EP0398405A1 - Méthode à deux jets - Google Patents
Méthode à deux jets Download PDFInfo
- Publication number
- EP0398405A1 EP0398405A1 EP90200978A EP90200978A EP0398405A1 EP 0398405 A1 EP0398405 A1 EP 0398405A1 EP 90200978 A EP90200978 A EP 90200978A EP 90200978 A EP90200978 A EP 90200978A EP 0398405 A1 EP0398405 A1 EP 0398405A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure medium
- jets
- pressure
- cooling medium
- directional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 16
- 239000002826 coolant Substances 0.000 claims abstract description 37
- 239000011435 rock Substances 0.000 claims abstract description 25
- 238000005520 cutting process Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 5
- 238000005553 drilling Methods 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 239000003245 coal Substances 0.000 claims description 3
- 230000007423 decrease Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- -1 ores Substances 0.000 claims description 3
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 13
- 239000010438 granite Substances 0.000 abstract description 13
- 238000001816 cooling Methods 0.000 abstract description 9
- 238000010438 heat treatment Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/14—Drilling by use of heat, e.g. flame drilling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B26—HAND CUTTING TOOLS; CUTTING; SEVERING
- B26F—PERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
- B26F3/00—Severing by means other than cutting; Apparatus therefor
- B26F3/004—Severing by means other than cutting; Apparatus therefor by means of a fluid jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B17/00—Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
- B28B17/0036—Cutting means, e.g. water jets
Definitions
- the invention relates to a method and a device for cutting, drilling and the like material-removing processing of rock, ore, coal, concrete or other hard objects by means of a pressure medium according to the types mentioned in claims 1 and 11.
- the invention has for its object to improve the processing of hard objects in particular by clearing groove or groove-shaped slots with a high clearance rate without bulky additional units; above all, the "advance" when slitting the hard material is to be increased.
- the inventions Process according to the invention, in which at least one jet of a coolant is directed onto the clearing-out point of the object with at least one jet of the pressure medium, and a cooling effect is exerted on the object by means of which a substantially higher clearing rate can be achieved than if this cooling medium is missing.
- the cooling medium itself does not necessarily have to be cooler than the pressure medium; it suffices if it has a strongly cooling effect at the point of impact on the object to be slit in the area of the impact of the pressure medium jet.
- the clearing rate is improved by a factor of 3-4 compared to a lack of cooling medium even if water is used as the pressure medium and air as the cooling medium, provided the pressure of the water is at least 1500 bar.
- the object of the invention is particularly well achieved when the pressure medium in the form of several narrow individual jets is ejected from a nozzle head under the high pressure of up to and above 2000 bar and when the individual narrow streets are not parallel but in the form of an increasing Distance from the end face of the nozzle head diverging beams are arranged. It is particularly expedient if the density (per unit area) of rays in the central area of the bundle is significantly greater than in the edge area.
- directional jets of the cooling medium are directed onto the jets of the pressure medium in such a way that directional jets and individual jets of the pressure medium intersect. Even if the jet of the cooling medium is deflected from the original direction of the directional jet by individual jets of the pressure medium under high pressure, there are strong cooling effects since the speed of the pressure medium jets is very high and is up to over 2000 km / h. If air is used as the cooling medium, an air pressure in the order of magnitude between 1 and 10 bar is sufficient. Icing effects promote the destruction in the impact area on the rock.
- a cool liquid gas can also be used at least in part instead of air, which improves the results even more, but which also increases the process costs considerably.
- abrasive particles in particular the cooling medium and / or the pressure medium, can also be added.
- the individual jets should strike the object essentially in a point-like manner - in the form of a line when commuting, unless the cooling medium exerts an "icing" effect on the pressure medium jets.
- the angles of attack are in particular up to 25 degrees with respect to the pendulum plane.
- the pressure medium supply line is expediently bendable, while the coolant supply line can be rigid.
- a rigid pressure medium supply line 12 is connected via connecting webs 36 to the likewise rigid supply line 31 for cooling medium. Both the pressure medium supply line 12 and the cooling medium supply line 31 are parallel arranged pipes.
- a coupling 11 is attached, which connects the pressure medium supply line 30, which is designed as a flexible pendulum tube, to the tube 12 in such a way that the pendulum tube around the articulation point of the coupling 11 in a pendulum movement - as indicated in broken lines - by, for example, the pivoting angle ⁇ is feasible.
- the coupling 11 for example, according to FIG.
- a high-pressure hose (HP hose) can also be installed between the tube 12 and the pendulum tube in such a way that the pressure medium flows through the bendable HP hose, which causes the oscillating movement of the pendulum tube, ie the pressure medium Feed line 30, not obstructed in operation.
- the supply line 30, which oscillates during operation, is supported on a guide 6 which projects laterally from the cooling medium supply line 31.
- the nozzle head 3 At the free end of the pendulum tube there is the nozzle head 3, on the front or front side 3a of which nozzles (not shown here) are arranged, through which pressure medium can be expelled onto the rock 15 in operation in the form of jets 5b in the form of jets 5b .
- the oscillating movement of the pendulum tube and therefore of the nozzle head 3 and the jets 5b oscillating to the right and left by the pivoting angle ⁇ is caused in this example by a drive unit 32 which is attached to the cooling medium supply line 31 and by an energy source, For example, kinetic, electrical, electromagnetic, pneumatic or hydraulic energy can be driven, which is guided through the feed line 31 to the drive unit 32.
- a plunger 33 briefly pushes the pendulum tube in the direction facing away from the feed line 31.
- the spring 34 is tensioned, which on the one hand prevents the pendulum tube from being deflected too far and on on the other hand pulls it back in the opposite direction.
- the straightening head 31a In the vicinity of the nozzle head 3 for the pressure medium under high pressure, the straightening head 31a is located at the free end of the feed line 31, through the straightening steels 5g of air serving as cooling medium both in the direction of the rock 15 and in the direction of the individual pressure medium jets 5b are directed.
- This device is encased in a protective manner by the housing 40 shown schematically here, except for its open end face.
- a linkage composed of several levers is used, with which the drive unit 32 brings the feed line 30 of the pressure medium into the oscillating movement.
- the directional jet 5g is inclined at 45 degrees to the main jet direction of the pressure medium, which is illustrated here by the jet 5b of the nozzle head 3; In this embodiment, the other rays of the pressure medium are not specified.
- Nozzles 5a are located in the nozzle head 3 for the pressure medium, which can optionally also be in the form of jet cones spreading from the nozzle head 3 with increasing direction, although narrow individual jets have proven to be considerably cheaper.
- the pressure medium emerging from the nozzle head 3 in the form of the narrow individual jets 5b under high pressure serves to automatically drive the bendable pendulum tube or the feed line 30 in the direction which is predetermined by the bow-shaped, in particular linear guide 6.
- the pendulum plane lies in the drawing plane, that is, in the same plane in which the supply line 12 for the pressure medium on the one hand and the supply line 31 for the coolant on the other hand are located.
- This embodiment of the invention also ensures that at least one directional jet 5g of the air serving as cooling medium emerges from the directional head 31a in such a way that an at least fictitious intersection 200b with the next adjacent jet 5b of the pressure medium results before the rock (not shown here) is reached .
- Bores with an internal thread 50 are arranged in the nozzle head 3 starting from the end face 3a such that the axes of the bores are inclined at angles of incidence ⁇ and ⁇ with respect to the axis of the central nozzle 5a1 and therefore the main jet direction.
- the rays 5b2 therefore extend diametrically outwards from the end face 3a of the nozzle head 3. It is recommended if the angle of attack in the pendulum plane PE is significantly larger than the angle of attack ⁇ in the transverse plane 25q running transversely thereto. In this example, the first-mentioned angle of attack ⁇ 2 is 23 degrees, while the second-mentioned angle of attack ⁇ 2 is 6 degrees.
- the nozzle elements consist of the screw bolts 100 which can be screwed into the internal thread 50 from the end face 3a, and the cylindrical projections 101 expediently protrude into the collecting chamber 7 in the nozzle head 3.
- the collecting chamber 7 is connected to the one in FIG. 7 by a passage provided with an internal thread 20 Not shown feed line 30 connected to the pressure medium.
- the clear diameter of the nozzles 5a in the area of the passage opening 102a is 0.5-1 mm.
- the screw bolt 100 in particular a jet, is provided with an annular insert 102, in particular sapphire and / or hard metal, the passage opening 102a of which has the smallest flow cross-section of all the units involved in the passage of the pressure medium.
- the approach 101 of the screw bolt 100 has a flow cross section which decreases conically in the flow direction D of the pressure medium. It is at the entrance of the approach 101 a perforated disk 103, for example, unsoldered.
- the total cross section of all perforation holes 103a in the disk 103 is larger than the flow cross section of the passage opening 102a of the ring-shaped insert 102.
- extension 101 connects to the insert 102, which has a substantially cylindrical bore 101b, to which the conical collecting chamber adjoins 101a connects.
- the perforated disk 103 together with the conically or conically narrowing collecting chamber 101a, reduces pressure surges. This ensures better that the individual jets 5b1, 5b2 of the pressure medium remain narrow up to the point of impact on the object to be processed.
- the coolant supply line 31 coaxially envelops the pressure medium supply line 30; both supply lines are bendable, the pressure medium supply line 30 consisting of a high-pressure hose, since the pressure medium pressure within it is very high.
- the pressure medium exits through the nozzles, here the nozzles 5a1 and 5a2, and forms pressure medium jets 5b1, 5b2, 5b3, and the nozzle head 3 swings back and forth very quickly in the pendulum plane PE, ie perpendicular to the plane of the drawing, this becomes bundles of rays formed by the individual, very narrow jets 5b1, 5b2, 5b3 and possibly further individual jets are enveloped by a kind of "curtain" of air which flows as a cooling medium through the annular directional nozzle 201.
- the axis of the directional nozzle 201 is directed radially inward at the angle of incidence ⁇ of approximately 20, with the result that the ray 5b2 which is set at the angle of incidence ⁇ to the central jet 5b1 is in any case fictitiously hit or cut at the interface 200b2 by the directional jet 5b.
- the Directional jet 5g of the negative pressure is deflected around the jet 5b2, which flows out of the nozzle 5a2 at a very high speed of, for example, 2000 km / h.
- the directional jet 5g does not directly meet the jet 5b of the pressure medium; rather, the directional jet 5g and the pressure medium jet 5b are essentially parallel next to one another during the oscillating oscillating movement of the nozzle head 3 around the swivel or.
- the removal or clearing effect in the impact area 209 is therefore many times greater than if only the pressure medium jets 5b, 5b 'would oscillate there and back.
- the heating without interruption of cooling forms a coating that serves as a heat shield for many types of rock, especially in the area of impact, which shows the effect of the high-energy jets 5b, 5b 'in the case of longer operation compared to the beginning of clearing when the rock is not yet very strong is heated, reduced.
- the invention can be used particularly advantageously when introducing straight or also arcuate or even circular slots in granite and the like hard rock.
- the device according to the invention can cut slots up to one meter deep into granite, so that granite blocks can be broken out much more quickly and easily than by introducing boreholes and blasting with explosives in a predetermined cuboid shape.
- the media used in the invention such as water for the high-pressure medium and air for the cooling medium, are inexpensive and the lance-shaped device offers the possibility of clearing even deep slots in the granite with a narrow design.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Forests & Forestry (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Working Measures On Existing Buildindgs (AREA)
- Polarising Elements (AREA)
- Earth Drilling (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Jet Pumps And Other Pumps (AREA)
- Paper (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Recrystallisation Techniques (AREA)
- Load-Engaging Elements For Cranes (AREA)
- Vehicle Body Suspensions (AREA)
- Laser Surgery Devices (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Auxiliary Devices For Machine Tools (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3915933A DE3915933C1 (fr) | 1989-05-16 | 1989-05-16 | |
DE3915933 | 1989-05-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0398405A1 true EP0398405A1 (fr) | 1990-11-22 |
EP0398405B1 EP0398405B1 (fr) | 1992-12-16 |
Family
ID=6380752
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90905515A Pending EP0456768A1 (fr) | 1989-05-16 | 1990-04-09 | Procede a double jet |
EP90200978A Expired - Lifetime EP0398405B1 (fr) | 1989-05-16 | 1990-04-09 | Méthode à deux jets |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90905515A Pending EP0456768A1 (fr) | 1989-05-16 | 1990-04-09 | Procede a double jet |
Country Status (13)
Country | Link |
---|---|
US (1) | US5255959A (fr) |
EP (2) | EP0456768A1 (fr) |
AT (1) | ATE83421T1 (fr) |
AU (1) | AU632325B2 (fr) |
BR (1) | BR9006867A (fr) |
CA (1) | CA2042046C (fr) |
DE (2) | DE3915933C1 (fr) |
DK (1) | DK0398405T3 (fr) |
ES (1) | ES2037518T3 (fr) |
GR (1) | GR3006737T3 (fr) |
TR (1) | TR25327A (fr) |
WO (1) | WO1990014200A1 (fr) |
ZA (1) | ZA903356B (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4128422C2 (de) * | 1991-08-27 | 1994-04-21 | Schneider Geb Loegel | Vorrichtung und Verwendung der Vorrichtung zum Abtragen von Material |
DE4306333C2 (de) * | 1993-02-24 | 1996-01-18 | I B I S Gmbh | Vorrichtung zum Herstellen von standfesten Schlitzen im Erdreich und Lockergestein |
US5498068A (en) * | 1995-02-14 | 1996-03-12 | Ingersoll-Rand Company | Non-entry mining method equipment |
DE19917611A1 (de) * | 1999-04-19 | 2000-10-26 | Abb Alstom Power Ch Ag | Verfahren zur Herstellung von Kühlluftbohrungen und Schlitzen an mit Heissgas beaufschlagten Teilen thermischer Turbomaschinen |
CA2271371C (fr) * | 1999-05-10 | 2002-01-01 | Mac & Mac Hydrodemolition Inc. | Methode et appareil d'hydrodemolition a multiple jets |
US6435620B2 (en) | 1999-07-27 | 2002-08-20 | Mac & Mac Hydrodemolition, Inc. | Multiple jet hydrodemolition apparatus and method |
US6273512B1 (en) | 1999-09-09 | 2001-08-14 | Robert C. Rajewski | Hydrovac excavating blast wand |
CN1225380C (zh) * | 2000-09-01 | 2005-11-02 | 富士胶片株式会社 | 感光材料卷的包装方法和装置以及流体加热和供应装置 |
US8814274B2 (en) * | 2004-10-27 | 2014-08-26 | Gerard J. MacNeil | Machine and method for deconstructing a vertical wall |
US8191972B2 (en) * | 2004-10-27 | 2012-06-05 | Mac & Mac Hydrodemolition Inc. | Hydrodemolition machine for inclined surfaces |
US8485279B2 (en) * | 2009-04-08 | 2013-07-16 | Pdti Holdings, Llc | Impactor excavation system having a drill bit discharging in a cross-over pattern |
US8827373B2 (en) * | 2010-02-03 | 2014-09-09 | Mac & Mac Hydrodemolition Inc. | Top-down hydro-demolition system with rigid support frame |
US20230332502A1 (en) * | 2022-04-15 | 2023-10-19 | Sidney Resources Corporation | Method and apparatus for using electro-magnetic radiation in narrow vein mining |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2548463A (en) * | 1947-12-13 | 1951-04-10 | Standard Oil Dev Co | Thermal shock drilling bit |
DE842333C (de) * | 1951-01-04 | 1952-06-26 | Rolf Huebner | Verfahren und Vorrichtung zum thermischen Bohren |
US2985050A (en) * | 1958-10-13 | 1961-05-23 | North American Aviation Inc | Liquid cutting of hard materials |
US3526162A (en) * | 1968-05-21 | 1970-09-01 | Rogers Freels & Associates Inc | Process and apparatus for cutting of non-metallic materials |
US3704914A (en) * | 1970-11-27 | 1972-12-05 | Fletcher Co H E | Method of fluid jet cutting for materials including rock and compositions containing rock aggregates |
FR2356806A1 (fr) * | 1976-06-28 | 1978-01-27 | Atlas Copco Ab | Procede et appareillage pour casser un materiau compact dur |
US4073351A (en) * | 1976-06-10 | 1978-02-14 | Pei, Inc. | Burners for flame jet drill |
US4226475A (en) * | 1978-04-19 | 1980-10-07 | Frosch Robert A | Underground mineral extraction |
EP0126268A1 (fr) * | 1983-04-27 | 1984-11-28 | Fried. Krupp Gesellschaft mit beschränkter Haftung | Dispositif pour produire de l'énergie mécanique et hydraulique agissant pulsatoirement pour le broyage de roches |
EP0146252A2 (fr) * | 1983-11-08 | 1985-06-26 | Flow Industries Inc. | Montage d'une buse de coupe à jet de fluide, à haute pression et grande vitesse, sans fuite |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB718735A (en) * | 1952-04-30 | 1954-11-17 | Victor Donald Grant | Liquid-discharge nozzles |
FR1257707A (fr) * | 1960-02-22 | 1961-04-07 | Appareil pulvérisateur perfectionné | |
US4074858A (en) * | 1976-11-01 | 1978-02-21 | Institute Of Gas Technology | High pressure pulsed water jet apparatus and process |
DE3410981C1 (de) * | 1984-03-16 | 1985-05-09 | Charles Ingwiller Loegel jun. | Verfahren und Vorrichtung zum Schneiden von Gestein |
DE3516572A1 (de) * | 1984-03-16 | 1986-11-20 | Charles Lichtenberg Loegel jun. | Verbesserte vorrichtung zum schneiden von gestein und weitere verwendungen derselben |
US4708214A (en) * | 1985-02-06 | 1987-11-24 | The United States Of America As Represented By The Secretary Of The Interior | Rotatable end deflector for abrasive water jet drill |
US4795217A (en) * | 1986-03-07 | 1989-01-03 | Hydro-Ergon Corporation | System for removing material with a high velocity jet of working fluid |
DE3739825A1 (de) * | 1987-08-11 | 1989-02-23 | Ciwj Co Int Water Jet | Vorrichtung zum schneiden, bohren oder dergleichen bearbeiten von gestein, erzen, beton oder dergleichen |
JP2668696B2 (ja) * | 1988-03-04 | 1997-10-27 | 大成建設株式会社 | アスベスト含有物の剥離・飛散防止方法 |
-
1989
- 1989-05-16 DE DE3915933A patent/DE3915933C1/de not_active Expired - Fee Related
-
1990
- 1990-04-09 AU AU54038/90A patent/AU632325B2/en not_active Ceased
- 1990-04-09 DK DK90200978.6T patent/DK0398405T3/da active
- 1990-04-09 BR BR909006867A patent/BR9006867A/pt not_active IP Right Cessation
- 1990-04-09 US US07/681,517 patent/US5255959A/en not_active Expired - Fee Related
- 1990-04-09 ES ES199090200978T patent/ES2037518T3/es not_active Expired - Lifetime
- 1990-04-09 EP EP90905515A patent/EP0456768A1/fr active Pending
- 1990-04-09 AT AT90200978T patent/ATE83421T1/de not_active IP Right Cessation
- 1990-04-09 DE DE9090200978T patent/DE59000596D1/de not_active Expired - Fee Related
- 1990-04-09 WO PCT/EP1990/000557 patent/WO1990014200A1/fr not_active Application Discontinuation
- 1990-04-09 CA CA002042046A patent/CA2042046C/fr not_active Expired - Fee Related
- 1990-04-09 EP EP90200978A patent/EP0398405B1/fr not_active Expired - Lifetime
- 1990-05-03 ZA ZA903356A patent/ZA903356B/xx unknown
- 1990-05-24 TR TR90/0549A patent/TR25327A/xx unknown
-
1993
- 1993-01-07 GR GR920402811T patent/GR3006737T3/el unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2548463A (en) * | 1947-12-13 | 1951-04-10 | Standard Oil Dev Co | Thermal shock drilling bit |
DE842333C (de) * | 1951-01-04 | 1952-06-26 | Rolf Huebner | Verfahren und Vorrichtung zum thermischen Bohren |
US2985050A (en) * | 1958-10-13 | 1961-05-23 | North American Aviation Inc | Liquid cutting of hard materials |
US3526162A (en) * | 1968-05-21 | 1970-09-01 | Rogers Freels & Associates Inc | Process and apparatus for cutting of non-metallic materials |
US3704914A (en) * | 1970-11-27 | 1972-12-05 | Fletcher Co H E | Method of fluid jet cutting for materials including rock and compositions containing rock aggregates |
US4073351A (en) * | 1976-06-10 | 1978-02-14 | Pei, Inc. | Burners for flame jet drill |
FR2356806A1 (fr) * | 1976-06-28 | 1978-01-27 | Atlas Copco Ab | Procede et appareillage pour casser un materiau compact dur |
US4226475A (en) * | 1978-04-19 | 1980-10-07 | Frosch Robert A | Underground mineral extraction |
EP0126268A1 (fr) * | 1983-04-27 | 1984-11-28 | Fried. Krupp Gesellschaft mit beschränkter Haftung | Dispositif pour produire de l'énergie mécanique et hydraulique agissant pulsatoirement pour le broyage de roches |
EP0146252A2 (fr) * | 1983-11-08 | 1985-06-26 | Flow Industries Inc. | Montage d'une buse de coupe à jet de fluide, à haute pression et grande vitesse, sans fuite |
Non-Patent Citations (1)
Title |
---|
E/MJ ENGINEERING AND MINING JOURNAL. vol. 166, no. 3, März 1965, NEW YORK US Seite 103 "NEW DRILL SUBJECTS ROCK TO 'HOT AND COLD' SHOCK " * |
Also Published As
Publication number | Publication date |
---|---|
AU632325B2 (en) | 1992-12-24 |
EP0398405B1 (fr) | 1992-12-16 |
GR3006737T3 (fr) | 1993-06-30 |
DK0398405T3 (da) | 1993-02-01 |
TR25327A (tr) | 1993-01-01 |
US5255959A (en) | 1993-10-26 |
ATE83421T1 (de) | 1993-01-15 |
DE59000596D1 (de) | 1993-01-28 |
WO1990014200A1 (fr) | 1990-11-29 |
BR9006867A (pt) | 1991-08-06 |
CA2042046C (fr) | 1994-10-18 |
AU5403890A (en) | 1990-12-18 |
EP0456768A1 (fr) | 1991-11-21 |
DE3915933C1 (fr) | 1990-11-29 |
CA2042046A1 (fr) | 1990-11-17 |
ES2037518T3 (es) | 1993-06-16 |
ZA903356B (en) | 1991-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60028949T2 (de) | Verfahren und vorrichtung zur flüssigkeitsstrahl- formung | |
EP0398405B1 (fr) | Méthode à deux jets | |
EP0582191B1 (fr) | Dispositif et procédé pour le traitement de surfaces sensibles, notamment de sculptures | |
EP0171448A1 (fr) | Dispositif et procédé pour le nettoyage de surfaces métalliques et en pierre | |
DE4341869A1 (de) | Entfernung von harten Überzügen mit Ultrahochdruck-Flachstrahlen | |
DE4341870B4 (de) | Ultrahochdruck-Flachstrahl-Düse | |
DE3739825C2 (fr) | ||
EP0375887B1 (fr) | Méthode et dispositif pour le coupage et le nettoyage d'objets, ainsi que l'enlèvement de matériau par un mélange d'eau et de particules abrasives | |
EP0168553A1 (fr) | Méthode et appareil pour le coupage de roche | |
DE102007018338B4 (de) | Vorrichtung und Verfahren zum Partikelstrahlen mittels gefrorener Gaspartikel | |
DE10393218B4 (de) | Vorrichtung zur Erzeugung eines Gas-Flüssigkeits-Gemisches im Bereich von Schrämwerkzeugen | |
DE4128422C2 (de) | Vorrichtung und Verwendung der Vorrichtung zum Abtragen von Material | |
DE69001442T2 (de) | Zerstaeubungsvorrichtung und verfahren fuer zahnaerztliche handstuecke. | |
WO2003022525A2 (fr) | Procede et dispositif de decapage | |
DE3443289C1 (de) | Verfahren zur Verminderung der Zuendung von Grubengas beim Arbeiten einer Teilschnitt-Streckenvortiebsmaschine | |
DE3334031C2 (fr) | ||
WO1989012530A1 (fr) | Ensemble d'ajutage a grand debit | |
DE4431085C1 (de) | Verfahren und Schneidkopf zum Abrasiv-Wasserstrahlschneiden | |
DE3433745C2 (de) | Vorrichtung zum Bearbeiten von Material mit einem Flüssigkeitsstrahl hoher Geschwindigkeit | |
DE2641251A1 (de) | Verfahren und vorrichtung zum brechen von hartem material, wie z.b. gestein | |
AT403761B (de) | Vorrichtung zur bearbeitung von zähnen und zahnfüllungen mit dem wasserstrahl | |
DE1901923A1 (de) | Verfahren und Vorrichtung zum Brennstrahl-Schlitzen | |
EP0528062A1 (fr) | Procédé pour couper des brames à haute vitesse | |
EP1098728A1 (fr) | Procede et dispositif pour guider et soutenir une fine tole ou un mince ruban de metal | |
CH710535A2 (de) | Hochdruckreinigungsfräse. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900809 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): GR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
XX | Miscellaneous (additional remarks) |
Free format text: VERBUNDEN MIT 90905515.4/0456768 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 24.03.92. |
|
17Q | First examination report despatched |
Effective date: 19920518 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19921216 |
|
REF | Corresponds to: |
Ref document number: 83421 Country of ref document: AT Date of ref document: 19930115 Kind code of ref document: T |
|
XX | Miscellaneous (additional remarks) |
Free format text: VERBUNDEN MIT 90905515.4/0456768 (EUROPAEISCHE ANMELDENUMMER/VEROEFFENTLICHUNGSNUMMER) DURCH ENTSCHEIDUNG VOM 24.03.92. |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19921215 |
|
REF | Corresponds to: |
Ref document number: 59000596 Country of ref document: DE Date of ref document: 19930128 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3006737 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2037518 Country of ref document: ES Kind code of ref document: T3 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT Effective date: 19930915 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940321 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19940331 Year of fee payment: 5 Ref country code: DK Payment date: 19940331 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19940428 Year of fee payment: 5 |
|
EPTA | Lu: last paid annual fee | ||
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
EAL | Se: european patent in force in sweden |
Ref document number: 90200978.6 |
|
27O | Opposition rejected |
Effective date: 19940923 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950409 Ref country code: GB Effective date: 19950409 Ref country code: DK Effective date: 19950409 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19951010 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19951012 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19951013 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19951016 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19951025 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19951031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19951102 Year of fee payment: 6 Ref country code: BE Payment date: 19951102 Year of fee payment: 6 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950409 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3006737 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19960409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960410 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960410 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960430 Ref country code: CH Effective date: 19960430 Ref country code: BE Effective date: 19960430 |
|
BERE | Be: lapsed |
Owner name: LOEGEL CHARLES Effective date: 19960430 Owner name: DURR ISABELLE Effective date: 19960430 Owner name: REICHERT SYLVIE Effective date: 19960430 Owner name: LOEGEL PATRICK Effective date: 19960430 Owner name: SCHNEIDER FRANCINE Effective date: 19960430 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19970101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90200978.6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050409 |