EP0391474B1 - Polyglycidyl polyether resins - Google Patents
Polyglycidyl polyether resins Download PDFInfo
- Publication number
- EP0391474B1 EP0391474B1 EP90200759A EP90200759A EP0391474B1 EP 0391474 B1 EP0391474 B1 EP 0391474B1 EP 90200759 A EP90200759 A EP 90200759A EP 90200759 A EP90200759 A EP 90200759A EP 0391474 B1 EP0391474 B1 EP 0391474B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- resin
- hydroxyl groups
- groups
- group
- resins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229920005989 resin Polymers 0.000 title claims description 59
- 239000011347 resin Substances 0.000 title claims description 59
- 229920000570 polyether Polymers 0.000 title claims description 23
- 239000004721 Polyphenylene oxide Substances 0.000 title claims description 19
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 23
- 239000003054 catalyst Substances 0.000 claims description 14
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims description 10
- 125000003700 epoxy group Chemical group 0.000 claims description 9
- -1 aliphatic monocarboxylic acid Chemical class 0.000 claims description 8
- 150000001491 aromatic compounds Chemical class 0.000 claims description 8
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 238000006266 etherification reaction Methods 0.000 claims description 8
- 239000008199 coating composition Substances 0.000 claims description 7
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical group CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 238000004132 cross linking Methods 0.000 claims description 4
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical group CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 claims description 4
- 239000011135 tin Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 150000002506 iron compounds Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- 239000003973 paint Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 8
- 239000002253 acid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 125000001931 aliphatic group Chemical group 0.000 description 7
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 7
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 6
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000004070 electrodeposition Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004381 Choline salt Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 229940072282 cardura Drugs 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 229940105325 3-dimethylaminopropylamine Drugs 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- 229940043237 diethanolamine Drugs 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 3
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 description 3
- 239000004922 lacquer Substances 0.000 description 3
- 150000004072 triols Chemical class 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- 239000004971 Cross linker Substances 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 2
- 229960004132 diethyl ether Drugs 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BKIMMITUMNQMOS-UHFFFAOYSA-N nonane Chemical compound CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- MQXNNWDXHFBFEB-UHFFFAOYSA-N 2,2-bis(2-hydroxyphenyl)propane Chemical compound C=1C=CC=C(O)C=1C(C)(C)C1=CC=CC=C1O MQXNNWDXHFBFEB-UHFFFAOYSA-N 0.000 description 1
- IIZIEICGBLMRPT-UHFFFAOYSA-N 2,8-diethylnonane-1,9-diol Chemical compound CCC(CO)CCCCCC(CC)CO IIZIEICGBLMRPT-UHFFFAOYSA-N 0.000 description 1
- YURQLUXJGMVKDT-UHFFFAOYSA-N 2-(hydroxymethyl)-2-octylpropane-1,3-diol Chemical compound CCCCCCCCC(CO)(CO)CO YURQLUXJGMVKDT-UHFFFAOYSA-N 0.000 description 1
- RGYWFOIJCIWCHB-UHFFFAOYSA-N 3-(hydroxymethyl)-2-propylpentane-1,5-diol Chemical compound CCCC(CO)C(CO)CCO RGYWFOIJCIWCHB-UHFFFAOYSA-N 0.000 description 1
- WFAMKNJHMZBMHR-UHFFFAOYSA-N 4-propylheptane-1,7-diol Chemical compound OCCCC(CCC)CCCO WFAMKNJHMZBMHR-UHFFFAOYSA-N 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 229910021627 Tin(IV) chloride Inorganic materials 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical class Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/44—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
- C09D5/4419—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
- C09D5/443—Polyepoxides
- C09D5/4434—Polyepoxides characterised by the nature of the epoxy binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/04—Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
- C08G59/245—Di-epoxy compounds carbocyclic aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D163/00—Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
Definitions
- the invention relates to aromatic polyglycidyl polyether resins, a process for preparing them, and to coating compositions comprising them.
- aromatic polyglycidyl polyether resins that are currently available on the market are prepared by reacting a polyhydric aromatic compound, in particular 2,2-bis(4-hydroxyphenyl)propane (BPA), with epichlorohydrin.
- BPA 2,2-bis(4-hydroxyphenyl)propane
- This glycidation reaction in the event of employing BPA, normally proceeds to produce resins having the schematic formula I: in which G stands for glycidyl and BA stands for the group resulting from the removal of both hydroxyl groups from the polyhydric aromatic compound BPA.
- the average value of n can be varied in the range of from 0 to 18.
- EPIKOTE 828 1001, 3003, 1007 and 1009
- EPIKOTE is a registered trade name
- typical average values of n are 0.1, 2, 4, and 12. It follows from the above formula that the number of BA units and secondary hydroxyl groups in the resin molecule equals n + 1 and n, respectively.
- the reactivity of the glycidyl group can be used to produce modified resins.
- resins may be obtained of the schematic formulae II, III and IV: EP-HD-EP (II) EP-TMP-EP (III) TMP- (EP) 3 (IV) in which HD stands for the hexanediol moiety, TMP for the trimethylolpropane moiety and EP for the resin moiety marked in formula (I) above, in which now one glycidyl group has been converted into a bridging group "-O-CH 2 -CHOH-CH 2 -".
- the present invention aims at introducing flow improving moieties whilst avoiding substantial reduction of the number of glycidyl groups per molecule.
- the invention seeks to solve the problem of how to introduce glycidylester moieties of C 5-18 branched aliphatic acids (such as CARDURA E10, registered trade name) by selective reaction with primary or secondary hydroxyl groups in the polyglycidyl polyether molecules.
- the invention provides a process for preparing an aromatic polyglycidyl polyether resin represented by the schematic formula V: in which G stands for glycidyl, BA stands for the group resulting from the removal of both hydroxyl groups from a dihydric aromatic compound, n has a value of from 0.1 to 18 and wherein from 5 to 95 % of the -OR groups have the general formula -O-CH 2 -CHOH-CH 2 -O-C(O)-R', in which R' is a branched C 4-17 alkyl group, the remainder of the -OR groups being hydroxyl groups, wherein an epoxy compound (A) is reacted with one or more hydroxyl groups contained in a polyglycidyl polyether (B) of a polyhydric aromatic compound in the presence of an etherification catalyst (C), in which (A) is a glycidylester of a C 5-18 branched aliphatic monocarboxylic acid, (B) is a polyglycid,
- novel resins are novel resins.
- the invention is also concerned with novel aromatic polyglycidyl polyether resins represented by the schematic formula V: in which G stands for glycidyl, BA stands for the group resulting from the removal of both hydroxyl groups from a dihydric aromatic compound, n has a value of from 0.1 to 18 and wherein from 5 to 95 % of the -OR groups have the general formula -O-CH 2 -CHOH-CH 2 -O-C(O)-R', in which R' is a branched C 4-17 alkyl group, the remainder of the -OR groups being hydroxyl groups.
- Preferred novel resins produced in this invention are resins wherein at most 75 % of the -OR groups are hydroxyl groups.
- the improvement in flow and viscosity is most striking in resins having an EGC of at most 2.5 meq/g, i.e., resins that would normally have been very viscous or solid, and these novel resins are consequently particularly preferred.
- Most preferred novel resins are resins schematic represented by formula V wherein n has an average value of from 1.5 to 4.5.
- suitable novel resins are aromatic polyglycidyl polyethers having the schematic formulae II, III, or IV: EP-HD-EP (II) EP-TMP-EP (III) TMP- (EP) 3 (IV) in which HD stands for an aliphatic dihydric moiety, preferably a hexanediol moiety, TMP for an aliphatic trihydric moiety, preferably a trimethylolpropane moiety and EP for the resin moiety marked in formula V, in which now one glycidyl group has been converted into a bridging group -O-CH 2 -CHOH-CH 2 -.
- the aliphatic di- or trihydric moieties are preferably derived from aliphatic di- or triols having 3 to 18 carbon atoms per molecule. Most preferred novel resins stem from a branched di- or triol, the latter being most preferred. Examples of some preferred diols are 1,2-ethanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 4-propyl-1,7-heptanediol, or 3,9-dimethylol-undecane.
- triols examples include 1,1,1-trimethylolpropane, 1,1,1-trimethylolnonane, 3,4-dimethylol-1-heptanol.
- Suitable di- or triols are also the ethylene oxide modified derivatives of the compounds above, however with the proviso that the amount of carbon atoms per molecule does not exceed 18.
- the utmost preferred class of novel resins are any of the above resins wherein the parent polyhydric aromatic compound is a bis(hydroxyphenyl)propane, preferably 2,2-bis(4-hydroxyphenyl)propane.
- the glycidylester of the monocarboxylic acid R′-COOH may suitably be any or a mixture of the glycidylesters of C 5-18 branched aliphatic acids.
- R′ represents the alkyl groups present in a mixture of glycidylesters of C 9-11 branched aliphatic acids commercially known as CARDURA E10.
- Suitable etherification catalysts include halides, and salts of alkanoic and naphtenic acids, particularly of those having in the range of from 2 to 30 carbon atoms per molecule.
- Very suitable catalysts are tin, zinc or iron chlorides, tin or zinc alkanoates, dibutyltin dialkanoates, and iron salts of naphtenic acids.
- Preferred catalysts are tin dioctoate, tin dichloride, dibutyltin dilaurate and tin tetrachloride, the former being most preferred.
- the relative amount of starting material is such that the final resin contains essentially no free glycidylester.
- the preferred relative amount, as expressed by the equivalent ratio of glycidylester versus hydroxyl group preferably is less or equal to 1:1.
- the catalyst may be employed at relatively low amounts and low reaction temperatures. Thus, addition of 0.01 to 0.4% m/m of catalyst while heating the reaction mixture to a temperature in the range of from 100 to 200 °C is adequate. Particularly suitable amounts of catalyst range from 0.03 to 1.0% m/m, most preferred amounts range from 0.05 to 0.25% m/m.
- the reaction may be carried out at a temperature in the range of from 115 to 225 °C, and is preferably effected at temperatures of from 130 to 175 °C.
- the process according to the invention may be carried out in the presence of a suitable non-reactive solvent, for example hydrocarbons such as octane, nonane, decane, toluene, the three xylenes, ethylbenzene or isopropylbenzene; ethers such as 1,4-dioxane, diethylether of ethylene glycol, diethylether of diethylene glycol; and chlorinated hydrocarbons such as monochlorobenzene.
- hydrocarbons such as octane, nonane, decane, toluene, the three xylenes, ethylbenzene or isopropylbenzene
- ethers such as 1,4-dioxane, diethylether of ethylene glycol, diethylether of diethylene glycol
- chlorinated hydrocarbons such as monochlorobenzene.
- the favourable properties of the resins according to the invention offer good possibilities for application of said resins in powder coatings, ambient cure paints, stoving enamels, and either anionic or cathodic electrodeposition coatings.
- the novel resins of the present invention are first modified with an acid or a base (such as an amine), neutralized, and then applied together with a suitable cross-linking agent.
- Attractive cross-linking resins for curable coating systems are for example those disclosed in European patent application Nos. 244,897 and 281,213.
- Particularly suitable cross-linking agents are the ambient curing amines, reactive isocyanates and thiols, as well as the high temperature curing aminoplast-type resins, such as alkoxylated reaction products of formaldehyde with melamine or benzoguanamide.
- Other suitable cross-linking agents include urea-aldehyde resins, phenolaldehyde resins, bisphenolic or anhydride curing agents, polycarboxylic compounds, dicyandiamide and blocked polyisocyanates.
- Suitable catalysts which may be employed in the curable coating compositions are acids such as orthophosphoric acid or p-toluenesulphonic acid. These catalysts may be used in an amount in the range of from, for example, 0.05 to 2% by weight, calculated on polyether and cross-linking resin.
- the relative proportions of polyether resin and curing agent are those generally employed in the curable binders, typically of from 5 to 50% by weight, calculated on the total of polyether resin and cross-linking resin.
- the curable coating composition can be applied by a variety of methods as known in the art, for example by spraying, dipping or roller coating. Other applications such as in laminates, or castings are also possible.
- the resins may be blended with conventional solvents such as aliphatic or aromatic hydrocarbons, however, since the low viscosity of the novel resins and the improved flow capacity, the solvent content may be very low. Thus a lowering of at least 23% w/w of solvent in the curable coating compositions can be achieved with coating and deposition characteristics similar to or better than the standard coating compositions. Even solvent free formulations are envisaged by use of the novel resins of the present invention.
- Pigments, fillers, dispersing agents and other components known for coating formulations may be added to the curable binder system comprising the polyethers made in accordance with the process of this invention. The invention will be further understood from the following examples.
- a hexanediamine-CARDURA E10 adduct (“HD-2CE10") was prepared in a one-litre reactor equipped with stirrer, thermocouple, dropping funnel and nitrogen blanketing. 116 g (1 mole) of 1,6-hexanediamine was melted and heated to 100-110 °C, and 500 g (2 eq) of CE10 was gradually added (30-60 minutes) while the temperature was maintained. After addition had been completed heating was continued at 110 °C untill the combined epoxy and amine content was below 3.30 meq/g. This took about one hour.
- a binder (i) was prepared in accordance with the procedure as described in example 2(A), however using 310.5 g (0.504 eq) of HD-2CE10 instead of EOLA, and using an amount of ButylOXITOL in % w/w as indicated in table 4.
- a binder (ii) was prepared using the above procedure and 887.1 g (1.5 eq) of E1001-CE10, instead of 237.5 g (0.5 eq) of E1001 and 591.4 g (1.0 eq) of E1001-CE10. Paint formulations were prepared analogous to the procedure set out in 2(D), and were thereafter applied according to the procedure set out in 2(E). Film characteristics using these paint formulations are summarized in table 4 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Epoxy Resins (AREA)
- Paints Or Removers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
- The invention relates to aromatic polyglycidyl polyether resins, a process for preparing them, and to coating compositions comprising them.
- The majority of aromatic polyglycidyl polyether resins that are currently available on the market are prepared by reacting a polyhydric aromatic compound, in particular 2,2-bis(4-hydroxyphenyl)propane (BPA), with epichlorohydrin. This glycidation reaction, in the event of employing BPA, normally proceeds to produce resins having the schematic formula I:
- The reactivity of the glycidyl group can be used to produce modified resins. For instance, by etherification with aliphatic diols such as hexanediol, or with aliphatic triols such as trimethylolpropane, resins may be obtained of the schematic formulae II, III and IV:
EP-HD-EP (II)
EP-TMP-EP (III)
TMP- (EP)3 (IV)
in which HD stands for the hexanediol moiety, TMP for the trimethylolpropane moiety and EP for the resin moiety marked in formula (I) above, in which now one glycidyl group has been converted into a bridging group "-O-CH2-CHOH-CH2-". It will be clear that the etherification reactions yielding products (II) and (III) have led to the introduction of two additional secondary hydroxyl groups into the resin molecule, to a marked increase of the molecular weight whilst leaving the number of epoxy groups per molecule substantially unchanged, and (by definition) to a marked reduction of the epoxy group content (EGC). In product (IV) three additional secondary hydroxyl groups have been introduced. Furthermore, since in the product (III) only two of the three methylol groups of TMP have reacted with a glycidyl group, the third methylol group is left unchanged and it follows that in product (III) also a primary hydroxyl group has been introduced into the resin molecule. - An important outlet of polyglycidyl polyether resins is in the field of surface coatings, for example electrodeposition coatings. For surface coatings good flow properties and low viscosities of the components are important issues. Improved flow properties result in smoother surface coatings, lower viscosities allow higher solids contents, less solvents and/or easier application. In cathodic electrodeposition improved flow and lower viscosities of resin or binder molecules are important issues for: Primo: a better flow allows a smoother surface in film coatings. Secundo: lower viscosity allows high solids contents in the final binders. The viscosity has to be low enough to allow the formulation of a paint, however, the organic solvent provides some of the flow during stoving. A better inherent flow of the binder would therefore compensate for the lower solvent content. Low viscosity combined with improved flow could eventually lead to organic solvent-free binders and related paints. In this respect reference is made to EP-A-000 086.
- The present invention aims at introducing flow improving moieties whilst avoiding substantial reduction of the number of glycidyl groups per molecule. In particular, the invention seeks to solve the problem of how to introduce glycidylester moieties of C5-18 branched aliphatic acids (such as CARDURA E10, registered trade name) by selective reaction with primary or secondary hydroxyl groups in the polyglycidyl polyether molecules.
- To this end the invention provides a process for preparing an aromatic polyglycidyl polyether resin represented by the schematic formula V:
- The products of this preparation process are novel resins. Thus, the invention is also concerned with novel aromatic polyglycidyl polyether resins represented by the schematic formula V:
- Surprisingly it was found that, by proper choice of the etherification catalyst, reaction was possible between the epoxy group of the glycidylester with one or more primary or secondary hydroxyl groups contained in the polyglycidyl polyether, without causing the unwanted side-reactions of the epoxy group of the polyglycidyl polyether with any of the hydroxyl groups present and of the epoxy group in reactant A with those in reactant B. As a result, resins were obtained showing a decrease in EGC, and increase in average molecular weight, in line with no more than the introduction of the glycidylester moiety per reacted primary or secondary hydroxyl group. The inherent flow capacity of the polyglycidyl polyethers is substantially enhanced. Moreover, when allowing for excess of primary or secondary hydroxyl groups relative to the glycidylester moiety and for substantially complete conversion of the latter, free glycidylester and products of side-reactions were not detected (gel permeation chromatography), clearly indicating the selective performance of the etherification catalyst. Lastly, the products had a viscosity (in Pa.s) lower than that of unmodified polyglycidyl polyethers of equal EGC, which favourably improves the applicability of these novel resins.
- Preferred novel resins produced in this invention are resins wherein at most 75 % of the -OR groups are hydroxyl groups. The improvement in flow and viscosity is most striking in resins having an EGC of at most 2.5 meq/g, i.e., resins that would normally have been very viscous or solid, and these novel resins are consequently particularly preferred. Most preferred novel resins are resins schematic represented by formula V wherein n has an average value of from 1.5 to 4.5.
- Alternatively, suitable novel resins are aromatic polyglycidyl polyethers having the schematic formulae II, III, or IV:
EP-HD-EP (II)
EP-TMP-EP (III)
TMP- (EP)3 (IV)
in which HD stands for an aliphatic dihydric moiety, preferably a hexanediol moiety, TMP for an aliphatic trihydric moiety, preferably a trimethylolpropane moiety and EP for the resin moiety marked in formula V, in which now one glycidyl group has been converted into a bridging group -O-CH2-CHOH-CH2-. The aliphatic di- or trihydric moieties are preferably derived from aliphatic di- or triols having 3 to 18 carbon atoms per molecule. Most preferred novel resins stem from a branched di- or triol, the latter being most preferred. Examples of some preferred diols are 1,2-ethanediol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 4-propyl-1,7-heptanediol, or 3,9-dimethylol-undecane. Examples of some preferred triols are 1,1,1-trimethylolpropane, 1,1,1-trimethylolnonane, 3,4-dimethylol-1-heptanol. Suitable di- or triols are also the ethylene oxide modified derivatives of the compounds above, however with the proviso that the amount of carbon atoms per molecule does not exceed 18. - The utmost preferred class of novel resins, are any of the above resins wherein the parent polyhydric aromatic compound is a bis(hydroxyphenyl)propane, preferably 2,2-bis(4-hydroxyphenyl)propane.
- The glycidylester of the monocarboxylic acid R′-COOH may suitably be any or a mixture of the glycidylesters of C5-18 branched aliphatic acids. Preferably R′ represents the alkyl groups present in a mixture of glycidylesters of C9-11 branched aliphatic acids commercially known as CARDURA E10.
- Suitable etherification catalysts include halides, and salts of alkanoic and naphtenic acids, particularly of those having in the range of from 2 to 30 carbon atoms per molecule. Very suitable catalysts are tin, zinc or iron chlorides, tin or zinc alkanoates, dibutyltin dialkanoates, and iron salts of naphtenic acids. Preferred catalysts are tin dioctoate, tin dichloride, dibutyltin dilaurate and tin tetrachloride, the former being most preferred.
- Preferably the relative amount of starting material is such that the final resin contains essentially no free glycidylester. Hence, the preferred relative amount, as expressed by the equivalent ratio of glycidylester versus hydroxyl group preferably is less or equal to 1:1.
- The catalyst may be employed at relatively low amounts and low reaction temperatures. Thus, addition of 0.01 to 0.4% m/m of catalyst while heating the reaction mixture to a temperature in the range of from 100 to 200 °C is adequate. Particularly suitable amounts of catalyst range from 0.03 to 1.0% m/m, most preferred amounts range from 0.05 to 0.25% m/m. The reaction may be carried out at a temperature in the range of from 115 to 225 °C, and is preferably effected at temperatures of from 130 to 175 °C.
- If desired, the process according to the invention may be carried out in the presence of a suitable non-reactive solvent, for example hydrocarbons such as octane, nonane, decane, toluene, the three xylenes, ethylbenzene or isopropylbenzene; ethers such as 1,4-dioxane, diethylether of ethylene glycol, diethylether of diethylene glycol; and chlorinated hydrocarbons such as monochlorobenzene. Alcohols, aldehydes, ketones and the like are considered less suitable since they may form undesired by-products.
- The favourable properties of the resins according to the invention offer good possibilities for application of said resins in powder coatings, ambient cure paints, stoving enamels, and either anionic or cathodic electrodeposition coatings. For the latter coatings the novel resins of the present invention are first modified with an acid or a base (such as an amine), neutralized, and then applied together with a suitable cross-linking agent.
- Attractive cross-linking resins for curable coating systems are for example those disclosed in European patent application Nos. 244,897 and 281,213. Particularly suitable cross-linking agents are the ambient curing amines, reactive isocyanates and thiols, as well as the high temperature curing aminoplast-type resins, such as alkoxylated reaction products of formaldehyde with melamine or benzoguanamide. Other suitable cross-linking agents include urea-aldehyde resins, phenolaldehyde resins, bisphenolic or anhydride curing agents, polycarboxylic compounds, dicyandiamide and blocked polyisocyanates. Suitable catalysts which may be employed in the curable coating compositions are acids such as orthophosphoric acid or p-toluenesulphonic acid. These catalysts may be used in an amount in the range of from, for example, 0.05 to 2% by weight, calculated on polyether and cross-linking resin.
- The relative proportions of polyether resin and curing agent are those generally employed in the curable binders, typically of from 5 to 50% by weight, calculated on the total of polyether resin and cross-linking resin.
- The curable coating composition can be applied by a variety of methods as known in the art, for example by spraying, dipping or roller coating. Other applications such as in laminates, or castings are also possible. The resins may be blended with conventional solvents such as aliphatic or aromatic hydrocarbons, however, since the low viscosity of the novel resins and the improved flow capacity, the solvent content may be very low. Thus a lowering of at least 23% w/w of solvent in the curable coating compositions can be achieved with coating and deposition characteristics similar to or better than the standard coating compositions. Even solvent free formulations are envisaged by use of the novel resins of the present invention. Pigments, fillers, dispersing agents and other components known for coating formulations may be added to the curable binder system comprising the polyethers made in accordance with the process of this invention. The invention will be further understood from the following examples.
-
- (A) EPIKOTE 828 ("E828") and TMP were charged at an epoxy group/primary hydroxyl group ratio of 4/3 (eq./eq.) to a suitable glass reactor equipped with anchor stirrer, reflux condenser and thermocouple. The ingredients are heated to 100 °C and catalyst tin dioctoate (0.25 % m/m) is added. The etherification was carried out at 170 °C, in the absence of a solvent. The course of reaction was followed by taking samples at regular intervals and determining the EGC value. The reaction was stopped by rapid cooling at the moment when 2 of the 3 hydroxyl groups of TMP had been converted leaving an EGC of 2.15 meq.g-1. The resin so obtained is marked EP-TMP-EP in table 1 below.
- (B) The experiments were carried out in a 1 litre glass reactor equipped with a stainless steel stirrer, nitrogen inlet, heating mantle, a thermocouple and a reflux condenser. The resins marked in the first column of table 1 were charged into the reactor and heated to a temperature of 145-160 °C. The catalyst was added to a glycidylester (CARDURA E10; hereinafter "CE10") and this solution was introduced into the reactor. Then, the reactor was heated to the desired reaction temperature. The reaction was stopped by cooling when EGC had decreased to 1.94. Experimental data are summarized in table 1.
- (C) Modified EPIKOTE 1001 was further evaluated and compared with unmodified EPIKOTE 1001. Thereto, lacquer formulations were made comprising in a stochiometric ratio of one epoxy group per active amino hydrogen atom the epoxy resin in a 75% m/m solids solution in xylene, and an amine curing agent. The amine curing agent was a 55% m/m solids solution of an E1001/diamine adduct (1 epoxy equivalent per mole amine) in 1:1 MethylPROXITOL/xylene (MethylPROXITOL is a registered trade name).
The clear lacquer was applied onto a bare steel panel in a dry film thickness of approximately 35 µm. The panel was cured at ambient temperature (23 °C) for 7 days, after which relevant lacquer properties were assessed (table 2). It was remarked that the film formation of the modified resin was better than that of the unmodified resin. -
- (A) In a 3-litre reactor equipped with stirrer, reflux condenser and thermocouple, a binder was prepared. Thereto 237.5 g (0.5 eq) of E1001, 591.4 g (1.0 eq) of E1001-CE10 and 296.4 g of ButylOXITOL (registered trade name) were heated to 120 °C until a homogeneous solution was formed. After cooling to 60 °C 52.6 g (0.504 eq) of diethanol amine (DEOLA) was added. The solution was then stirred at 60 ± 2 °C (exotherm, cooling is required) until the combined epoxy and amine content is 1.49 meq/g solution, indicating complete addition of the amine to the epoxy groups. This required between 30 and 60 minutes at 60 °C. Immediately thereafter a mixture of 25.5 g (0.504 eq) of 3-dimethylaminopropylamine (DMAP), 15.3 g (0.504 eq) of ethanolamine (EOLA), and 98.8 g of ButylOXITOL were added. The temperature was brought to 80 °C and the mass was allowed to react at a temperature between 80 °C and 90°C for one hour. Finally, the mass was heated to 120 °C for another hour. The clear resin solution had a solids content of 70.0% and a combined epoxy and amine content of 1.34 meq/g solution.
- (B) The above procedure was repeated for comparison, however using 708.9 g (1.5 eq) of E1001, 53.7 g (0.510 eq) of DEOLA, 26.1 g (0.510 eq) of DMAP, 15.6 g (0.510 eq) of EOLA, and 258.5 g plus 86.2 g of ButylOXITOL.
- (C) A polyester crosslinker was prepared, charging 768 g (4 mole) trimellitic anhydride and 2000 g (8 mole) CE10 to a 5-litre reactor equipped with stirrer, thermocouple, reflux condenser and cooling facilities (air blowing was sufficient). The mass was slowly heated to 90-100 °C when a exotherm reaction started. The heating source was removed and the temperature was allowed to rise to 190-195 °C exothermically (air cooling applied). The mass was kept at 190-195 °C for about 15 minutes, the clear product was allowed to cool to 140 °C, and 2.73 g (3 ml) N.N-dimethylbenzylamine was added. The mass was stirred at 140-145 °C until the acid value is less 3 mg KOH/g. If the acid value was still too high after a reaction time of one hour, and if the epoxy content was then already below 0.05 meq/g, an extra amount of CE10, equivalent to the remaining acid content was added. The reaction was then continued until the acid value was below 3 mg KOH/g. The product was then thinned with ButylOXITOL and cooled to room temperature at once. The solids content was 70%.
- (D) Paint formulations were prepared by blending 163.7 g of either binder (A) or (B), with 60.9 g of the polyester crosslinker, and 3.1 g lead siccatol (33% Pb) at room temperature. 8.2 g of lactic acid (90% in H2O) was added to the mixture and mixed homogeneously. The hazy-milky mixtures were diluted with 392.9 g demineralized water until milky solutions with a solids content of approximately 25% were obtained. To prevent phase separation, these solutions were stirred during storage.
- (E) The paint formulations were applied to a panel using different application voltages, and curing the paint formulations for 30 minutes at 160 °C. The CE10-modified paint formulation showed an improved flow, whereas the film had a lower roughness. Film characteristics are summarized in table 3.
-
(A) A hexanediamine-CARDURA E10 adduct ("HD-2CE10") was prepared in a one-litre reactor equipped with stirrer, thermocouple, dropping funnel and nitrogen blanketing. 116 g (1 mole) of 1,6-hexanediamine was melted and heated to 100-110 °C, and 500 g (2 eq) of CE10 was gradually added (30-60 minutes) while the temperature was maintained. After addition had been completed heating was continued at 110 °C untill the combined epoxy and amine content was below 3.30 meq/g. This took about one hour.
(B) A binder (i) was prepared in accordance with the procedure as described in example 2(A), however using 310.5 g (0.504 eq) of HD-2CE10 instead of EOLA, and using an amount of ButylOXITOL in % w/w as indicated in table 4. In addition, a binder (ii) was prepared using the above procedure and 887.1 g (1.5 eq) of E1001-CE10, instead of 237.5 g (0.5 eq) of E1001 and 591.4 g (1.0 eq) of E1001-CE10. Paint formulations were prepared analogous to the procedure set out in 2(D), and were thereafter applied according to the procedure set out in 2(E). Film characteristics using these paint formulations are summarized in table 4 below.Table 2 Characteristics CE10-modified EPIKOTE 1001 unmodified EPIKOTE 1001 Solution viscosity, (Pa.s) 4.9 13.2 Film appearance slight ciss excellent MEK resistance (50 double rubs) slightly soft very slightly soft Adhesion cross hatch (ASTM D2197-86) pass pass Gitterschnitt (DIN 53 151) Gt 0 Gt 0 Impact strength (cm.kg) direct 92 >92 reversed 81-86 92 Table 3 Layer thickness in µm (A) CE10-modified EPIKOTE 1001 (B) unmodified EPIKOTE 1001 18 good very poor 22 fair very poor 28 fair-poor very poor Table 4 Binder Layer thickness in µm application voltage ButylOXITOL % w/w Film appearance smoothness (i) 20 138 6.4 very good (ii) 20 81 6.4 very good (ii) 20 108 4.9 very good
Claims (7)
- An aromatic polyglycidyl polyether resin represented by the schematic formula V:
- A resin as claimed in claim 1, wherein at most 75% of the -OR groups are hydroxyl groups.
- A resin as claimed in claim 1 or 2, wherein the aromatic polyglycidylether resin has an epoxy group content of at most 2.5 meq/g.
- A resin as claimed in any of claims 1 to 3, wherein n has an average value of from 1.5 to 4.5.
- An aromatic polyglycidyl polyether resin represented by the schematic formulae II, III, or IV:
EP-HD-EP (II)
EP-TMP-EP (III)
TMP- (EP)3 (IV)
in which HD stands for a hexanediol moiety, TMP for a trimethylolpropane moiety and EP for the resin moiety marked in formula V in claim 1, in which one glycidyl group has been converted into a bridging group -O-CH2-CHOH-CH2-. - A process for preparing a resin as claimed in any one of claims 1 to 4, wherein a glycidylester of a C5-18 branched aliphatic monocarboxylic acid is reacted with one or more hydroxyl groups contained in a polyglycidyl polyether of a polyhydric aromatic compound in the presence of a tin, zinc or iron compound etherification catalyst, in which the polyglycidyl polyether is represented by the schematic formula V in which R is a hydrogen atom, and the other variables are defined as hereinbefore.
- A curable coating composition comprising a polyether resin as claimed in any one of claims 1 to 5 and a cross-linking resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB898907487A GB8907487D0 (en) | 1989-04-03 | 1989-04-03 | Polyglycidyl polyether resins and process for preparing the same |
GB8907487 | 1989-04-03 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0391474A2 EP0391474A2 (en) | 1990-10-10 |
EP0391474A3 EP0391474A3 (en) | 1992-05-27 |
EP0391474B1 true EP0391474B1 (en) | 1996-08-28 |
Family
ID=10654385
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90200759A Expired - Lifetime EP0391474B1 (en) | 1989-04-03 | 1990-03-28 | Polyglycidyl polyether resins |
Country Status (9)
Country | Link |
---|---|
US (1) | US5098966A (en) |
EP (1) | EP0391474B1 (en) |
JP (1) | JP2788982B2 (en) |
KR (1) | KR0177798B1 (en) |
AU (1) | AU637604B2 (en) |
CA (1) | CA2013295C (en) |
DE (1) | DE69028234T2 (en) |
ES (1) | ES2090086T3 (en) |
GB (1) | GB8907487D0 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1338614C (en) * | 1988-06-22 | 1996-09-24 | Michael B. Cavitt | Monocarboxylic acid derivatives of aromatic based epoxy resins |
US5569733A (en) * | 1994-03-31 | 1996-10-29 | Ppg Industries, Inc. | Tertiary aminourea compositions and their use as catalysts in curable compositions |
EP2920224A4 (en) * | 2012-11-16 | 2016-06-15 | Blue Cube Ip Llc | Epoxy resin compositions |
CN110483723B (en) * | 2019-07-25 | 2021-08-03 | 南通万顺化工科技有限公司 | Treating agent carrier resin for synthetic leather and preparation method thereof |
US20220289908A1 (en) * | 2019-08-01 | 2022-09-15 | Hercules Llc | Synthetic thickeners incorporating non-reactive diluents |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US457523A (en) * | 1891-08-11 | Hanger for wringing-machines | ||
EP0000086B1 (en) * | 1977-06-13 | 1982-04-14 | Shell Internationale Researchmaatschappij B.V. | Resin binders containing amino groups and process for their preparation |
US4246089A (en) * | 1979-11-30 | 1981-01-20 | E. I. Du Pont De Nemours And Company | Graft copolymer useful in electrodeposition |
GB8611013D0 (en) * | 1986-05-06 | 1986-06-11 | Shell Int Research | Polyether resin |
DE3628121A1 (en) * | 1986-08-19 | 1988-03-03 | Herberts Gmbh | FOREIGN CROSSLINKING COMBINATION OF BINDERS FOR WATER-DISCOVERABLE VARNISHES, CATHODICALLY DEPOSITABLE ELECTRO-SUBSTRATE COATINGS AND THE USE THEREOF |
GB8705264D0 (en) * | 1987-03-06 | 1987-04-08 | Shell Int Research | Preparation of modified epoxy resin |
US4920182A (en) * | 1987-12-18 | 1990-04-24 | Ciba-Geigy Corporation | Epoxy resin compositions containing polyester flexibilizer and metallocene complex initiator |
CA1338614C (en) * | 1988-06-22 | 1996-09-24 | Michael B. Cavitt | Monocarboxylic acid derivatives of aromatic based epoxy resins |
JP4529673B2 (en) | 2004-12-21 | 2010-08-25 | コニカミノルタビジネステクノロジーズ株式会社 | Image forming apparatus |
-
1989
- 1989-04-03 GB GB898907487A patent/GB8907487D0/en active Pending
-
1990
- 1990-03-23 US US07/498,054 patent/US5098966A/en not_active Expired - Fee Related
- 1990-03-28 EP EP90200759A patent/EP0391474B1/en not_active Expired - Lifetime
- 1990-03-28 DE DE69028234T patent/DE69028234T2/en not_active Expired - Fee Related
- 1990-03-28 ES ES90200759T patent/ES2090086T3/en not_active Expired - Lifetime
- 1990-03-29 CA CA002013295A patent/CA2013295C/en not_active Expired - Fee Related
- 1990-04-02 AU AU52521/90A patent/AU637604B2/en not_active Ceased
- 1990-04-02 KR KR1019900004685A patent/KR0177798B1/en not_active Expired - Fee Related
- 1990-04-03 JP JP2087630A patent/JP2788982B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5098966A (en) | 1992-03-24 |
JPH02286710A (en) | 1990-11-26 |
AU637604B2 (en) | 1993-06-03 |
KR0177798B1 (en) | 1999-05-15 |
AU5252190A (en) | 1990-10-04 |
EP0391474A3 (en) | 1992-05-27 |
KR900016312A (en) | 1990-11-13 |
DE69028234T2 (en) | 1997-02-20 |
DE69028234D1 (en) | 1996-10-02 |
JP2788982B2 (en) | 1998-08-20 |
ES2090086T3 (en) | 1996-10-16 |
CA2013295C (en) | 2000-12-05 |
CA2013295A1 (en) | 1990-10-03 |
EP0391474A2 (en) | 1990-10-10 |
GB8907487D0 (en) | 1989-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3931109A (en) | Process for coating substrates with high molecular weight epoxy resins | |
US7432333B2 (en) | Powder coating of amino-urea or urethane catalyst and epoxy/hydroxy and/or siloxane resin | |
US3756984A (en) | Epoxy imidazole adducts as curing agents for epoxy resins | |
US4997907A (en) | Curable powder mixtures | |
US4322456A (en) | Process for coating substrates with high molecular weight epoxy resins | |
US4417033A (en) | Diglycidyl ether of dimethanol cyclohexane and reaction products thereof | |
CN103597019A (en) | Water-based amine curing agents for curable resin systems | |
TW201213457A (en) | Powder coatings compositions | |
US5523336A (en) | Aqueous, one-component coating composition and use thereof in processes for repair lacquer coating of plastic substrates | |
JPH026786B2 (en) | ||
EP0391474B1 (en) | Polyglycidyl polyether resins | |
US6555628B2 (en) | Epoxy resins and process for making the same | |
JPH09111099A (en) | Emulsifier system for water-dilutable epoxy resin systems with end-of-life indication | |
JP3375160B2 (en) | Aqueous epoxy resin curable composition | |
US4801662A (en) | Monoisocyanate capped epoxy resins | |
AU750711B2 (en) | Epoxy functional polyester resins having an increased molecular weight, process for their preparation, and outdoor durable coating compositions comprising them | |
EP3874001B1 (en) | Low bake powder coating resins | |
AU604855B2 (en) | Process for the preparation of a modified epoxy resin | |
EP0005562A2 (en) | Phenolic compounds, their preparation, and use as curing agents for epoxy resins | |
US3963686A (en) | Heat-curable pulverulent coating agent consisting of a mixture of compounds containing glycidyl groups, dicarboxylic acid anhydrides, curing accelerators, flow control agents and optionally further customary additives | |
US5137987A (en) | Thermosettable polyol resins | |
CA1317399C (en) | Powdered lacquer, its manufacture and use | |
JP2002348530A (en) | Curing agent and coating composition for thermosetting coating | |
CA1161858A (en) | Polyglycidyl ethers of diphenylol alkanes, preparation and use in curable compositions | |
CA2158529A1 (en) | Curable pulverulent mixtures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19920923 |
|
17Q | First examination report despatched |
Effective date: 19950306 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE ES FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69028234 Country of ref document: DE Date of ref document: 19961002 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2090086 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2090086 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19961128 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19991126 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000218 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20000321 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20000327 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000403 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20000531 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20010320 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20011001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020331 |
|
BERE | Be: lapsed |
Owner name: *SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V. Effective date: 20020331 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20030303 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050328 |