EP0415251B1 - Schaltung zur Verarbeitung von Signalen, abgegeben von zwei in Differenzbetrieb arbeitenden Sensoren, die eine physikalische Grösse messen - Google Patents
Schaltung zur Verarbeitung von Signalen, abgegeben von zwei in Differenzbetrieb arbeitenden Sensoren, die eine physikalische Grösse messen Download PDFInfo
- Publication number
- EP0415251B1 EP0415251B1 EP19900116054 EP90116054A EP0415251B1 EP 0415251 B1 EP0415251 B1 EP 0415251B1 EP 19900116054 EP19900116054 EP 19900116054 EP 90116054 A EP90116054 A EP 90116054A EP 0415251 B1 EP0415251 B1 EP 0415251B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- processing circuit
- counting
- circuit according
- counting means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims 2
- 230000001133 acceleration Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 230000000630 rising effect Effects 0.000 description 7
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/097—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by vibratory elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/243—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of AC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
- G01L1/162—Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
Definitions
- the subject of the present invention is a circuit for processing the signals supplied by two sensors measuring a physical quantity in differential mode, and supplying a logic signal representative of the digital value of this quantity which may be a force, an acceleration, a pressure, a temperature, displacement, etc.
- counting means are used making it possible to modify the value of the numbers N1 and N2, such as, for example, binary counters or dividers with adjustable division rate.
- N1 and N2 are used making it possible to modify the value of the numbers N1 and N2, such as, for example, binary counters or dividers with adjustable division rate.
- N1 and N2 can thus adjust N1 and N2 according to the characteristics of the sensors (which may vary slightly even for sensors from the same production series) and according to the working conditions of the sensors (temperature variation, preloads, ... ).
- the time intervals of length N1.T1 and N2.T2 may follow one another, partially overlap or be included in one another.
- N chois and N2 are chosen such that the duration N1.T1 is always greater than the duration N2.T2 and the counting begins with the second counting means after the counting begins with the first counting means, the delay being chosen so that the second counting means ends its counting before the first counting means.
- the accelerometer which is shown diagrammatically in FIG. 1 is designed to make it possible to measure a linear acceleration.
- This accelerometer comprises a base 2 on which is fixed a support 4 which has a rectangular profile and part of which projects beyond this base.
- On the opposite faces of this part of the support 4 are fixed respectively, by one of their ends, two quartz resonators 6 and 8, the other ends of these resonators being fixed on the opposite and parallel faces of a free plate 10 of mass M.
- the resonators 6 and 8 are quartz plates, which have a parallelepiped shape and which include electrodes which are not visible in the drawing. These resonators are produced so as to present a variation in their natural frequency as a function of the longitudinal stresses to which they are subjected, an extension having the effect of increasing this frequency, and a compression of decreasing it.
- the electrodes of the resonator 6 are connected to a maintenance circuit 12, shown in FIG. 2.
- the accelerometer is not arranged horizontally, as in the drawing, but vertically so that the weight of the plate 10 is directed parallel to the longitudinal direction of the resonators 6 and 8.
- the resonators 6 and 8 keep a plane shape and oscillate at their nominal natural frequencies, designated respectively by F 1.0 and F 2.0 , the nominal periods which correspond to these frequencies being designated, them, by T 1.0 and T 2.0 .
- the frequencies F 1.0 and F 2.0 can be equal.
- the two accelerometer sensors therefore work in a differential mode, the difference between the periods T1 and T2 or, which comes to the same thing, between the frequencies F1 and F2, being in fact representative of the force F and the acceleration AT.
- T1 T 1.0 . (1 + 2.K1.A) -1/2
- T2 T 2.0 .
- K1 and K2 are constants which are representative of the sensitivities of the resonators 6 and 8.
- the acceleration A is expressed by the difference between the duration N1.T1 and the duration N2.T2, where N1 and N2 are whole numbers.
- the relation between A and the difference N1.T1 - N2.T2 is not linear.
- the values of the numbers N1 and N2 can be chosen according to different criteria, examples of which will be found in the following description.
- D m N1.T1 - N2.T2.
- the quantity D m can be positive or negative depending on the values of N1, T1, N2, T2. This quantity can be positive for certain accelerations and negative for other accelerations, N1 and N2 being constant, since, according to relations (1) and (2), T1 decreases with A and T2 increases with A.
- FIG. 2 A processing circuit according to the invention and producing a signal representative of the quantity D m is shown schematically in FIG. 2, in which it is designated by the reference numeral 16.
- This processing circuit 16 essentially comprises a first counting means 18, a second counting means 20 and a logic circuit 22.
- the first counting means 18 is designed to count a number N1 of periods T1 of the signal S1 delivered by the maintenance circuit 12.
- the number N1 can be loaded into this first counting means from a storage means 24, for example of the EEPROM type, in the form of a digital signal S N 1 transmitted over a data bus.
- the start of the counting is given by a signal S d, 1 received from the logic circuit 22.
- the first counting means sends a signal S f, 1 to the logic circuit 22.
- the second counting means 20 operates in the same way as the first counting means 18. It receives the signal S2 from the maintenance circuit 14, a signal S N2 representative of the number N2 of the storage means 24, and a signal S d , 2 at the start of counting of the logic circuit 22; it delivers a signal S f, 2 of end of counting to the logic circuit 22.
- N1 and N2 can be used, for example depending on the working temperature of the accelerometer. These different values can be stored in known manner in the form of tables in the storage means 24.
- Each counting means can consist for example of a binary down counter (respectively counter) loaded initially with the value + N1 or + N2 (respectively -N1 or -N2) or of a divider with adjustable division rate loaded with the value N1 or N2.
- a binary down counter (respectively counter) loaded initially with the value + N1 or + N2 (respectively -N1 or -N2) or of a divider with adjustable division rate loaded with the value N1 or N2.
- 8-bit counter-divider circuits of the type 74 HC 40103 can be used; several circuits can be put in series to make counting means with 16, 24, 32, ... bits.
- the logic circuit 22 delivers a signal S m representative of the quantity D m equal to N1.T1 - N2.T2.
- the logic circuit 22 must be designed to determine D m whatever the durations N1.T1 and N2.T2 and whatever their relative position in the measurement interval, ie that these durations follow one another, overlap or are included one in the other.
- FIG. 3 An embodiment of such a logic circuit is shown diagrammatically in FIG. 3, and the signals appearing in this circuit are represented in the timing diagram of FIG. 4.
- the logic circuit 22 receives a pulse signal S d, 1 from a trigger circuit 26 (FIG. 2), each pulse marking the start of a measurement cycle.
- This signal S d, 1 is transmitted directly to the first counting means 18 to start the counting. More precisely, the rising edge of the signal S d, 1 has the effect of loading the number N1 into the first counting means and the counting begins on the first rising edge of the signal S1 along the falling edge of the signal S d, 1 .
- the latter is also applied to the reset input R of a bistable flip-flop 28 of type D. The latter receives on its clock input CL the signal S1 coming from the maintenance circuit 12 (FIG. 2) and on its data input D a signal which is permanently at the high level.
- the signal AT issued by exit Q of flip-flop 28 constitutes the signal S d, 2 at the start of counting of the second counting means, the rising edge of the signal S d, 2 having the effect of loading the number N2 in the second counting means and the counting starting on the first rising edge of signal S2 following the falling edge of signal S d, 2 .
- the flip-flop 28 thus forms a synchronization means, which starts counting by the second counting means slightly after the start of counting by the first counting means.
- the time interval T a between the start of the two counts appears in the form of a pulse of width T a in a signal C. This is produced in the following manner.
- a flip-flop 30 of type D receives respectively on its data inputs D, clock CL and reset to zero R a signal permanently at the high level, the signal S2 and the signal AT . It thus delivers on its exit Q a signal B which goes high on the rising edge of the signal AT and which stays at the high level for a period T a after the signal AT fell back to the low level.
- We thus simply obtain the signal C by combining by means of an AND gate 32 the signal B and the signal AT , reverse to signal AT .
- the duration T b elapsing between the end of counting by the second counting means and the end of counting by the first counting means appears in the form of a pulse of width T b in a signal D .
- This signal is produced by the output Q of a bistable flip-flop 34 of type D whose data inputs D, clock CL and reset to zero R respectively receive a signal permanently at the high level, the signal S f, 1 , inverse of the end of counting signal delivered by the first counting means 18, and the signal S f, 2 , inverse of the end of count signal delivered by the second count means 20.
- Inverters 36, 38 make it possible to obtain these signals S f, 1 and S f, 2 .
- the logic circuit 22 finally comprises an OR gate 40 which receives the signals C and D and delivers a signal S m which has, for each measurement cycle, two pulses of length T a and T b .
- the signal S m is therefore representative of the difference between the duration N1.T1 and the duration N2.T2, since this difference is precisely equal to the quantity T a + T b .
- the signal S m is thus representative of the acceleration A to which the quartz resonators 6 and 8 are subjected.
- the signal S m is received in a conversion means 42 which converts the duration T a + T b into a number D m .
- the conversion means can advantageously be formed of a binary counter activated by the signal S d, 1 and the counting of which is clocked by a clock signal S h delivered by a clock 44.
- a clock signal S h delivered by a clock 44.
- the second counting means begins its counting after the first counting means and ends it before.
- the quantity D m is equal to the sum T a + T b ; we can therefore use a one-way counter 42.
- the quantity D m is equal to T a -T b .
- the content of the counter 42 is continuously transmitted on a data bus to a storage means 46, the final value D m of the content of the counter being stored in this storage means on reception of a signal S T received from the trigger circuit. 26.
- the signal S T marks the end of a measurement; it can be developed from the signal S f, 1 .
- the trigger circuit 26 includes an AND gate 48 receiving the signal S 1, and the signal S f, 1 , produced by inversion of the signal S f, 1 and in an inverter 50, and an AND gate 52 receiving the signal S f, 1 and the signal S 1, produced by inverting the signal S1 in an inverter 54.
- a measurement interval P m ends on the falling edge of the pulse of width T b of the signal S m . This appears on a rising edge of the signal S1 since, in the processing circuit described, the time interval of duration N1.T1 ends after the time interval of duration N2.T2.
- the signal S1 delivered by the AND gate 48 thus has a pulse of width T1 / 2 just after the end of the measurement interval P m . This pulse loads the content of the counter 42 into the storage means 46.
- the signal S d, 1 delivered by the AND gate 52 has a pulse of width T1 / 2 immediately after the pulse of the signal S1.
- the rising edge of the signal pulse S d, 1 marks the start of the next measurement interval P ′ m .
- the trigger circuit 26 shown in Figure 5 therefore allows repetitive measurements of the acceleration.
- the processing circuit according to the invention could also be provided a manual trip circuit controlling the execution of a single measurement cycle at each activation.
- the conversion means could be formed, for example, by a capacitor connected to a current source by a switch, the latter being controlled by the signal S m to charge the capacitor during the duration T a + T b .
- the use of a binary counter is preferable, since the quantity D m is then a numerical value which facilitates the subsequent processing by a microcomputer and makes it easier to cancel the offset of the signal. S m or, which comes to the same thing, of the quantity D m .
- the quantity D m is equal to N1.T 1.0 - N2.T 2.0 which is generally different from zero.
- This offset can simply be canceled by preloading, at the start of each measurement cycle, the binary counter 42 with the value N0 equal to - (N1.T 1.0 - N2.T 2.0 ) / F h , where F h is the frequency of the clock signal S h .
- This value N0 can be stored in the storage means 24 and transmitted on a data bus to the binary counter 42 in the form of a digital signal S NO .
- the shadows N1 and N2 it is possible to use different values for N0 as a function of the working conditions of the accelerometer, and to store these values in the form of a table in the storage means 24.
- the solution consisting in canceling the shift by loading the binary counter with the value N0 is preferable to that consisting in removing the shift, from the beginning, by an adequate choice of the whole numbers N1 and N2, because the first solution does not impose any condition on integers N1 and N2. This can be used to adjust the calibration of the accelerometer and / or to linearize its response curve.
- the terms 2.K1.A and 2.K2.A are very small in front of the unit, so that one can make a development in series according to the powers of A.
- D0 represents the offset
- D1 the linear part
- D n the non-linear part
- F1 decreases by 0.5 for the extreme value -A max of the acceleration and F2 increases by 0.5% for this same value -A max .
- the maximum value of the acceleration is measured, at the output of the counter 42, with an accuracy of 1%.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Measuring Fluid Pressure (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Claims (13)
- Schaltung zur Verarbeitung von Signalen, abgegeben von zwei Sensoren, die im Differenzbetrieb eine physikalische Größe (A) messen, wobei einer der Sensoren (6, 12) ein erstes Signal (S₁) mit einer ersten Periode (T₁) und der andere Sensor (8, 14) ein zweites Signal (S₂) mit einer zweiten Periode (T₂) liefern, die Perioden im entgegengesetzten Sinn voneinander variieren als Funktion der physikalischen Größe, gekennzeichnet einerseits dadurch, daß sie umfaßt:- ein erstes Zählmittel (18) zum Zählen innerhalb einer Meßperiode (Pm), eine vorbestimmte ganze Zahl N₁ an Perioden T₁ des ersten Signals S₁,- ein zweites Zählmittel (20) zum Zählen innerhalb der Meßperiode (Pm), eine vorbestimmte ganze Zahl N₂ an Perioden T₂ des zweiten Signals S₂, und- eine logische Schaltung (22) zum Liefern eines Signals Sm repräsentativ für die Differenz zwischen der Dauer N₁.T₁ und der Dauer N₂.T₂, wobei das Signal repräsentativ ist für den Wert der physikalischen Größe, und andererseits dadurch, daß mindestens eine der ganzen Zahlen N₁ oder N₂ verschieden von 1 ist.
- Schaltung zur Verarbeitung nach Anspruch 1, dadurch gekennzeichnet, daß das Signal Sm ein Binärsignal ist, das einen Logikzustand, festgehalten während einer Dauer Tm gleich der Differenz zwischen den Dauern N₁.T₁ und N₂.T₂, gehalten wird.
- Schaltung zur Verarbeitung nach Anspruch 2, dadurch gekennzeichnet, daß sie ein Umwandlungsmittel (42) umfaßt, das das Signal Sm empfängt und eine Zahl Dm als Funktion der Dauer Tm liefert.
- Schaltung zur Verarbeitung nach Anspruch 3, dadurch gekennzeichnet, daß das Umwandlungsmittel eine Zähleinrichtung (42) ist, die auf einem Taktgebereingang ein Taktsignal Sh und auf einem Zählfreigabeeingang das Signal Sm empfängt.
- Schaltung zur Verarbeitung nach einem der Ansprüche 1 bis 4, bei der das Signal Sm ein Verschiebungssignal repräsentativ für die Differenz zwischen den Dauern N₁.T1,0 und N₂.T2,0 enthält, wo T1,0 und T2,0 die jeweiligen Perioden des ersten und zweiten untätigen Sensors sind, dadurch gekennzeichnet, daß die Schaltung zur Verarbeitung Mittel zum Unterdrücken dieses Verschiebungssignals umfaßt.
- Schaltung zur Verarbeitung nach den Ansprüchen 4 und 5, dadurch gekennzeichnet, daß die Zähleinrichtung (42) während jeder Messung mit einer das Verschiebungssignal kompensierenden Zahl N₀ vorbelastet wird.
- Schaltung zur Verarbeitung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die ganzen Zahlen N₁ und N₂ gewählt sind und die Logikschaltung (22) angeordnet ist, damit das zweite Zählmittel seine Zählung nach dem ersten Zählmittel anfängt und seine Zählung vor dem ersten Zählmittel beendet.
- Schaltung zur Verarbeitung nach den Ansprüchen 4 und 7, dadurch gekennzeichnet, daß die Zähleinrichtung (42) ein Zähler in einer Richtung ist.
- Schaltung zur Verarbeitung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die ersten und zweiten Zählmittel Mittel zum Laden und Ändern der Werte der ganzen Zahlen N₁ und N₂ enthalten.
- Schaltung zur Verarbeitung nach Anspruch 9, dadurch gekennzeichnet, daß sie ein Speichermittel (24) zum Speichern mindestens eines Wertes für N₁ und mindestens eines Wertes für N₂ umfaßt.
- Schaltung zur Verarbeitung nach den Ansprüchen 6 und 10, dadurch gekennzeichnet, daß das Speichermittel (24) außerdem mindestens einen Wert N₀ speichert.
- Schaltung zur Verarbeitung nach einem der Ansprüche 1 bis 11, bei der das Signal Sm sich zusammensetzt zum einen Teil aus einem Signal, das in linearer Weise mit der zu messenden physikalischen Größe variiert, und zum anderen Teil aus einem Signal, das in nicht linearer Weise mit der zu messenden physikalischen Größe variiert, dadurch gekennzeichnet, daß die ganzen Zahlen N₁ und N₂ in der Weise zum Minimieren des anderen Teils des Signals gewahlt sind.
- Schaltung zur Verarbeitung nach Anspruch 3, dadurch gekennzeichnet, daß die ganzen Zahlen N₁ und N₂ in der Weise gewählt sind, daß der Bereich der meßbaren Werte der physikalischen Größe mit dem Bereich der Werte korrespondiert, die für den Wert Dm, geliefert durch das Umwandlungsmittel, möglich sind.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH3186/89 | 1989-09-01 | ||
CH3186/89A CH680963A5 (de) | 1989-09-01 | 1989-09-01 | |
FR8911628A FR2651582B1 (fr) | 1989-09-04 | 1989-09-04 | Circuit de traitement des signaux delivres par deux capteurs mesurant en mode differentiel une grandeur physique. |
FR8911628 | 1989-09-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0415251A1 EP0415251A1 (de) | 1991-03-06 |
EP0415251B1 true EP0415251B1 (de) | 1993-03-17 |
Family
ID=25692402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19900116054 Expired - Lifetime EP0415251B1 (de) | 1989-09-01 | 1990-08-22 | Schaltung zur Verarbeitung von Signalen, abgegeben von zwei in Differenzbetrieb arbeitenden Sensoren, die eine physikalische Grösse messen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0415251B1 (de) |
DE (1) | DE69001106T2 (de) |
ES (1) | ES2040539T3 (de) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2532047A1 (fr) * | 1982-08-19 | 1984-02-24 | Asulab Sa | Capteur de mesure muni d'un resonateur piezo-electrique compense en temperature |
DE3736904A1 (de) * | 1987-10-30 | 1989-05-11 | Nord Micro Elektronik Feinmech | Messeinrichtung mit sensorelementen |
-
1990
- 1990-08-22 EP EP19900116054 patent/EP0415251B1/de not_active Expired - Lifetime
- 1990-08-22 DE DE1990601106 patent/DE69001106T2/de not_active Expired - Fee Related
- 1990-08-22 ES ES90116054T patent/ES2040539T3/es not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0415251A1 (de) | 1991-03-06 |
DE69001106T2 (de) | 1993-09-30 |
DE69001106D1 (de) | 1993-04-22 |
ES2040539T3 (es) | 1993-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0048689B1 (de) | Quarzthermometer | |
EP0083303B1 (de) | Quarzzeitbezugssignalgenerator mit Temperaturkompensation und Uhr mit diesem Signalgenerator | |
EP0099330B1 (de) | Druckempfindliches Element und dazu geeigneter Druckwandler | |
EP2966454A1 (de) | Verfahren zum Messen eines physikalischen Parameters, und elektronischer Schaltkreis zu dessen Umsetzung | |
EP0165144B1 (de) | Elektronisches Chronometersystem mit hoher Auflösung | |
FR2519757A1 (fr) | Thermometre medical electronique | |
FR2525348A1 (fr) | Procede pour produire des valeurs correspondant a la periode entre deux impulsions successives d'une suite d'impulsions et a leur frequence, et dispositif de mise en oeuvre de ce procede | |
EP0204613A1 (de) | Verfahren und Vorrichtung zur Messung der Laufzeit einer Welle | |
CH680963A5 (de) | ||
EP0415251B1 (de) | Schaltung zur Verarbeitung von Signalen, abgegeben von zwei in Differenzbetrieb arbeitenden Sensoren, die eine physikalische Grösse messen | |
FR2551231A1 (fr) | Circuit de controle parametrique en courant alternatif | |
FR2695997A1 (fr) | Système gyroscopique pour le mesurage d'angles. | |
FR2666184A1 (fr) | Horloge a division de frequence fractionnaire et asservissement de cette horloge. | |
WO1979000808A1 (fr) | Dispositif de mesure de la frequence d'un generateur d'impulsions et systeme de commande numerique comportant un tel dispositif | |
CH673198B5 (de) | ||
EP0137093A2 (de) | Verfahren zur Messung der in die Wicklung eines Schrittmotors durch Drehung seines Rotors induzierten Spannung | |
FR2651582A1 (fr) | Circuit de traitement des signaux delivres par deux capteurs mesurant en mode differentiel une grandeur physique. | |
EP0515981B1 (de) | Vorrichtung zur Messung einer Drehgeschwindigkeit | |
FR2633715A1 (fr) | Balance, appareil de pesee et procedes de mesure et d'authentification de masse | |
EP0289385A1 (de) | Referenzzeitvorrichtung mit konstanter Stabilität für Kurz- und Langzeitmessungen | |
FR2617608A1 (fr) | Dispositif pour mesurer la frequence d'un signal sinusoidal produit par un generateur de signaux | |
EP0793153A1 (de) | Präzisionszeitintervallmessvorrichtung | |
EP2618163A1 (de) | Verfahren zum Messen eines physikalischen Parameters, und elektronischer Schnittstellenschaltkreis eines kapazitiven Sensors zur Umsetzung dieses Verfahrens | |
EP0729082A1 (de) | Sehr genaue Chronometrierung eines Vorfalls | |
EP0076780A1 (de) | Verfahren zur Reduzierung des Verbrauchs eines Schrittmotors und Vorrichtung zur Durchführung dieses Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19910320 |
|
17Q | First examination report despatched |
Effective date: 19920117 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 69001106 Country of ref document: DE Date of ref document: 19930422 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930528 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2040539 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940718 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940819 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19940831 Year of fee payment: 5 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 90116054.9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19950809 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19950816 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19960301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950822 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19960301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19960501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960823 Ref country code: ES Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 19960823 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90116054.9 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19991102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050822 |