EP0398918A1 - Magnetic shield, in particular in devices for biomagnetic examinations, and process for producing it - Google Patents
Magnetic shield, in particular in devices for biomagnetic examinations, and process for producing itInfo
- Publication number
- EP0398918A1 EP0398918A1 EP89901709A EP89901709A EP0398918A1 EP 0398918 A1 EP0398918 A1 EP 0398918A1 EP 89901709 A EP89901709 A EP 89901709A EP 89901709 A EP89901709 A EP 89901709A EP 0398918 A1 EP0398918 A1 EP 0398918A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic shielding
- htsl
- shielding according
- tubes
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 24
- 230000008569 process Effects 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000002826 coolant Substances 0.000 claims abstract description 5
- 238000007751 thermal spraying Methods 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000011835 investigation Methods 0.000 claims description 4
- 239000011241 protective layer Substances 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 238000007750 plasma spraying Methods 0.000 claims description 3
- 229910052716 thallium Inorganic materials 0.000 claims description 3
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 claims description 3
- 229910014454 Ca-Cu Inorganic materials 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- OSOKRZIXBNTTJX-UHFFFAOYSA-N [O].[Ca].[Cu].[Sr].[Bi] Chemical compound [O].[Ca].[Cu].[Sr].[Bi] OSOKRZIXBNTTJX-UHFFFAOYSA-N 0.000 claims description 2
- BTGZYWWSOPEHMM-UHFFFAOYSA-N [O].[Cu].[Y].[Ba] Chemical compound [O].[Cu].[Y].[Ba] BTGZYWWSOPEHMM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000395 magnesium oxide Substances 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 239000000696 magnetic material Substances 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 1
- 239000002737 fuel gas Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 238000000691 measurement method Methods 0.000 claims 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 abstract 1
- 229910010293 ceramic material Inorganic materials 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 6
- 239000002887 superconductor Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910000595 mu-metal Inorganic materials 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000010285 flame spraying Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
- H05K9/0073—Shielding materials
- H05K9/0075—Magnetic shielding materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4504—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4512—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing thallium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4521—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/01—Manufacture or treatment
- H10N60/0268—Manufacture or treatment of devices comprising copper oxide
- H10N60/0661—Processes performed after copper oxide formation, e.g. patterning
- H10N60/0716—Passivating
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N60/00—Superconducting devices
- H10N60/20—Permanent superconducting devices
- H10N60/203—Permanent superconducting devices comprising high-Tc ceramic materials
Definitions
- Magnetic shielding in particular for devices for bio-magnetic investigations, and methods for their production
- the invention relates to a magnetic shield, in particular for devices for biomagnetic examinations.
- the invention relates to a method for producing such a magnetic shield.
- Magnetic shielding is required for many areas of technology. Particularly in the case of biomagnetic investigations in which the smallest signals are to be measured, there is a requirement to create cells with a relatively large volume shielded. Cabins made of ⁇ -metal and / or aluminum are known for this (see monograph BIOMAGNETISM, Springer Verlag (1981) and 3. Phys. E.: Sei. Instrum. 20 (1987), 151 to 164), the thick-walled and / or are constructed with multiple shells.
- Shielding for biomagnetic investigations in particular must ensure interference field shielding, in particular in the frequency range from 1 kHz down to about 0.1 Hz for interference field amplitudes, generally significantly smaller than the earth's field of about 0.5 Oersted.
- the known ferromagnetic shields even in combination with eddy current shields, shield with increasing frequency, especially below 100 Hz, worse and worse. A great deal of effort must therefore be expended with such shields in order to be able to separate biomagne signals lying below 10 Hz from interference fields in the environment.
- superconducting shields are able to shield down to the lowest frequencies.
- containers coated with superconducting materials and helium-cooled they have been known for some time and are also used in sentence.
- sensitive cryoelectronic circuits are shielded.
- Such superconducting shields have so far not been economically justifiable for larger areas to be shielded, for example entire rooms of significantly more than 10 m.
- the object of the invention is therefore to propose a new magnetic shielding device and a method for its production, with which larger areas as a whole can be shielded with reasonable effort.
- a grid-like envelope structure is formed from a plurality of tubes through which a coolant flows, and in that the tubes are provided with a layer of a ceramic high-temperature superconductor.
- Such shielding can be produced comparatively simply with the following process steps:
- the invention advantageously uses the new high-temperature superconducting materials (HTSL) with jump temperatures in the area of liquid nitrogen in the field of shielding. Particularly in the case of devices for biomagnetic examinations, in which large examination rooms have to be shielded, considerable savings can be achieved compared to multi-layer ⁇ -metal / aluminum eddy current shieldings. It is advantageous that, when flowing through HTSL-coated pipes, there is a smaller surface area compared to total wall cooling, which for heat radiation or supply. Adequate mechanical stability is nevertheless ensured. Interference fields caused by moving current-carrying or magnetic parts cannot occur with the grid-like envelope structure made of the stable tubes.
- the HTSL-coated tubes can be used to form superconducting meshes of a predetermined size, which completely shield any change in the magnetic flux caused from outside if the current density falls below the critical one.
- a largely field-free screen area can thus be achieved in the center of the grid-like envelope structure.
- the invention thus provides a technically comparatively simple and material-appropriate solution for a large-volume shielding cabin and the associated manufacturing process.
- the thermal spraying process can be, for example, a plasma spraying process or a high-temperature flame spraying process, with which closed thick layers 20 .mu.m can be applied in a suitable manner. It has already been proposed to apply HTSL layers to surfaces of almost any design using such spraying methods.
- Show it 1 shows a schematic representation of the principle of a mesh-like envelope structure which essentially forms a spherical envelope
- FIG. 3 shows the connection point of cells according to FIG. 2 with pipe fitting pieces
- FIG. 4 shows the section through a tube coated with a high-temperature superconducting material.
- a lattice-like envelope structure is denoted by 10, which consists of a large number of individual tubes 1 connected to one another at connecting points 20.
- a three-dimensional network with polygonal meshes is formed from the tubes 1, for example from quadrilaterals or triangles, which are designated by 25 in FIG. 1.
- the envelope structure 10 can thus be implemented, for example, as a spherical envelope which surrounds a measuring space.
- the grid-like envelope structure 10 is largely closed off. At the bottom there is an enlarged inlet 11 with a distributor ring 12 for liquid nitrogen and at the top an expanded outlet 14 with a gas collecting ring 13. It is essential that no enlarged meshes are allowed to arise through which the magnetic fields to be shielded could penetrate from outside. If necessary, tubular protuberances are made in the almost spherical shielding.
- the tubes 1 can each form specially triangular elementary meshes which complement each other to form a hexagonal network.
- any geometries for a spherical envelope structure, in particular the spherical envelope according to FIG. 1, can be realized.
- the size of the triangular mesh can be calculated according to the required shielding effect.
- the grid-like envelope structure 10 is first constructed mechanically from the tubes 1, which advantageously consist of non-magnetic steel, and welded together. It is important that the pipe sections 1 are connected at the connection points 20 by means of continuous pipe fittings, in such a way that nitrogen can flow through the entire pipe structure in the liquid and possibly also in the gaseous state as a coolant uniformly without bumping, in order to create vibration-related interference fields avoid.
- FIG. 3 shows a pipe fitting piece 30 of this type, which in principle consists of a round distributor with corresponding approaches for accommodating six pipes 1, which ensure that the transition between a pipe 1 and a fitting projection 31 is smooth. After the casing structure has been assembled, the welded transitions on the fittings 30 are smoothed, at least on the outside thereof.
- the entire mechanical structure is with a layer of one Provide high temperature superconductors.
- Layers based on the four-substance system yttrium-barium-copper oxide (Y-Ba-Cu-0) were tested.
- This ceramic superconductor has the stoichiometric composition - YBa o 2Cu3.0-7, -x._ and one
- the layers of the high-temperature superconducting material can also be based on the currently known five-substance systems such as bismuth strontium calcium copper oxygen (Bi-Sr-Ca-Cu-O) or thallium - Barium-calcium-copper-oxygen (Tl-Ba-Ca-Cu-O) should be built up.
- These HTSL materials also have step temperatures above the temperature of liquid nitrogen, with step temperatures of 80 K and 110 K in certain Bi-Sr-Ca-Cu-O phases and in certain Tl-Ba-Ca-Cu O phases
- the HTSL coating is applied by means of plasma spraying or high-speed flame spraying.
- an intermediate layer is first advantageously applied as an adhesive base, for example made of zirconium oxide, at least on the outside of the tubular grid casing, and then the powdery high-temperature superconducting material is sprayed on under suitable boundary conditions.
- Suitable implementable holders for guiding the coating device can be hung in various positions in the stable tubular grille casing, so that the HTSL coating can be carried out continuously in successive individual steps.
- HTSL-coated pipe section 1 in section, which - starting from the inside - consists of a steel wall 2 on which a zirconium oxide layer 3 is applied, which carries the HTSL layer 5.
- zirconium oxide instead of zirconium oxide as a primer and / or protective layer, magnesium oxide, yttrium oxide or silver can optionally also be used.
- the HTSL layer is applied according to the mechanical structure in the manner described above and, if necessary, coated with zirconium oxide.
- the desired superconducting properties are then adjusted in a known manner by sintering the HTSL material in an oxygen atmosphere, in particular the critical current density sufficient above 77 K (boiling point of the liquid nitrogen).
- the latter can, for example, be carried out continuously, piece by piece, by means of high-frequency heating by means of flat coils guided on corresponding devices, or also using a welding gas / oxygen flame from welding torches.
- the required sintering conditions can be maintained by non-contact temperature measurement, for example using a bolometer, and by an appropriate control.
- Such a foam layer is designated by 8 in FIG. Due to the structure of the continuous from above
- a coherent network of superconducting meshes is created for the tubular structure of the tube, which shields field changes from the outside in that each mesh receives the extensive magnetic flux for itself.
- the static field must be temporarily compensated for by auxiliary coils outside the tubular grille cover 10 during the cooling process to 77 K, but only for the time of the cooling process from T> Tt_ * to the working temperature of about 77 K must exist.
- the mesh size of the tubular grid network 10 can be matched to the current density available for the high-temperature superconductor and the HTSL layer thickness, the overall dimensions of the construction and the required shielding conditions within a central shielding region, ie an inner partial volume of the envelope structure.
- the shielding structure can be accessed via the open mesh.
- the input mesh can be enlarged so that easy access is made possible, the network in Surrounding this opening - as indicated with reference to FIG. 1 - is preferred tubular.
- a magnetic shield is thus created, which is characterized by the combination of the greatest possible mechanical stability with the lowest temperature gradient in the high-temperature superconductor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Les écrans magnétiques pour analyses biomagnétiques sont actuellement réalisés sous forme de cellules compactes en micrométal et aluminium. Des écrans supraconducteurs refroidis à l'hélium sont en revanche réalisables et exploitables de manière rentable uniquement pour des cellules d'un volume relativement faible. Selon la présente invention, une structure enveloppante (10) du type quadrillé est formée d'une multiplicité de tubes (1) parcourus par un réfrigérant et pourvus d'une couche (5) d'un matériau céramique supraconducteur à haute température. Dans le procédé pour la fabrication d'un écran magnétique de ce type, on réalise d'abord mécaniquement la structure tubulaire complète qui est ensuite revêtue, par pistolage thermique, des couches nécessaires d'un matériau supraconducteur à haute température d'épaisseur appropriée.Magnetic screens for biomagnetic analyzes are currently made in the form of compact micrometal and aluminum cells. Helium-cooled superconducting shields, on the other hand, are feasible and cost-effectively exploitable only for cells of relatively small volume. According to the present invention, an enveloping structure (10) of the grid type is formed of a multiplicity of tubes (1) traversed by a coolant and provided with a layer (5) of a superconducting ceramic material at high temperature. In the process for manufacturing a magnetic screen of this type, the complete tubular structure is first produced mechanically, which is then coated, by thermal spraying, with the necessary layers of a high-temperature superconducting material of suitable thickness.
Description
Magnetische Abschirmung, insbesondere bei Einrichtungen für bio¬ magnetische Untersuchungen, sowie Verfahren zu deren Herstellung Magnetic shielding, in particular for devices for bio-magnetic investigations, and methods for their production
Die Erfindung bezieht sich auf eine magnetische Abschirmung, insbesondere bei Einrichtungen für biomagnetische Untersuchun- gen. Daneben bezieht sich die Erfindung auf ein Verfahren zur Herstellung einer derartigen magnetischen Abschirmung.The invention relates to a magnetic shield, in particular for devices for biomagnetic examinations. In addition, the invention relates to a method for producing such a magnetic shield.
Für viele Gebiete der Technik werden magnetische Abschirmungen benötigt. Insbesondere bei biomagnetischen Untersuchungen, bei denen kleinste Signale gemessen werden sollen, besteht die For¬ derung, vergleichsweise großvolumig abgeschirmte Zellen zu schaffen. Dafür sind beispielsweise Kabinen aus μ-Metall und/ oder Aluminium bekannt (siehe Monographie BIOMAGNETISM, Sprin¬ ger Verlag (1981) und 3. Phys. E. : Sei. Instrum. 20 (1987), 151 bis 164), die dickwandig und/oder mehrschalig aufgebaut sind.Magnetic shielding is required for many areas of technology. Particularly in the case of biomagnetic investigations in which the smallest signals are to be measured, there is a requirement to create cells with a relatively large volume shielded. Cabins made of μ-metal and / or aluminum are known for this (see monograph BIOMAGNETISM, Springer Verlag (1981) and 3. Phys. E.: Sei. Instrum. 20 (1987), 151 to 164), the thick-walled and / or are constructed with multiple shells.
Speziell Abschirmungen für biomagnetische Untersuchungen müssen eine Störfeldschirmung insbesondere im Frequenzbereich 1 kHz bis herab zu etwa 0,1 Hz für Störfeldamplituden in der Regel deutlich kleiner als das Erdfeld von etwa 0,5 Oersted gewährlei¬ sten. Die bekannten ferromagnetischen Abschirmungen, auch in Kombination mit Wirbelstromschirmen, schirmen aber mit sinken¬ der Frequenz, insbesondere unter 100 Hz, immer schlechter. Es muß daher ein sehr großer Aufwand mit derartigen Abschirmungen getrieben werden, um wesentlich unter 10 Hz liegende biomagne¬ tische Signale von Störfeldern der Umwelt abtrennen zu können.Shielding for biomagnetic investigations in particular must ensure interference field shielding, in particular in the frequency range from 1 kHz down to about 0.1 Hz for interference field amplitudes, generally significantly smaller than the earth's field of about 0.5 Oersted. The known ferromagnetic shields, even in combination with eddy current shields, shield with increasing frequency, especially below 100 Hz, worse and worse. A great deal of effort must therefore be expended with such shields in order to be able to separate biomagne signals lying below 10 Hz from interference fields in the environment.
Dagegen sind supraleitende Abschirmungen in der Lage, bis zu niedrigsten Frequenzen zu schirmen. In Gestalt von mit supra¬ leitenden Materialien beschichteten, mit Helium gekühlten Be¬ hältern sind sie seit längerer Zeit bekannt und auch im Ein- satz. Beispielsweise werden damit empfindliche kryoelektroni- sche Schaltungen abgeschirmt. Derartige supraleitende Abschir¬ mungen sind jedoch bisher nicht für größere abzuschirmende Be¬ reiche, beispielsweise ganze Räume von deutlich mehr als 10 m Rauminhalt, wirtschaftlich vertretbar aufzubauen.In contrast, superconducting shields are able to shield down to the lowest frequencies. In the form of containers coated with superconducting materials and helium-cooled, they have been known for some time and are also used in sentence. For example, sensitive cryoelectronic circuits are shielded. Such superconducting shields, however, have so far not been economically justifiable for larger areas to be shielded, for example entire rooms of significantly more than 10 m.
Aufgabe der Erfindung ist es daher, eine neue magnetische Ab¬ schirmeinrichtung und ein Verfahren zu deren Herstellung vorzu¬ schlagen, mit denen insgesamt in vertretbaren Aufwand größere Bereiche geschirmt werden können.The object of the invention is therefore to propose a new magnetic shielding device and a method for its production, with which larger areas as a whole can be shielded with reasonable effort.
Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß aus einer Vielzahl von mit einem Kühlmittel durchströmten Rohren eine gitternetzartige Hüllstruktur gebildet wird und daß die Rohre mit einer Schicht eines keramischen Hochtemperatur-Supraleiters versehen sind. Eine solche Abschirmung läßt sich vergleichswei¬ se einfach mit folgenden Verfahrensschritten herstellen:The object is achieved in that a grid-like envelope structure is formed from a plurality of tubes through which a coolant flows, and in that the tubes are provided with a layer of a ceramic high-temperature superconductor. Such shielding can be produced comparatively simply with the following process steps:
a) Zunächst wird die gesamte Rohrkonstruktion mechanisch erstellt unda) First, the entire pipe construction is created mechanically and
b) anschließend durch thermische Spritzverfahren mit den erforderlichen Schichten eines hochtemperatur-supra- leitenden Materials geeigneter Dicke versehen.b) subsequently provided with the required layers of a high-temperature superconducting material of suitable thickness by thermal spraying processes.
Mit der Erfindung werden in vorteilhafter Weise die neuen hoch- t_emperatur-supral^itenden Materialien (HTSL) mit Sprungtempera¬ turen im Bereich des flüssigen Stickstoffes auf dem Gebiet der Abschirmungen eingesetzt. Insbesondere bei Einrichtungen für biomagnetische Untersuchungen, bei denen großvolu ige Untersu- chungsraume geschirmt werden müssen, lassen sich gegenüber mehr- schaligen μ-Metall-/Aluminium-Wirbelstrom-Abschirmungen erheb¬ liche Einsparungen erzielen. Dabei ist vorteilhaft, daß bei Durchströmung von HTSL-beschichteten Rohren gegenüber einer Ge¬ samtwandkühlung eine geringere Oberfläche vorhanden ist, die für die Wär ezustrahlung bzw. -Zuleitung in Frage kommen. Trotz¬ dem ist eine hinreichende mechanische Stabilität gewährleistet. Störfelder durch bewegte stromführende oder magnetische Teile können bei der gitternetzartigen Hüllstruktur aus den stabilen Rohren nicht auftreten. Mit den HTSL-beschichteten Rohren kön- nen jeweils supraleitende Maschen vorgegebener Größe gebildet werden, die bei Unterschreiten der kritischen Stromdichte I jede von außen hervorgerufene Änderung des magnetischen Flusses vollständig abschirmen. Damit läßt sich im Zentrum der gitter¬ netzartigen Hüllstruktur ein weitgehend feldfreier Schirmbe- reich erreichen.The invention advantageously uses the new high-temperature superconducting materials (HTSL) with jump temperatures in the area of liquid nitrogen in the field of shielding. Particularly in the case of devices for biomagnetic examinations, in which large examination rooms have to be shielded, considerable savings can be achieved compared to multi-layer μ-metal / aluminum eddy current shieldings. It is advantageous that, when flowing through HTSL-coated pipes, there is a smaller surface area compared to total wall cooling, which for heat radiation or supply. Adequate mechanical stability is nevertheless ensured. Interference fields caused by moving current-carrying or magnetic parts cannot occur with the grid-like envelope structure made of the stable tubes. The HTSL-coated tubes can be used to form superconducting meshes of a predetermined size, which completely shield any change in the magnetic flux caused from outside if the current density falls below the critical one. A largely field-free screen area can thus be achieved in the center of the grid-like envelope structure.
Mit der Erfindung ist somit eine technisch vergleichsweise ein¬ fache und materialgerechte Lösung für eine großvolu ige Ab¬ schirmkabine und das zugehörige Herstellungsverfahren angegeben. Bei letzterem kann das thermische Spritzverfahren beispielswei¬ se ein Plasmasprühverfahren oder ein Hochtemperaturflammspritz- verfahren sein, mit denen in geeigneter Weise geschlossene Dick¬ schichten 20 μ aufgebracht werden können. Es ist zwar be¬ reits vorgeschlagen worden, mit derartigen Spritzverfahren HTSL-Schichten auf nahezu beliebig gestaltete Flächen aufzu¬ bringen. Es ist jedoch bisher keine Hüllstruktur aus durch¬ gängigen Rohren bekannt, bei der auf die mechanische Konstruk¬ tion die hochtemperatur-supraleitenden Schichten sowohl aufge¬ spritzt als auch zur Ausbildung erforderlichen supraleitenden Eigenschaften gesintert werden und die anschließend derart mit Flüssigstickstoff gekühlt werden können, daß der Hochtemperatur- Supraleiter durch die bei Kühlung bzw. Erwärmung auftretenden thermischen Spannungen keine Risse ausbildet und dadurch bezüg¬ lich der Stromdichte verschlechtert wird bzw. sich sogar ablöst.The invention thus provides a technically comparatively simple and material-appropriate solution for a large-volume shielding cabin and the associated manufacturing process. In the latter case, the thermal spraying process can be, for example, a plasma spraying process or a high-temperature flame spraying process, with which closed thick layers 20 .mu.m can be applied in a suitable manner. It has already been proposed to apply HTSL layers to surfaces of almost any design using such spraying methods. However, no casing structure made of continuous tubes is known, in which the high-temperature superconducting layers are both sprayed onto the mechanical construction and also sintered for the formation of the superconducting properties required for the formation, and which can subsequently be cooled with liquid nitrogen in such a way that the high-temperature superconductor does not form any cracks due to the thermal stresses occurring during cooling or heating and is therefore deteriorated or even detached with respect to the current density.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbei¬ spielen anhand der Zeichnung in Verbindung mit den Patentan¬ sprüchen. Es zeigen Fig. 1 in schematischer Darstellung das Prinzip einer gitter¬ netzartigen Hüllstruktur, die im wesentlichen eine Kugelhülle bildet,Further details and advantages of the invention result from the following description of the figures of exemplary embodiments with reference to the drawing in conjunction with the patent claims. Show it 1 shows a schematic representation of the principle of a mesh-like envelope structure which essentially forms a spherical envelope,
Fig. 2 aus einzelnen Rohren aufgebaute dreieckige Maschen,2 triangular mesh constructed from individual tubes,
Fig. 3 den Verknüpfungspunkt von Zellen gemäß Fig. 2 mit Rohr- fittingstücken und3 shows the connection point of cells according to FIG. 2 with pipe fitting pieces and
Fig. 4 den Schnitt durch ein mit einem hochtemperatur-supralei- tendem Material beschichteten Rohr.4 shows the section through a tube coated with a high-temperature superconducting material.
In der Fig. 1 ist eine gitternetzartige Hüllstruktur mit 10 be¬ zeichnet, die aus einer Vielzahl von einzelnen, an Verknüpfungs¬ stellen 20 miteinander verbundenen Rohren 1 besteht. Von den Rohren 1 wird ein dreidimensionales Netz mit polygonalen Ma¬ schen gebildet, beispielsweise aus Vierecken oder Dreiecken, die in Fig. 1 mit 25 bezeichnet sind. Damit läßt sich die Hüll¬ struktur 10 beispielsweise als Kugelhülle realisieren, die einen Meßraum umgibt.In FIG. 1, a lattice-like envelope structure is denoted by 10, which consists of a large number of individual tubes 1 connected to one another at connecting points 20. A three-dimensional network with polygonal meshes is formed from the tubes 1, for example from quadrilaterals or triangles, which are designated by 25 in FIG. 1. The envelope structure 10 can thus be implemented, for example, as a spherical envelope which surrounds a measuring space.
Die gitternetzartige Hüllstruktur 10 ist weitgehend abge¬ schlossen. Unten besteht ein erweiterter Einlauf 11 mit einem Verteilerring 12 für flüssigen Stickstoff und oben ein erwei¬ terter Auslauf 14 mit einem Gassammeiring 13. Wesentlich ist dabei, daß dadurch keine vergrößerten Maschen entstehen dürfen, durch die von außen die abzuschirmenden Magnetfelder verstärkt eindringen könnten. Gegebenenfalls werden hierzu rohrartige Ausstülpungen in der nahezu sphärischen Schirmung vorgenommen.The grid-like envelope structure 10 is largely closed off. At the bottom there is an enlarged inlet 11 with a distributor ring 12 for liquid nitrogen and at the top an expanded outlet 14 with a gas collecting ring 13. It is essential that no enlarged meshes are allowed to arise through which the magnetic fields to be shielded could penetrate from outside. If necessary, tubular protuberances are made in the almost spherical shielding.
Zur Verwendung solcher Hüllstrukturen als magnetische Abschir¬ mung einer Meßkabine speziell für biomagnetische Untersuchungen am menschlichen Körper muß ein hinreichend großer Zugang sicher¬ gestellt sein. Ein solcher Zugang ist in Fig. 1 mit 15 bezeich¬ net. Hier gilt das gleiche wie für den Einlauf 12 bzw. den Aus- lauf 14, daß kein verstärkter Magnetfelddurchgriff durch in sich erweiterte Maschen möglich sein darf.To use such envelope structures as magnetic shielding of a measuring cabin, especially for biomagnetic examinations on the human body, a sufficiently large access must be ensured. Such an access is denoted by 15 in FIG. 1. The same applies here as for the inlet 12 or the outlet Run 14, that no increased magnetic field penetration may be possible by expanding meshes.
In Fig. 2 ist ersichtlich, daß die Rohre 1 jeweils speziell dreieckige Elementarmaschen bilden können, die sich zu einem hexagonalen Netz ergänzen. Mit einem solchen Netz lassen sich im Prinzip beliebige Geometrien für eine sphärische Hüllstruk¬ tur, insbesondere die Kugelhülle gemäß Fig. 1, verwirklichen. Dabei läßt sich die Größe der Dreiecksmasche entsprechend der geforderten Abschirmwirkung berechnen.In Fig. 2 it can be seen that the tubes 1 can each form specially triangular elementary meshes which complement each other to form a hexagonal network. With such a network, in principle any geometries for a spherical envelope structure, in particular the spherical envelope according to FIG. 1, can be realized. The size of the triangular mesh can be calculated according to the required shielding effect.
Die gitternetzartige Hüllstruktur 10 wird zunächst mechanisch aus den Rohren 1, die vorteilhafterweise aus unmagnetischem Stahl bestehen, aufgebaut und zusammengeschweißt. Dabei ist es wichtig, daß die Rohrstücke 1 an den Verknüpfungsstellen 20 über durchgängige Rohrfittings verbunden sind und zwar derart, daß die zusammenhängende gesamte Rohrstruktur von Stickstoff im flüssigen und gegebenenfalls auch im gasförmigen Zustand als Kühlmittel gleichförmig ohne Stoßen durchströmt werden kann, um schwingungsbedingte Störfelder zu vermeiden.The grid-like envelope structure 10 is first constructed mechanically from the tubes 1, which advantageously consist of non-magnetic steel, and welded together. It is important that the pipe sections 1 are connected at the connection points 20 by means of continuous pipe fittings, in such a way that nitrogen can flow through the entire pipe structure in the liquid and possibly also in the gaseous state as a coolant uniformly without bumping, in order to create vibration-related interference fields avoid.
In Fig. 3 ist ein derartiges Rohrfittingstück 30 dargestellt, das im Prinzip aus einem Rundverteiler mit entsprechenden An¬ sätzen für die Aufnahme von sechs Rohren 1 besteht, welche ge¬ währleisten, daß der Übergang zwischen jeweils einem Rohr 1 und Fittingansatz 31 stoßfrei ist. Nach dem Zusammenbau der Hüll¬ struktur werden zumindest an deren Außenseite die geschweißten Übergänge an den Fittings 30 geglättet.3 shows a pipe fitting piece 30 of this type, which in principle consists of a round distributor with corresponding approaches for accommodating six pipes 1, which ensure that the transition between a pipe 1 and a fitting projection 31 is smooth. After the casing structure has been assembled, the welded transitions on the fittings 30 are smoothed, at least on the outside thereof.
Auch beim Einlauf-/Verteilerring 11, 12 sowie beim Gas-Sammel- ring 13 und Auslauf 14 ist jeweils für glatte und stoßfreie Übergänge zu den Rohren 1 zu sorgen.Also with the inlet / distributor ring 11, 12 as well as with the gas collecting ring 13 and outlet 14, smooth and shock-free transitions to the pipes 1 must be ensured.
Der gesamte mechanische Aufbau ist mit einer Schicht aus einem Hochtemperatur-Supraleiter versehen. Erprobt wurden Schich¬ ten auf der Basis des Vier-Stoffsystemes Yttrium-Barium- Kupfer-Oxid (Y-Ba-Cu-0). Dieser keramische Supraleiter hat die stöchio etrische Zusammensetzung - YBao 2Cu3,0-7,-x._ und eineThe entire mechanical structure is with a layer of one Provide high temperature superconductors. Layers based on the four-substance system yttrium-barium-copper oxide (Y-Ba-Cu-0) were tested. This ceramic superconductor has the stoichiometric composition - YBa o 2Cu3.0-7, -x._ and one
Sprungtemperatur T bei ca. 90 K, so daß er mit flüssigem Stickstoff der Arbeitstemperatur T V77 K gekühlt werden kann.Jump temperature T at approx. 90 K, so that it can be cooled with liquid nitrogen at working temperature T V77 K.
Alternativ dazu können die Schichten des hochtemperatur-supra- leitenden Materials (HTSL) auch auf der Basis der zwischen¬ zeitlich bekannten Fünf-Stoffsysteme wie Wismut-Strontium- Calcium-Kupfer-Sauerstoff (Bi-Sr-Ca-Cu-O) oder Thallium- Barium-Calcium-Kupfer-Sauerstoff (Tl-Ba-Ca-Cu-O) aufgebaut sein. Diese HTSL-Materialien haben ebenfalls Sprungtempera¬ turen oberhalb der Temperatur von flüssigem Stickstoff, wo¬ bei in bestimmten Bi-Sr-Ca-Cu-O-Phasen Sprungtemperaturen von 80 K und 110 K und in bestimmten Tl-Ba-Ca-Cu-O-PhasenAs an alternative to this, the layers of the high-temperature superconducting material (HTSL) can also be based on the currently known five-substance systems such as bismuth strontium calcium copper oxygen (Bi-Sr-Ca-Cu-O) or thallium - Barium-calcium-copper-oxygen (Tl-Ba-Ca-Cu-O) should be built up. These HTSL materials also have step temperatures above the temperature of liquid nitrogen, with step temperatures of 80 K and 110 K in certain Bi-Sr-Ca-Cu-O phases and in certain Tl-Ba-Ca-Cu O phases
Sprungtemperaturen von 105 K und 125 K gefunden wurden. Zur besseren Handhabung bei der Herstellung dieser Schichten kann das Wismut (Bi) oder Thallium (Tl) teilweise durch Blei (Pb) ersetzt werden.Jump temperatures of 105 K and 125 K were found. For better handling in the production of these layers, the bismuth (Bi) or thallium (Tl) can be partially replaced by lead (Pb).
Das Aufbringen der HTSL-Beschichtung erfolgt mittels Plasma¬ sprüh- oder Hochgeschwindigkeitsflammspritz-Verfahren. Dazu wird zunächst vorteilhafterweise zumindest an der Außenseite der Rohrgitterhülle eine Zwischenschicht als Haftgrund, bei- spielsweise aus Zirkonoxid, aufgebracht und dann unter ge¬ eigneten Randbedingungen das pulverförmige hochtemperatur-supra- leitende Material aufgespritzt. Geeignete umsetzbare Halterun¬ gen zur Führung des Beschichtungsgerätes können dabei in ver¬ schiedenen Positionen in die stabile Rohrgitterhülle eingehängt werden, so daß die HTSL-Beschichtung fortlaufend in aufeinan¬ derfolgenden Einzelschritten erfolgen kann.The HTSL coating is applied by means of plasma spraying or high-speed flame spraying. For this purpose, an intermediate layer is first advantageously applied as an adhesive base, for example made of zirconium oxide, at least on the outside of the tubular grid casing, and then the powdery high-temperature superconducting material is sprayed on under suitable boundary conditions. Suitable implementable holders for guiding the coating device can be hung in various positions in the stable tubular grille casing, so that the HTSL coating can be carried out continuously in successive individual steps.
Für den bestimmungsmäßigen Gebrauch der magnetischen Abschirmung wäre es nur notwendig, daß die HTSL-Beschichtung lediglich auf der Außenseite der Rohrgitterhülle aufgebracht ist. Es hat sich jedoch als zweckmäßig erwiesen, zur Gewährleistung der Stabili¬ tät der Schichten die einzelnen Rohre 1 rundum mit der HTSL-Be¬ schichtung zu versehen.For the intended use of the magnetic shielding, it would only be necessary that the HTSL coating was only on the outside of the pipe grid shell is applied. However, to ensure the stability of the layers, it has proven to be expedient to provide the individual pipes 1 with the HTSL coating all around.
In Fig. 4 ist ein HTSL-beschichtetes Rohrstück 1 im Schnitt dar¬ gestellt, das - von innen beginnend - aus einer Stahlwand 2 be¬ steht, auf dem eine Zirkonoxid-Schicht 3 aufgebracht ist, die die HTSL-Schicht 5 trägt. Auf der HTSL-Schicht 5 befindet sich eine weitere Schutzschicht 6, beispielsweise ebenfalls aus Zir- konoxid. Statt Zirkonoxid als Haftgrund und/oder Schutzschicht können gegebenenfalls auch Magnesiumoxid, Yttriumoxid oder Silber verwendet werden.4 shows an HTSL-coated pipe section 1 in section, which - starting from the inside - consists of a steel wall 2 on which a zirconium oxide layer 3 is applied, which carries the HTSL layer 5. There is a further protective layer 6, for example also made of zirconium oxide, on the HTSL layer 5. Instead of zirconium oxide as a primer and / or protective layer, magnesium oxide, yttrium oxide or silver can optionally also be used.
Zur Herstellung der magnetischen Abschirmung wird nach dem me- chanischen Aufbau in oben beschriebener Weise die HTSL-Schicht aufgebracht und gegebenenfalls mit Zirkonoxid überzogen. An¬ schließend erfolgt in bekannter Weise durch Sinterung des HTSL- Materials in Sauerstoff-Atmosphäre die Einstellung der gewün¬ schten supraleitenden Eigenschaften, insbesondere der oberhalb 77 K (Siedepunkt des flüssigen Stickstoffes) ausreichenden kri¬ tischen Stromdichte. Letzteres kann beispielsweise stückweise fortlaufend durch Hochfrequenzerwärmen mittels auf entsprechen¬ den Vorrichtungen geführten Flachspulen oder auch mit einer Brenngas-/Sauerstoff-Flamme von Schweißbrennern durchgeführt werden. Die Einhaltung der erforderlichen Sinterbedingungen kann dabei durch berührungslose Temperaturmessung, beispiels¬ weise über ein Bolometer, und durch eine entsprechende Steu¬ erung vorgenommen werden.To produce the magnetic shielding, the HTSL layer is applied according to the mechanical structure in the manner described above and, if necessary, coated with zirconium oxide. The desired superconducting properties are then adjusted in a known manner by sintering the HTSL material in an oxygen atmosphere, in particular the critical current density sufficient above 77 K (boiling point of the liquid nitrogen). The latter can, for example, be carried out continuously, piece by piece, by means of high-frequency heating by means of flat coils guided on corresponding devices, or also using a welding gas / oxygen flame from welding torches. The required sintering conditions can be maintained by non-contact temperature measurement, for example using a bolometer, and by an appropriate control.
Es ist vorteilhaft, zwecks thermischer Isolation die gesamteIt is advantageous to use the whole for thermal insulation
Konstruktion aus den Rohren 1 einschließlich der Anschlußstutzen mit Polyurethan zu umschäumen. In Fig. 4 ist eine derartige Schaumstoffschicht mit 8 bezeichnet. Durch den oben beschriebenen Aufbau der aus durchgängigenFoam construction from the tubes 1 including the connecting piece with polyurethane. Such a foam layer is designated by 8 in FIG. Due to the structure of the continuous from above
Rohren aufgebauten Hüllstruktur ist ein zusammenhängendes Netz supraleitender Maschen geschaffen, das Feldänderungen von außen dadurch abschirmt, daß jede Masche für sich den umfassenden magnetischen Fluß erhält.A coherent network of superconducting meshes is created for the tubular structure of the tube, which shields field changes from the outside in that each mesh receives the extensive magnetic flux for itself.
Sollen nicht nur Feldänderungen, sondern auch das bei Beginn der Supraleitung vorhandene statische Feld, z.B. das Erdfeld, abgeschirmt werden, so muß während des Kühlvorganges auf 77 K vorübergehend das statische Feld durch Hilfsspulen außerhalb der Rohrgitterhülle 10 kompensiert werden, was aber lediglich für die Zeit des Kühlvorganges von T > Tt_* auf die Arbeitstem- peratur von etwa 77 K bestehen muß.If not only field changes, but also the static field existing at the start of superconductivity, e.g. the earth field, are to be shielded, the static field must be temporarily compensated for by auxiliary coils outside the tubular grille cover 10 during the cooling process to 77 K, but only for the time of the cooling process from T> Tt_ * to the working temperature of about 77 K must exist.
Beim Abschirmen auch der statischen Feldanteile entstehen Dauer- ströme in der gitternetzartigen Hüllstruktur, wodurch das Schirm¬ vermögen durch die kritischen Ströme der Maschen begrenzt wird. Bei unzureichenden kritischen Strömen I des HTSL-Materials kann auch alternativ eine zusätzliche Hilfs-Außenhülle aus μ- Metall verwendet werden, die gegebenenfalls mit der in der Re— gel erforderlichen Hochfrequenz-Abschirmung aus Aluminium ver¬ bunden wird. Beide Hüllen können an den Wänden des Raumes ange¬ bracht sein, in deren Innern die gitternetzartige Hüllstruktur 10 aufgebaut ist.When the static field components are also shielded, continuous currents arise in the grid-like envelope structure, as a result of which the shielding capacity is limited by the critical currents of the mesh. If the critical currents I of the HTSL material are inadequate, an additional auxiliary outer shell made of μ-metal can also be used as an alternative, which is optionally connected to the high-frequency shielding made of aluminum which is generally required. Both envelopes can be attached to the walls of the room, in the interior of which the grid-like envelope structure 10 is constructed.
Bei weiteren Ausführungsbeispielen läßt sich die Maschenweite des Rohrgitternetzes 10 auf die für den Hochtemperatur-Supra¬ leiter verfügbare Stromdichte und die HTSL-Schichtdicke, die Gesamtabmessungen der Konstruktion sowie auf die geforderten Schirmbedingungen innerhalb eines zentralen Schirmbereiches, d.h. einem inneren Teilvolumen der Hüllstruktur, abstimmen. Der Zugang in die Abschirmstruktur kann über die offenen Maschen erfolgen. Dabei kann die Eingangsmasche so vergrößert werden, daß ein leichter Zugang ermöglicht wird, wobei das Netz im Umfeld dieser Öffnung - wie anhand Fig. 1 angedeutet - rohrar¬ tig vorgezogen wird.In further exemplary embodiments, the mesh size of the tubular grid network 10 can be matched to the current density available for the high-temperature superconductor and the HTSL layer thickness, the overall dimensions of the construction and the required shielding conditions within a central shielding region, ie an inner partial volume of the envelope structure. The shielding structure can be accessed via the open mesh. The input mesh can be enlarged so that easy access is made possible, the network in Surrounding this opening - as indicated with reference to FIG. 1 - is preferred tubular.
Es ist somit eine magnetische Abschirmung geschaffen, die sich durch die Kombination von größtmöglicher mechanischer Stabilität mit geringstem Temperaturgradienten im Hochtemperatur-Supralei¬ ter auszeichnet. Dadurch wird das Entstehen von Rissen in der HTSL-Schicht 5 bei Kühlung bzw. Erwärmung vermieden, was zu einer Degradation insbesondere der Stromdichte führen würde.A magnetic shield is thus created, which is characterized by the combination of the greatest possible mechanical stability with the lowest temperature gradient in the high-temperature superconductor. As a result, the formation of cracks in the HTSL layer 5 during cooling or heating is avoided, which would lead to a degradation in particular of the current density.
Durch die geringe thermische Masse des gesamten Aufbaus können die Kühlzeiten kleingehalten werden, was eine schnelle Einsatz¬ bereitschaft gewährleistet. Insgesamt ergeben sich dadurch eine erhebliche Verbesserung und Kosteneinsparung gegenüber den bis¬ her bekannten magnetischen Abschirmungen. Due to the low thermal mass of the entire structure, the cooling times can be kept short, which ensures rapid readiness for use. Overall, this results in a considerable improvement and cost savings compared to the magnetic shields known hitherto.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3802902 | 1988-02-01 | ||
DE3802902 | 1988-02-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0398918A1 true EP0398918A1 (en) | 1990-11-28 |
Family
ID=6346387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89901709A Ceased EP0398918A1 (en) | 1988-02-01 | 1989-01-26 | Magnetic shield, in particular in devices for biomagnetic examinations, and process for producing it |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0398918A1 (en) |
JP (1) | JPH03503448A (en) |
WO (1) | WO1989007321A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2139579C1 (en) * | 1998-12-23 | 1999-10-10 | Тюняев Владимир Николаевич | Device for protection against radiation (modifications) |
WO2002091389A1 (en) * | 2001-05-07 | 2002-11-14 | Iouri Baikov | Device for radiation protection (variants) |
GB201116948D0 (en) | 2011-10-03 | 2011-11-16 | Rolls Royce Plc | A magnetic shield |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU955214A1 (en) * | 1981-03-16 | 1982-08-30 | Предприятие П/Я А-1742 | Magnetic shield |
-
1989
- 1989-01-26 WO PCT/DE1989/000046 patent/WO1989007321A1/en not_active Application Discontinuation
- 1989-01-26 EP EP89901709A patent/EP0398918A1/en not_active Ceased
- 1989-01-26 JP JP1501506A patent/JPH03503448A/en active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO8907321A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1989007321A1 (en) | 1989-08-10 |
JPH03503448A (en) | 1991-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0111218B1 (en) | Electromagnet for nmr tomography | |
EP2698794B1 (en) | Assembly with at least one superconducting cable | |
EP2685469B1 (en) | Assembly with at least one superconducting cable | |
EP1999764B1 (en) | Cryostat having a magnet coil system, which comprises an undercooled lts section and an hts section arranged in a separate helium tank | |
DE68916584T2 (en) | Superconducting magnet system with superconducting cylinders. | |
DE3900725C2 (en) | ||
DE3855699T2 (en) | A method of manufacturing a superconducting article, and apparatus and systems using the article | |
DE69008945T2 (en) | Device for the application of superconductivity. | |
DE69301576T2 (en) | Superconductor tube for magnetic shielding | |
DE102005028414A1 (en) | Pulsed magnetic field generating device for a refrigeration unit has a refrigerant-free superconductive winding thermally coupled to the cold head via a line system with a number of pipes connected to a common refrigerant distributor | |
DE3219506A1 (en) | THERMAL INSULATION | |
DE19524579A1 (en) | Transformer as a current limiter | |
EP0398918A1 (en) | Magnetic shield, in particular in devices for biomagnetic examinations, and process for producing it | |
DE19835454A1 (en) | Protected superconducting component and method for its production | |
DE1937796C3 (en) | Frozen, especially superconducting cable | |
DE8804371U1 (en) | Superconducting cable with oxide ceramic high-temperature superconductor material | |
DE19727343A1 (en) | High current carrying capacity superconductive layer production | |
DE102015210655A1 (en) | Electric coil device for inductive-resistive current limiting | |
WO1996019736A1 (en) | Gradiometer | |
DE1501734B2 (en) | DEVICE FOR REFILLING LIQUID HELIUM FROM A STORAGE CONTAINER INTO A CRYOSTAT | |
DE3839309C2 (en) | ||
DE69506011T2 (en) | Superconducting arrangement | |
DE3811050C2 (en) | ||
EP1104033A2 (en) | Manufacturing process for a superconducting layer | |
DE1501304B2 (en) | Cryostat for deep-frozen magnet coils, especially for superconducting magnet coils, with horizontally lying, externally accessible, roughly tubular! inner space |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT NL |
|
17Q | First examination report despatched |
Effective date: 19930209 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 19930731 |