface tends to be sticky although the operation efficiency may be improved. On the other hand, if it is too high, the operation efficiency tends to be poor, since the hardness tends to be too high.
- If the viscosity (η80°C) exceeds 200 poise, the moldability in heat molding tends to be poor. On the other hand, if the viscosity is too low, the flowability tends to be so excellent that the operation efficiency tends to be poor, such being undesirable.
- Here, in the present invention, component A and components B and C primarily serve to adjust the viscosity of the resin composition. Particularly, in the present invention, the adhesive properties of the resin composition can be improved by the combined use of components B and C. Component E serves primarily to impart excellent operation efficiency and is effective particularly for the improvement of the flexibility of the resin composition.
- Component D serves to prevent formation of voids in the interior of the molded product. If components D and E are not incorporated, it tends to be difficult to impart good flexibility with a proper viscosity during the preparation of prepreg sheets or during the molding operation, and voids tend to form in the interior of the molded product, such being very inconvenient.
- As far as the physical properties of the resin mixture can be maintained, other components such as an aliphatic epoxy resin, an o-cresol novolak type epoxy resin, a polyglycidyl amine, a bisphenol F type epoxy resin, a brominated bisphenol A type epoxy resin, 1,1,2,2-tetrabis(4-glycidoxyphenyl)ethane, a glycidyl ester type epoxy resin and a monofunctional epoxy compound, may further be incorporated, as the case requires.
- The curing agent of component F may usually be any curing agent. It may be dicyandiamide, an acid anhydride, an aromatic diamine, dimercaptan or a phenol resin. Further, in order to impart storage stability and low temperature curability to the prepreg, it is effective to employ a combination of dicyandiamide and a curing accelerator. Even when dicyandiamide is used alone, no change is required in the operation prior to the molding, provided that the molding compositions such as the curing temperature may vary. The curing accelerator may be an imidazole derivative such as 2-ethyl-4-methylimidazole or 2-(2-cyanoethyl)-imidazole, or a urea derivative such as N-(3,4-dichlorophenyl)-N',N'-dimethylurea, N-(4-chlorophenyl)-N',N'-dimethylurea or N-(3-chlorophenyl)-N',N'-dimethylurea. In such a combination of curing agents i.e. a combination of dicyandiamide and a curing accelerator, it is preferred that dicyandiamine is incorporated in an amount of form 0.5 to 10 parts by weight, based on 100 parts by weight of the entire resin mixture, and the curing accelerator is incorporated in an amount of from 0.5 to 10 parts by weight.
- The resin composition of the present invention is useful for fiber reinforced plastics. The reinforcing fibers may be glass fibers, carbon fibers, aramide fibers, alumina fibers or boron fibers. It is particularly preferred to employ carbon fibers having a high modulus of elasticity. Such fiber reinforced plastics may be prepared by usual methods such as a solution method or a heat melting method.
- Now, the present invention will be described in further detail with reference to Examples. However, it should be understood that the present invention is by no means restricted to such specific Examples.
- 33 parts by weight of a nitrile rubber-modifies epoxy resin (component E) obtained by preliminarily mixing and reacting 5 parts by weight of nitrile rubber (acrylonitrile content: 27%) and 95 parts by weight of a bisphenyl A type epoxy compound having an epoxy equivalent of 190 and being liquid at room temperature, 8 parts by weight of the above liquid epoxy compound (component A), 7 parts by weight of a solid epoxy compound having an epoxy equivalent of 460 and a melting point of 68°C (component B), 5 parts by weight of a solid epoxy compound having an epoxy equivalent of 3,000 and a melting point of 148°C (component C), 36 parts by weight of a phenol novolak type epoxy compound (component D), 4 parts by weight of an alicyclic epoxy compound (epoxy equivalent: 140, liquid at room temperature), 4 parts by weight of dicyandiamide as a curing agent (component F) and 3 parts by weight of N-(3,4-dichlorophenyl)-N',N'-dimethylurea as a curing accelerator, were uniformly mixed under heating to obtain a resin composition of the present invention. The viscosity of this composition was 20,000 poise at 40°C and 120 poise at 80°C. A one-directional prepreg obtained, from this resin composition and highly elastic carbon fibers having a modulus of elasticity of 65,000 kg/mm², was wound on a slightly tapered cylindrical mandrel having a diameter of 10 mℓ at an angle of 45°, whereby lamination reflecting the shape of the mandrel was possible, and the operation efficiency was excellent. Further, no defects such as voids were observed in the molded products after curing.
- In the same manner as in Example 1, a resin composition was prepared by uniformly mixing 46 parts by weight of component E, 8 parts by weight of component A, 6 parts by weight of component C, 40 parts by weight of component D, 4 parts by weight of the alicyclic epoxy compound, 3.5 parts by weight of dicyandiamide and 3.8 parts by weight of the curing accelerator. The viscosity at 40°C of this resin composition was 6,000 poise. A one-directional prepreg prepared by using this resin composition was wound on the mandrel as in Example 1, whereby the end portion of the winding was partially peeled.
- In the same manner as in Example 1, a resin composition was prepared by uniformly mixing 40 parts by weight of component E, 8 parts by weight of component A, 12 parts by weight of component B, 40 parts by weight of component D, 4 parts by weight of the alicyclic epoxy compound, 3.5 parts by weight of component F and 3.8 parts by weight of the curing accelerator. The viscosity at 40°C of this resin composition was 8,000 poise. A one-directional prepreg prepared by using this resin composition was wound on the mandrel in the same manner as Example 1, whereby the end portion of the winding was partially peeled as in the case of Comparative Example 2.
- In the same manner as in Example 1, a resin composition was prepared by uniformly mixing 27 parts by weight of component E, 8 parts by weight of component A, 25 parts by weight of component B, 40 parts by weight of component D, 4 parts by weight of the alicyclic epoxy compound, 3.5 parts by weight of component F and 3.8 parts by weight of the curing accelerator. The viscosity of this resin composition was 22,000 poise at 40°C and 100 poise at 80°C. A one-directional prepreg prepared by using this resin composition was wound on the mandrel in the same manner as in Example 1 and cured, whereby the prepreg lacked in flexibility and was poor to follow the shape of the mandrel. After the curing, the cross section was inspected, whereby breakage of fibers was observed.
- According to the present invention, it is possible to obtain a resin composition for fiber reinforced plastic which is excellent in the operation efficiency and which is capable of presenting a flawless molded product.
Claims (9)
- An epoxy resin composition for fiber reinforced plastic comprising the following components A, B, C, D, E and F as essential components and having a viscosity at 40°C of at least 10,000 poise and a viscosity at 80°C of at most 200 poise:A: a bisphenol A type epoxy compound having an epoxy equivalent of at most 250 and being liquid at room temperature,B: a bisphenol A type epoxy compound having an epoxy equivalent of at most 1,000 and a softening point of at most 100°C and being solid at room temperature,C: a bisphenol A type epoxy compound having an epoxy equivalent of at least 1,100 and a softening point of at least 110°C and being solid at room temperature,D: a phenol novolak type epoxy compound,E: a nitrile rubber, andF: a curing agent.
- The epoxy resin composition according to Claim 1, wherein relative to 100 parts by weight of component A, component B is from 5 to 40 parts by weight, component C is from 5 to 40 parts by weight, component D is from 50 to 140 parts by weight, and component E is from 1 to 8 parts by weight.
- The epoxy resin composition according to Claim 1 or 2, wherein the epoxy equivalent of component A is from 180 to 200.
- The epoxy resin composition according to Claim 1, 2 or 3 wherein the epoxy equivalent of component B from 400 to 1,000.
- The epoxy resin composition according to any of Claims 1 to 4, wherein the softening point of component B is from 60 to 100°C.
- The epoxy resin composition according to any one of Claims 1 to 5, wherein the epoxy equivalent of component C is from 1,100 to 5,000.
- The epoxy resin composition according to any one of Claims 1 to 6, wherein epoxy equivalent of component C is from 1,100 to 3,500.
- The epoxy resin composition according to any one of Claims 1 to 7, wherein the softening point of component C is from 110 to 200°C.
- The epoxy resin composition according to any one of Claims 1 to 8, wherein the average molecular weight of component E is at least 10,000.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1174/90 | 1990-01-08 | ||
JP2001174A JPH03205420A (en) | 1990-01-08 | 1990-01-08 | Epoxy resin composition for fiber reinforced plastics |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0436944A2 true EP0436944A2 (en) | 1991-07-17 |
EP0436944A3 EP0436944A3 (en) | 1992-04-22 |
EP0436944B1 EP0436944B1 (en) | 1995-10-11 |
Family
ID=11494075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90125692A Expired - Lifetime EP0436944B1 (en) | 1990-01-08 | 1990-12-28 | Epoxy resin composition for fiber reinforced plastic |
Country Status (5)
Country | Link |
---|---|
US (1) | US5302666A (en) |
EP (1) | EP0436944B1 (en) |
JP (1) | JPH03205420A (en) |
KR (1) | KR0166977B1 (en) |
DE (1) | DE69022966T2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0545640A1 (en) * | 1991-11-29 | 1993-06-09 | Tonen Corporation | Epoxy resin composition, prepreg containing same and process for the producing of prepreg using same |
WO2000050495A1 (en) * | 1999-02-22 | 2000-08-31 | Toray Industries, Inc. | Prepreg and fiber-reinforced rubber materials |
GB2517554A (en) * | 2013-06-19 | 2015-02-25 | Hexcel Composites Ltd | Improvements in or relating to epoxy resin formulations |
EP3157982A4 (en) * | 2014-06-23 | 2018-01-17 | Ut-battelle, Llc | Polymer blend compositions and methods of preparation |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9411367D0 (en) | 1994-06-07 | 1994-07-27 | Ici Composites Inc | Curable Composites |
US5976699A (en) * | 1995-11-09 | 1999-11-02 | Sumitomo Bakelite Company Limited | Insulating adhesive for multilayer printed circuit board |
KR100576767B1 (en) * | 1998-05-20 | 2006-05-09 | 사이텍 테크놀러지 코포레이션 | Method for producing a non-porous laminate and its use |
US6322848B1 (en) * | 1999-10-26 | 2001-11-27 | Lord Corporation | Flexible epoxy encapsulating material |
US20050026069A1 (en) * | 2003-07-31 | 2005-02-03 | Todd Yeh | Solventless thermosetting photosensitive via-filling material |
JP4553595B2 (en) * | 2004-01-29 | 2010-09-29 | 株式会社有沢製作所 | Prepreg resin composition and prepreg using the same |
DE102005026191A1 (en) * | 2005-06-06 | 2006-12-07 | Tesa Ag | Heat-activatable films for fixing metal parts on plastics |
CN101501132A (en) * | 2006-06-30 | 2009-08-05 | 东丽株式会社 | Epoxy resin composition, prepreg, and fiber-reinforced composite material |
JP5150381B2 (en) * | 2008-06-20 | 2013-02-20 | 太陽ホールディングス株式会社 | Thermosetting resin composition |
DE102013201958A1 (en) * | 2013-02-06 | 2014-08-07 | Vacuumschmelze Gmbh & Co. Kg | Composition for an adhesive composition |
US9815985B2 (en) | 2015-07-14 | 2017-11-14 | Ut-Battelle, Llc | High performance lignin-acrylonitrile polymer blend materials |
KR101714191B1 (en) * | 2015-08-12 | 2017-03-08 | 현대자동차주식회사 | Polyphenylene ether flame retardant resin composition having high rigidity and impact strength |
US11124652B2 (en) | 2017-06-21 | 2021-09-21 | Ut-Battelle, Llc | Shape memory polymer blend materials |
CN109762302A (en) * | 2019-02-15 | 2019-05-17 | 无锡市立帆绝缘材料科技有限公司 | Prepreg and preparation method thereof for glass grid cloth |
CN111944274A (en) * | 2020-08-05 | 2020-11-17 | 华烁科技股份有限公司 | Bendable prepreg gumming solution for circuit board, prepreg and preparation method of prepreg |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2525617A1 (en) * | 1982-04-21 | 1983-10-28 | Toho Beslon Co | EPOXY RESIN COMPOSITION |
JPS6143615A (en) * | 1984-08-07 | 1986-03-03 | Mitsui Petrochem Ind Ltd | Epoxy resin composition |
JPH01215850A (en) * | 1988-02-23 | 1989-08-29 | Mitsubishi Kasei Corp | Resin composition for fiber reinforced plastics |
JPH0220546A (en) * | 1988-07-08 | 1990-01-24 | Mitsubishi Kasei Corp | Resin composition for fiber-reinforced plastics |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3894113A (en) * | 1966-09-15 | 1975-07-08 | Minnesota Mining & Mfg | Bonding film |
US3707583A (en) * | 1971-06-04 | 1972-12-26 | Minnesota Mining & Mfg | Adhesive |
US3948849A (en) * | 1974-11-01 | 1976-04-06 | Gulf Research & Development Company | Adhesive compositions |
US4040993A (en) * | 1976-02-25 | 1977-08-09 | Westinghouse Electric Corporation | Low dissipation factor electrostatic epoxy wire coating powder |
EP0032062B2 (en) * | 1979-12-27 | 1991-10-16 | Mitsui Petrochemical Industries, Ltd. | High-molecular-weight novolak substituted phenolic resins and their preparation |
JPS6340517A (en) * | 1986-08-07 | 1988-02-20 | 松下電器産業株式会社 | Electric cooker |
JPS63170228A (en) * | 1987-01-08 | 1988-07-14 | Toshiba Mach Co Ltd | Press-molding device for glass lens |
US5143950A (en) * | 1987-02-07 | 1992-09-01 | Somar Corporation | Power coating of epoxy resin mixture and polyvinyl butyral or formal resin |
JPS63308026A (en) * | 1987-06-09 | 1988-12-15 | Mitsubishi Kasei Corp | Polymer composition for fiber-reinforced plastic |
US4798761A (en) * | 1987-11-03 | 1989-01-17 | The Dow Chemical Company | Epoxy resin compositions for use in low temperature curing applications |
JPH01185351A (en) * | 1988-01-18 | 1989-07-24 | Nissan Motor Co Ltd | Epoxy resin composition for carbon fiber reinforced material |
-
1990
- 1990-01-08 JP JP2001174A patent/JPH03205420A/en active Pending
- 1990-12-28 EP EP90125692A patent/EP0436944B1/en not_active Expired - Lifetime
- 1990-12-28 DE DE69022966T patent/DE69022966T2/en not_active Expired - Fee Related
-
1991
- 1991-01-04 US US07/637,624 patent/US5302666A/en not_active Expired - Fee Related
- 1991-01-08 KR KR1019910000167A patent/KR0166977B1/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2525617A1 (en) * | 1982-04-21 | 1983-10-28 | Toho Beslon Co | EPOXY RESIN COMPOSITION |
JPS6143615A (en) * | 1984-08-07 | 1986-03-03 | Mitsui Petrochem Ind Ltd | Epoxy resin composition |
JPH01215850A (en) * | 1988-02-23 | 1989-08-29 | Mitsubishi Kasei Corp | Resin composition for fiber reinforced plastics |
JPH0220546A (en) * | 1988-07-08 | 1990-01-24 | Mitsubishi Kasei Corp | Resin composition for fiber-reinforced plastics |
Non-Patent Citations (3)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 10, no. 203 (C-360)(2259) 16 July 1986 & JP-A-61 043 615 ( MITSUI PETROCHEM IND LTD ) 3 March 1986 * |
PATENT ABSTRACTS OF JAPAN vol. 13, no. 529 (C-658)(3877) 27 November 1989 & JP-A-1 215 850 ( MITSUBISHI KASEI CORP. ) 29 August 1989 * |
PATENT ABSTRACTS OF JAPAN vol. 14, no. 149 (C-705)(4092) 22 March 1990 & JP-A-2 020 546 ( MITSUBISHI KASEI CORP. ) 24 January 1990 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0545640A1 (en) * | 1991-11-29 | 1993-06-09 | Tonen Corporation | Epoxy resin composition, prepreg containing same and process for the producing of prepreg using same |
US5350826A (en) * | 1991-11-29 | 1994-09-27 | Tonen Corporation | Epoxy resin composition containing a polyaminoamide and a latent curing agent for fiber impregnation |
WO2000050495A1 (en) * | 1999-02-22 | 2000-08-31 | Toray Industries, Inc. | Prepreg and fiber-reinforced rubber materials |
GB2517554A (en) * | 2013-06-19 | 2015-02-25 | Hexcel Composites Ltd | Improvements in or relating to epoxy resin formulations |
GB2517554B (en) * | 2013-06-19 | 2016-06-29 | Hexcel Composites Ltd | Improvements in or relating to epoxy resin formulations |
EP3157982A4 (en) * | 2014-06-23 | 2018-01-17 | Ut-battelle, Llc | Polymer blend compositions and methods of preparation |
Also Published As
Publication number | Publication date |
---|---|
EP0436944B1 (en) | 1995-10-11 |
KR910021444A (en) | 1991-12-20 |
DE69022966D1 (en) | 1995-11-16 |
DE69022966T2 (en) | 1996-06-20 |
JPH03205420A (en) | 1991-09-06 |
EP0436944A3 (en) | 1992-04-22 |
KR0166977B1 (en) | 1999-03-20 |
US5302666A (en) | 1994-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0436944B1 (en) | Epoxy resin composition for fiber reinforced plastic | |
KR100623457B1 (en) | Resin Compositions, Prepregs and Fiber Reinforced Composites for Fiber Reinforced Composites | |
US6063839A (en) | Prepreg of reinforcing fibers, epoxy resins, crosslinked rubber particles and curing agent | |
EP0259100B1 (en) | Multiphase epoxy thermosets having rubber within disperse phase | |
CN102666638B (en) | composite material composition | |
WO1992011307A1 (en) | Latent, heat-curable epoxy resin compositions containing metal carboxylate curing systems | |
EP0583224B1 (en) | Thermosetting resins toughened with sulfone polymers | |
JP3796953B2 (en) | Resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material | |
WO2019167579A1 (en) | Heat-curable resin composition, prepreg, and fiber-reinforced composite material | |
JPH11172076A (en) | Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material | |
EP0493786B1 (en) | Resin composition and process for producing the composition | |
JPS61188413A (en) | epoxy resin composition | |
US5225486A (en) | Epoxy resins containing epoxidized polybutenes | |
JP3097259B2 (en) | Epoxy resin composition and prepreg | |
US5128425A (en) | Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers | |
JPH11279261A (en) | Heat-resistant epoxy resin composition for fiber-reinforced composite material | |
JP2004027043A (en) | Epoxy resin composition for fiber-reinforced composite material and the resulting fiber-reinforced composite material | |
JPH0717734B2 (en) | Resin composition for fiber reinforced plastic | |
JP2650302B2 (en) | Resin composition for fiber reinforced plastic | |
JP3354707B2 (en) | Epoxy resin composition | |
JPH0586425B2 (en) | ||
JPS6360056B2 (en) | ||
JP3314813B2 (en) | Epoxy resin composition for laminate and laminate using the same | |
JP3867377B2 (en) | Epoxy resin composition for fiber reinforced composite material, prepreg and fiber reinforced composite material | |
JPS6338048B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901228 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19941212 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MITSUBISHI CHEMICAL CORPORATION |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69022966 Country of ref document: DE Date of ref document: 19951116 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19991124 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19991126 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991231 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20001228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011002 |