EP0390702A2 - Mold panel unit and spring-water processing structure using mold panel units - Google Patents
Mold panel unit and spring-water processing structure using mold panel units Download PDFInfo
- Publication number
- EP0390702A2 EP0390702A2 EP19900400888 EP90400888A EP0390702A2 EP 0390702 A2 EP0390702 A2 EP 0390702A2 EP 19900400888 EP19900400888 EP 19900400888 EP 90400888 A EP90400888 A EP 90400888A EP 0390702 A2 EP0390702 A2 EP 0390702A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- mold panel
- projections
- mold
- panel unit
- spring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
- E02D31/02—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against ground humidity or ground water
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D3/00—Improving or preserving soil or rock, e.g. preserving permafrost soil
- E02D3/02—Improving by compacting
- E02D3/10—Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/02—Flooring or floor layers composed of a number of similar elements
- E04F15/10—Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
Definitions
- the present invention relates to a mold panel unit and a spring-water processing structure using a plurality of mold panel units.
- Figs. 8 through 10 show a spring-water processing structure which has been provided at present in carrying-out of the method of construction in which the batholith is brought to the flat slab.
- a spring-water processing layer 3 is formed on an upper surface of a flat slab 2 which is formed on an underground stratum 1.
- An after-cast slab 4 is formed on an upper surface of the spring-water processing layer 3.
- the spring-water processing layer 3 utilizes a plurality of blocks 5, as shown, for example, in Fig. 10, which are laid on the upper surface of the flat slab 2.
- Each of the blocks 5 has a planar plate section 5a and a pair of legs 5b and 5b projecting from one side of the plate section 5a.
- a plurality of spaces 6 are defined between the planar surface sections 5a of the respective blocks 5 and the upper surface of the lower slab or flat slab 2.
- the spaces 6 communicate with each other longitudinally and laterally.
- Each of the blocks 5 is normally or usually formed into such a configuration as to have its length and width of a few tens of centimeters.
- the block 5 is made of, for example, a concrete block, a brick or the like, in order to enable a load resting on the block 5 to be withstood.
- a sheet 7 is laid on the upper surface of the spring-water processing layer 3 for water shielding.
- the spring-water processing layer 3 is formed as follows. That is, the flat slab 2 is formed and, subsequently, the plurality of blocks 5 are laid on the upper surface of the flat slab 2 such that the planer plate sections 5a are directed upwardly. After the sheet 7 has been laid on the laid blocks 5, concrete is cast on the sheet 7 to form the after-cast slab 4.
- the above-described method of construction can introduce the spring water to a predetermined location through the spaces 6 to process the spring water.
- the method of construction has the following disadvantages.
- each block 5 is made from a concrete block, a brick or the like, it is natural that the block 5 has a certain weight.
- the legs 5b have their projecting lengths increased, or that the spacing between the legs 5b be increased or widened. In either case, the cross-sectional area of each leg 5b or each planer plate section 5a must increase or must be enlarged, and the block 5 further increases in weight.
- a mold panel unit comprising: a mold panel having sides and made of one of a synthetic resinous material and a fiber-reinforced plastic material; a plurality of projections identical in configuration with each other, the projections being formed on one side of the mold panel; and a plurality of recesses formed in the other side of the mold panel in placements corresponding to the respective projections.
- the mold panel is made of the synthetic resinous material or the fiber-reinforced plastic material, it is possible to manufacture the mold panel unit easily and at a low cost. Further, the mold panel unit is light in weight, a burden on an operator can be reduced, and is advantageous in conveyance or transportation. In addition, since the mold panel unit is light in weight, it is possible to enlarge the size of the single mold panel unit so that a construction efficiency can be improved. Furthermore, since the projections on the mold panel unit may be engaged respectively with the recesses in another mold panel unit so that these mold panel units can be superposed upon each other, carrying of the mold panel units and storage thereof are made possible under such a condition that the mold panel units are superposed upon each other. Thus, the operation can further be improved in efficiency.
- the mold panel is rectangular in plan having first two sides adjacent each other and second two sides adjacent each other in opposed relation to the first sides.
- the first sides are provided with first connecting means, while the second sides are provided with second connecting means which is capable of being engaged with the first connecting means.
- the adjacent mold panel units when a plurality of mold panel units are laid, the adjacent mold panel units can be arranged without gap reliably and quickly by means of the first and second connecting means.
- the mold panel units it is possible to unite the mold panel units to each other so that the operation can be improved in efficiency.
- the projections are arranged longitudinally and laterally of the mold panel in equidistantly spaced relation to each other.
- the mold panel unit further includes a plurality of projecting ridges formed in a checkerwise manner respectively between rows and columns of the projections arranged longitudinally and laterally of the mold panel, the projecting ridges projecting on the same side as the projections.
- the mold panel unit further includes a plurality of cross projecting ridges.
- Four of the cross projecting ridges are formed respectively in four sides of each of a plurality of checkers formed by the first-mentioned projecting ridges.
- the four cross projecting ridges being intersected respectively with the four sides of the checker and projecting on the same side as a corresponding one of the projections, which is located adjacent the four sides of the checker.
- the mold panel unit can have its high strength and rigidity in spite of the fact that the mold panel unit is of slight wall thickness.
- a spring-water processing structure formed on a grade slab comprising: a plurality of mold panel units each of which includes a mold panel having sides and made of one of a synthetic resinous material and a fiber-reinforced plastic material, a plurality of projections identical in configuration with each other, the projections being formed on one side of the mold panel, and a plurality of recesses formed in the other side of the mold panel in corresponding relation to the respective projections; wherein the mold panel units are laid on the grade slab such that end faces of the respective projections of each of the mold panel units are in abutment with an upper surface of the grade slab, and the recesses of the mold panel unit open upwardly; and a cement filler after-cast on the mold panel units.
- the recesses in the mold panel units are filled with the cement filler such as concrete or the like which is after-cast on the mold panel units, a plurality of spaces serving to process the spring water are formed by the cement filler which is integrated with the mold panel units.
- the mold panel units do not structurally support resting loads. Accordingly, it is possible to use the mold panel units which are of slight wall thickness and low rigidity.
- the mold panel units can be made of the synthetic resinous material or the fiber-reinforce plastic material. In this manner, the mold panel units can be formed in mass production at low cost by the use of a usual plastic molding method. Moreover, since the mold panel units are light in weight, it is possible to use the mold panel units on the worksite extremely easily and efficiently.
- the spring-water processing structure can obtain the following various functional advantages. That is, since the recesses in the mold panel units are filled with the after-cast cement filler thereby forming a spring-water processing layer or a plurality of spaces, a plurality of legs are formed by the projections in which the recesses are filled with the cement filler after-cast on the mold panel units. Thus, even in the case where the spring-water processing spaces are made large, it is possible to leave a margin in strength to the spring-water processing structure without any affect or influence in cost. Accordingly, it is possible to construct, at low cost, the spring-water processing layer which is high in processing ability.
- the spring-water processing layer can fulfill its original function for a long period of time.
- the mold panel unit 20 comprises a mold panel 8 which is made of a synthetic resinous material or a fiber-reinforced material.
- a plurality of projections 9 discontinuous from each other are formed on one side of the mold panel 8, and are identical in configuration with each other.
- a plurality of recesses 10 are formed in the other side of the mold panel 8 in corresponding relation to the respective projections 9.
- Each of the projections 9 has an end face 9a which is planar, an intermediate section 21 which is cylindrical in configuration, and a proximal end section 22 which is formed into a frustum of cone diverging away from the end face 9a.
- the projections 9 are arranged longitudinally and laterally of the mold panel 8 in equidistantly spaced relation to each other.
- a plurality of projecting ridges 11 are formed longitudinally and laterally in a checkerwise manner respectively between rows and columns of the projections 9 which are arranged longitudinally and laterally of the mold panel 8.
- the projecting ridges 11 project on the same side as the projections 9a. That is, each of the projections 9 is located within a corresponding one of a plurality of checkers formed by the projecting ridges 11.
- a plurality of grooves 12 are formed in corresponding relation to the respective projecting ridges 11.
- a plurality of cross projecting ridges 13 or cross grooves 14 are provided in which four of the cross projecting ridges 13 or the cross grooves 14 are formed respectively in four sides of each of a plurality of checkers formed by the projecting ridges 11 or the grooves 12.
- the four cross projecting ridges 13 or the cross grooves 14 are intersected at right angles respectively with the four sides of the checker and project on the same side as a corresponding one of the projections 9 or the recesses 10, which is located adjacent the four sides of the checker.
- the mold panel unit 20 is rectangular in plan having a predetermined configuration in which first two sides are located adjacent each other and second two sides are located adjacent each other in opposed relation to the first sides.
- the first sides are provided respectively with a pair of engaging grooves 15 each in the form of a trough, while the second sides are provided with a pair of engaging hooks 16 which are capable of being engaged respectively with the pair of engaging grooves 15.
- the pair of engaging grooves 15 serve as first connecting means
- the pair of engaging hooks 16 serve as second connecting means which is capable of being engaged with the first connecting means.
- the first and second connecting means serve to connect a plurality of mold panel units 20 and 20 to each other subsequently to be described.
- the mold panel 8 is made of a synthetic resinous material or a fiber-reinforced plastic (FRP) material. Accordingly, the mold panel 8 can easily be formed by one of usual or normal molding methods which are applied to articles made of such material.
- the mold panel 8 is formed by a vacuum molding method which uses a mold 17 as shown in Fig. 4.
- a vacuum molding method which uses a mold 17 as shown in Fig. 4.
- an upper surface of an opening in the mold is closed by a material being processed in a closed contact manner or in an intimate contact manner. Air within the mold is drawn through an air hole or an air bleeding hole formed in the bottom of the mold to draw the material being processed into the mold.
- Fig. 4 shows the rear side of the mold 17, and a plurality of air holes used at vacuum molding are designated by the reference numerals 18.
- a plurality of mold panel units 20, each of which is constructed as described above, can suitably be utilized for a spring-water processing structure.
- Fig. 7 shows a spring-water processing layer 33 which is constructed using the plurality of mold panel units 20.
- the mold panel units 20 are laid on a flat slab or grade slab 32 such that end faces 9a of the respective projections 9 of each of the mold panel units 20 are in abutment with an upper surface of the flat slab 32, and the recesses 10 of the mold panel unit 20 open upwardly.
- a cement filler or concrete 34a is after-cast on the mold panel units 20.
- a sheet 37 and a plurality of reinforcements 39 are embedded in an after-cast slab 34 formed by the concrete 34a in parallel relation to the mold panel units 20.
- the spring-water processing layer 33 is constructed by the following procedure.
- the mold panel units 20 are laid on the flat slab 32 such that the end faces 9a of the respective projections 9 are in abutment with the upper surface of the flat slab 32.
- the recesses 10 open upwardly.
- the adjacent mold panel units 20 and 20 are connected to each other in such a manner that the pair of engaging grooves 15 on one of the adjacent mold panel units 20 are engaged respectively with the pair of hooks 16 of the other mold panel unit 20.
- the mold panel units 20 per se are extremely light in weight, handling of the mold panel units 20 is extremely easy. Further, because of the light weight, it is possible to increase the size or dimension of the single mold panel unit 20, for example, to the size in which one of the four sides of the mold panel unit 20 is brought to a few meters. Thus, it is possible to lay the mold panel units 20 on the flat slab 32 for a short period of time.
- the concrete 34a for construction of the after-case slab 34 is cast on the upper surfaces of the mold panel units 20 to such a degree that the mold panel units 20 are embedded completely in the cast concrete 34a.
- the reason why the concrete 34a corresponding in entire thickness to the after-case slab 34 is not cast at once is as follows. That is, the sheet 37 and the reinforcements 39 as shown in Fig. 7 are normally arranged within the after-cast slab 34, and the strength of the concrete 34a, which is filled in the recesses 10 to form respectively the projections 9, can be selected as occasion demands.
- other cement fillers such as mortar and the like may be filled in the mold panel units 20.
- the cast concrete 34a is filled in the recesses 10 in the mold panel units 20 and, in addition thereto, in the grooves 12 and the cross grooves 14 in the case of the illustrated embodiment.
- the sheet 37 is laid on the mold panel units 20 as shown in Fig. 7 and, further, the plurality of reinforcements 39 are arranged on the sheet 37.
- the concrete 34a is again cast on the reinforcements 39.
- construction of the spring-water processing layer 33 has been completed.
- the mold panel units 20 are embedded in the concrete 34a.
- the construction of the after-cast slab 34 has been carried into effect in two steps as described above. Since, however, the mold panel units 20 made of the synthetic resinous material or the fiber-reinforced plastic material have water-shielding ability or water-barrier ability per se , a plurality of spacers may be arranged on the mold panel units 20 without provision of the sheet 37, whereby, for example, the reinforcements 39 are arranged on the spacers and, subsequently, the concrete 34a is cast to construct the after-cast slab 34.
- a plurality of spaces 36 are formed between the projections 9 of the mold panel units 20. By the spaces 36, it is possible to process the spring water.
- the after-cast concrete 34a is filled in the projections 9 or the recesses 10 for forming the spaces 36 which fulfill function of spring-water processing, and the legs or the projections 9 are formed, after all, by the after-cast slab 34 per se . Accordingly, the use of the mold panel units 20 of slight wall thickness and low rigidity is made possible.
- the mold panel units 20 are of slight wall thickness and light weight, it is extremely easy to carry the mold panel units 20. Moreover, since the mold panel units 20 are light in weight, it is possible to increase the size of the single mold panel unit 20. Thus, the operating efficiency at the worksite can greatly be improved, and the construction cost can be reduced.
- the legs or projections 9 for forming the spaces 36 are formed by the after-cast slab 34 or the after-cast concrete 34a as described above, a sufficient cross-section of each of the mold panel units 20 can be taken with respect to loads without any restriction or limitation. Thus, there is obtained such an advantage that it is possible to widen the spaces 36 to increase the spring-water processing ability. Further, since the after-cast concrete 34a and the spring water are not into direct contact with each other, the invention precludes the occurence of efflorescence of the concrete, that is, separating of calcium hydroxide hydrolyzed by lime hydroxide within the cement, otherwise causing the spring-water processing layer 33 to be narrowed.
- each of the mold panel units 20 can be manufactured at extremely low cost by the above-mentioned vacuum molding method or other suitable molding methods. Further, in transportation of the mold panel units 20 and at carrying-in thereof, the mold panel units 20 are light in weight and can be carried under such a condition that the mold panel units 20 are superposed upon each other. Accordingly, there are obtained such functional advantages that the mold panel units 20 are easy in transportation and save space. Thus, it is possible to render the operation still more efficient, and costs can further be reduced.
- the projections 9, the recesses 10 and the like on and in each of the mold panel units 20 should not be limited in configuration and arrangement to those illustrated in Figs. 1 and 2.
- the projections 9, the recesses 10 and so on may be ones having other configuration and arrangement as long as the various constitutional elements defined in the following claim 1 are provided.
- the mold panel units 20 are applied to the spring-water processing layer 33 or the spring-water processing structure.
- the use of the mold panel units 20 should not be limited to construction of the spring-water processing layer 33.
- a concrete construction has its outer wall and the mold panel units are laid on the outer wall and are removed to finish a pattern on the outer wall.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Civil Engineering (AREA)
- Architecture (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Mining & Mineral Resources (AREA)
- General Engineering & Computer Science (AREA)
- Paleontology (AREA)
- Hydrology & Water Resources (AREA)
- Soil Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
- Road Paving Structures (AREA)
- Moulds, Cores, Or Mandrels (AREA)
- Sewage (AREA)
- Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
- Panels For Use In Building Construction (AREA)
Abstract
Description
- The present invention relates to a mold panel unit and a spring-water processing structure using a plurality of mold panel units.
- In recent years, in construction of buildings, a method of construction has increased in which underground beams are dispensed with to reduce the depth of underground excavation, and a batholith is brought to a flat slab. In the case where the underground batholith is brought to the flat slab, however, a space for storing spring water is not formed, differentiated from construction of the underground beams. Thus, such a problem arises as to how the spring water is processed.
- Figs. 8 through 10 show a spring-water processing structure which has been provided at present in carrying-out of the method of construction in which the batholith is brought to the flat slab.
- A spring-
water processing layer 3 is formed on an upper surface of aflat slab 2 which is formed on an underground stratum 1. An after-cast slab 4 is formed on an upper surface of the spring-water processing layer 3. - The spring-
water processing layer 3 utilizes a plurality ofblocks 5, as shown, for example, in Fig. 10, which are laid on the upper surface of theflat slab 2. Each of theblocks 5 has aplanar plate section 5a and a pair oflegs plate section 5a. Thus, a plurality ofspaces 6 are defined between theplanar surface sections 5a of therespective blocks 5 and the upper surface of the lower slab orflat slab 2. Thespaces 6 communicate with each other longitudinally and laterally. - Each of the
blocks 5 is normally or usually formed into such a configuration as to have its length and width of a few tens of centimeters. Theblock 5 is made of, for example, a concrete block, a brick or the like, in order to enable a load resting on theblock 5 to be withstood. Asheet 7 is laid on the upper surface of the spring-water processing layer 3 for water shielding. - The spring-
water processing layer 3 is formed as follows. That is, theflat slab 2 is formed and, subsequently, the plurality ofblocks 5 are laid on the upper surface of theflat slab 2 such that theplaner plate sections 5a are directed upwardly. After thesheet 7 has been laid on thelaid blocks 5, concrete is cast on thesheet 7 to form the after-cast slab 4. - The above-described method of construction can introduce the spring water to a predetermined location through the
spaces 6 to process the spring water. However, the method of construction has the following disadvantages. - That is, the
blocks 5 forming the spring-water processing layer 3 must support the load of the after-cast slab 4 per se and the loads resting on the after-cast slab 4. Accordingly, a component strength is required for each of theblocks 5. Thus, as will be seen from the fact that eachblock 5 is made from a concrete block, a brick or the like, it is natural that theblock 5 has a certain weight. Moreover, in order, for example, to securelarger spaces 6 for processing the spring water, it is required that thelegs 5b have their projecting lengths increased, or that the spacing between thelegs 5b be increased or widened. In either case, the cross-sectional area of eachleg 5b or eachplaner plate section 5a must increase or must be enlarged, and theblock 5 further increases in weight. - Furthermore, the following problems arise in the above-mentioned construction. That is, since the plurality of
blocks 5, which are relatively heavy, must be laid, an excessive burden or load is applied to an operator. Further, theblocks 5 per se increase manufacturing costs and conveyance or transport costs. - It is therefore an object of the invention to provide a mold panel unit which is low in manufacturing cost, and which is facilitated in construction for use particularly in formation of a spring-water processing layer.
- It is another object of the invention to provide a spring-water processing structure which utilizes a plurality of mold panel units.
- According to the invention, there is provided a mold panel unit comprising:
a mold panel having sides and made of one of a synthetic resinous material and a fiber-reinforced plastic material;
a plurality of projections identical in configuration with each other, the projections being formed on one side of the mold panel; and
a plurality of recesses formed in the other side of the mold panel in placements corresponding to the respective projections. - With the arrangement of the invention, since the mold panel is made of the synthetic resinous material or the fiber-reinforced plastic material, it is possible to manufacture the mold panel unit easily and at a low cost. Further, the mold panel unit is light in weight, a burden on an operator can be reduced, and is advantageous in conveyance or transportation. In addition, since the mold panel unit is light in weight, it is possible to enlarge the size of the single mold panel unit so that a construction efficiency can be improved. Furthermore, since the projections on the mold panel unit may be engaged respectively with the recesses in another mold panel unit so that these mold panel units can be superposed upon each other, carrying of the mold panel units and storage thereof are made possible under such a condition that the mold panel units are superposed upon each other. Thus, the operation can further be improved in efficiency.
- Preferably, the mold panel is rectangular in plan having first two sides adjacent each other and second two sides adjacent each other in opposed relation to the first sides. The first sides are provided with first connecting means, while the second sides are provided with second connecting means which is capable of being engaged with the first connecting means.
- With the above arrangement of the invention, when a plurality of mold panel units are laid, the adjacent mold panel units can be arranged without gap reliably and quickly by means of the first and second connecting means. Thus, it is possible to unite the mold panel units to each other so that the operation can be improved in efficiency.
- Preferably, the projections are arranged longitudinally and laterally of the mold panel in equidistantly spaced relation to each other. The mold panel unit further includes a plurality of projecting ridges formed in a checkerwise manner respectively between rows and columns of the projections arranged longitudinally and laterally of the mold panel, the projecting ridges projecting on the same side as the projections.
- Preferably, the mold panel unit further includes a plurality of cross projecting ridges. Four of the cross projecting ridges are formed respectively in four sides of each of a plurality of checkers formed by the first-mentioned projecting ridges. The four cross projecting ridges being intersected respectively with the four sides of the checker and projecting on the same side as a corresponding one of the projections, which is located adjacent the four sides of the checker.
- With the above arrangement of the invention, by the projecting ridges and the cross projecting ridges, the mold panel unit can have its high strength and rigidity in spite of the fact that the mold panel unit is of slight wall thickness.
- According to the invention, there is further provided a spring-water processing structure formed on a grade slab, comprising:
a plurality of mold panel units each of which includes a mold panel having sides and made of one of a synthetic resinous material and a fiber-reinforced plastic material, a plurality of projections identical in configuration with each other, the projections being formed on one side of the mold panel, and a plurality of recesses formed in the other side of the mold panel in corresponding relation to the respective projections;
wherein the mold panel units are laid on the grade slab such that end faces of the respective projections of each of the mold panel units are in abutment with an upper surface of the grade slab, and the recesses of the mold panel unit open upwardly; and
a cement filler after-cast on the mold panel units. - With the arrangement of the invention, since the recesses in the mold panel units are filled with the cement filler such as concrete or the like which is after-cast on the mold panel units, a plurality of spaces serving to process the spring water are formed by the cement filler which is integrated with the mold panel units.
- After the after-cast cement filler has been cured or hardened, the mold panel units do not structurally support resting loads. Accordingly, it is possible to use the mold panel units which are of slight wall thickness and low rigidity. Thus, the mold panel units can be made of the synthetic resinous material or the fiber-reinforce plastic material. In this manner, the mold panel units can be formed in mass production at low cost by the use of a usual plastic molding method. Moreover, since the mold panel units are light in weight, it is possible to use the mold panel units on the worksite extremely easily and efficiently.
- Specifically, the spring-water processing structure can obtain the following various functional advantages. That is, since the recesses in the mold panel units are filled with the after-cast cement filler thereby forming a spring-water processing layer or a plurality of spaces, a plurality of legs are formed by the projections in which the recesses are filled with the cement filler after-cast on the mold panel units. Thus, even in the case where the spring-water processing spaces are made large, it is possible to leave a margin in strength to the spring-water processing structure without any affect or influence in cost. Accordingly, it is possible to construct, at low cost, the spring-water processing layer which is high in processing ability. Moreover, since the after-cast cement filler is not in direct contact with the spring water, there is no tendancy for the spring-water processing layer to narrow due to efflorescence or the like of the cement filler, so that the spring-water processing layer can fulfill its original function for a long period of time.
-
- Fig. 1 is a top plan view of the entirety of a mold panel unit according to an embodiment of the invention;
- Fig. 2 is a cross-sectional view taken along the line II - II in Fig. 1;
- Fig. 3 is a fragmentary enlarged cross-sectional side elevational view of connecting means of the mold panel unit illustrated in Fig. 1;
- Fig. 4 is a perspective view of a mold for the mold panel unit illustrated in Fig. 1;
- Figs. 5 through 7 are fragmentary side elevational views showing, in order, steps of a method of construction of a spring-water processing structure according to an embodiment of the invention;
- Fig. 8 is a cross-sectional side elevational view of the conventional spring-water processing layer;
- Fig. 9 is a cross-sectional view taken along the line IX - IX in Fig. 8; and
- Fig. 10 is a perspective view of one of a plurality of blocks illustrated in Figs. 8 and 9.
- Referring first to Figs. 1 and 2, there is shown a mold panel unit, generally designated by the
reference numeral 20, according to an embodiment of the invention. Themold panel unit 20 comprises amold panel 8 which is made of a synthetic resinous material or a fiber-reinforced material. A plurality ofprojections 9 discontinuous from each other are formed on one side of themold panel 8, and are identical in configuration with each other. A plurality ofrecesses 10 are formed in the other side of themold panel 8 in corresponding relation to therespective projections 9. - Each of the
projections 9 has anend face 9a which is planar, anintermediate section 21 which is cylindrical in configuration, and aproximal end section 22 which is formed into a frustum of cone diverging away from theend face 9a. Theprojections 9 are arranged longitudinally and laterally of themold panel 8 in equidistantly spaced relation to each other. A plurality of projecting ridges 11 are formed longitudinally and laterally in a checkerwise manner respectively between rows and columns of theprojections 9 which are arranged longitudinally and laterally of themold panel 8. The projecting ridges 11 project on the same side as theprojections 9a. That is, each of theprojections 9 is located within a corresponding one of a plurality of checkers formed by the projecting ridges 11. Similarly to theprojections 9, when themold panel 8 is viewed from the other side thereof, a plurality ofgrooves 12 are formed in corresponding relation to the respective projecting ridges 11. - Further, a plurality of
cross projecting ridges 13 or crossgrooves 14 are provided in which four of thecross projecting ridges 13 or thecross grooves 14 are formed respectively in four sides of each of a plurality of checkers formed by the projecting ridges 11 or thegrooves 12. The fourcross projecting ridges 13 or thecross grooves 14 are intersected at right angles respectively with the four sides of the checker and project on the same side as a corresponding one of theprojections 9 or therecesses 10, which is located adjacent the four sides of the checker. - The
mold panel unit 20 is rectangular in plan having a predetermined configuration in which first two sides are located adjacent each other and second two sides are located adjacent each other in opposed relation to the first sides. The first sides are provided respectively with a pair of engaginggrooves 15 each in the form of a trough, while the second sides are provided with a pair of engaginghooks 16 which are capable of being engaged respectively with the pair of engaginggrooves 15. The pair of engaginggrooves 15 serve as first connecting means, while the pair of engaginghooks 16 serve as second connecting means which is capable of being engaged with the first connecting means. The first and second connecting means serve to connect a plurality ofmold panel units - The
mold panel 8 is made of a synthetic resinous material or a fiber-reinforced plastic (FRP) material. Accordingly, themold panel 8 can easily be formed by one of usual or normal molding methods which are applied to articles made of such material. In the illustrated embodiment, themold panel 8 is formed by a vacuum molding method which uses amold 17 as shown in Fig. 4. As well known, an upper surface of an opening in the mold is closed by a material being processed in a closed contact manner or in an intimate contact manner. Air within the mold is drawn through an air hole or an air bleeding hole formed in the bottom of the mold to draw the material being processed into the mold. Thus, deformation is given to the material being processed in accordance with the configuration of the mold. Fig. 4 shows the rear side of themold 17, and a plurality of air holes used at vacuum molding are designated by thereference numerals 18. - A plurality of
mold panel units 20, each of which is constructed as described above, can suitably be utilized for a spring-water processing structure. - Fig. 7 shows a spring-
water processing layer 33 which is constructed using the plurality ofmold panel units 20. - In the spring-
water processing layer 33, themold panel units 20 are laid on a flat slab orgrade slab 32 such that end faces 9a of therespective projections 9 of each of themold panel units 20 are in abutment with an upper surface of theflat slab 32, and therecesses 10 of themold panel unit 20 open upwardly. A cement filler or concrete 34a is after-cast on themold panel units 20. In this connection, in the illustrated embodiment, asheet 37 and a plurality ofreinforcements 39 are embedded in an after-cast slab 34 formed by the concrete 34a in parallel relation to themold panel units 20. - The spring-
water processing layer 33 is constructed by the following procedure. - First, as shown in Fig. 5, the
mold panel units 20 are laid on theflat slab 32 such that the end faces 9a of therespective projections 9 are in abutment with the upper surface of theflat slab 32. At this time, therecesses 10 open upwardly. As shown in Fig. 3, the adjacentmold panel units grooves 15 on one of the adjacentmold panel units 20 are engaged respectively with the pair ofhooks 16 of the othermold panel unit 20. Thus, it is possible to lay or arrange the plurality ofmold panel units 20 without gaps reliably, and such an attempt can be made that the plurality ofmold panel units 20 are integrated or united. - Since the
mold panel units 20 per se are extremely light in weight, handling of themold panel units 20 is extremely easy. Further, because of the light weight, it is possible to increase the size or dimension of the singlemold panel unit 20, for example, to the size in which one of the four sides of themold panel unit 20 is brought to a few meters. Thus, it is possible to lay themold panel units 20 on theflat slab 32 for a short period of time. - After the arrangement of the
mold panel units 20 has been completed as shown in Fig. 5, the concrete 34a for construction of the after-case slab 34 is cast on the upper surfaces of themold panel units 20 to such a degree that themold panel units 20 are embedded completely in thecast concrete 34a. The reason why the concrete 34a corresponding in entire thickness to the after-case slab 34 is not cast at once is as follows. That is, thesheet 37 and thereinforcements 39 as shown in Fig. 7 are normally arranged within the after-cast slab 34, and the strength of the concrete 34a, which is filled in therecesses 10 to form respectively theprojections 9, can be selected as occasion demands. In this connection, although the concrete 34a is cast on themold panel units 20, other cement fillers such as mortar and the like may be filled in themold panel units 20. - The
cast concrete 34a is filled in therecesses 10 in themold panel units 20 and, in addition thereto, in thegrooves 12 and thecross grooves 14 in the case of the illustrated embodiment. - After a requisite strength has appeared in the concrete 34a cast on the
mold panel units 20 in the manner described above, thesheet 37 is laid on themold panel units 20 as shown in Fig. 7 and, further, the plurality ofreinforcements 39 are arranged on thesheet 37. The concrete 34a is again cast on thereinforcements 39. Thus, construction of the spring-water processing layer 33 has been completed. Themold panel units 20 are embedded in the concrete 34a. - In the illustrated embodiment, the construction of the after-
cast slab 34 has been carried into effect in two steps as described above. Since, however, themold panel units 20 made of the synthetic resinous material or the fiber-reinforced plastic material have water-shielding ability or water-barrier ability per se, a plurality of spacers may be arranged on themold panel units 20 without provision of thesheet 37, whereby, for example, thereinforcements 39 are arranged on the spacers and, subsequently, the concrete 34a is cast to construct the after-cast slab 34. - In the spring-
water processing layer 33, a plurality ofspaces 36 are formed between theprojections 9 of themold panel units 20. By thespaces 36, it is possible to process the spring water. - In the manner described above, by the spring-
water processing layer 33 formed by the plurality ofmold panel units 20, construction of the spring-water processing structure can be realized at extremely low cost. - That is, the after-
cast concrete 34a is filled in theprojections 9 or therecesses 10 for forming thespaces 36 which fulfill function of spring-water processing, and the legs or theprojections 9 are formed, after all, by the after-cast slab 34 per se. Accordingly, the use of themold panel units 20 of slight wall thickness and low rigidity is made possible. - In the manner described above, since the
mold panel units 20 are of slight wall thickness and light weight, it is extremely easy to carry themold panel units 20. Moreover, since themold panel units 20 are light in weight, it is possible to increase the size of the singlemold panel unit 20. Thus, the operating efficiency at the worksite can greatly be improved, and the construction cost can be reduced. - Further, since the legs or
projections 9 for forming thespaces 36 are formed by the after-cast slab 34 or the after-cast concrete 34a as described above, a sufficient cross-section of each of themold panel units 20 can be taken with respect to loads without any restriction or limitation. Thus, there is obtained such an advantage that it is possible to widen thespaces 36 to increase the spring-water processing ability. Further, since the after-cast concrete 34a and the spring water are not into direct contact with each other, the invention precludes the occurence of efflorescence of the concrete, that is, separating of calcium hydroxide hydrolyzed by lime hydroxide within the cement, otherwise causing the spring-water processing layer 33 to be narrowed. - Moreover, each of the
mold panel units 20 can be manufactured at extremely low cost by the above-mentioned vacuum molding method or other suitable molding methods. Further, in transportation of themold panel units 20 and at carrying-in thereof, themold panel units 20 are light in weight and can be carried under such a condition that themold panel units 20 are superposed upon each other. Accordingly, there are obtained such functional advantages that themold panel units 20 are easy in transportation and save space. Thus, it is possible to render the operation still more efficient, and costs can further be reduced. - Furthermore, since the projections 11 or the
grooves 12 and thecross projecting ridges 13 or thecross grooves 14 are formed in the illustratedmold panel units 20, it is possible to raise the strength and rigidity of themold panel units 20 per se. - In connection with the above, the
projections 9, therecesses 10 and the like on and in each of themold panel units 20 should not be limited in configuration and arrangement to those illustrated in Figs. 1 and 2. Theprojections 9, therecesses 10 and so on may be ones having other configuration and arrangement as long as the various constitutional elements defined in the following claim 1 are provided. - Moreover, in the illustrated embodiment, only such an example is revealed that the
mold panel units 20 are applied to the spring-water processing layer 33 or the spring-water processing structure. However, the use of themold panel units 20 should not be limited to construction of the spring-water processing layer 33. For example, it is possible that a concrete construction has its outer wall and the mold panel units are laid on the outer wall and are removed to finish a pattern on the outer wall. Further, it is also possible to utilize the mold panel units according to the embodiment of the invention to electric cable wiring.
Claims (12)
a mold panel (8) having sides made of one of a synthetic resinous material and a fiber-reinforced plastic material;
a plurality of projections (9) identical in configuration with each other, said projections being formed on one side of said mold panel (8); and
a plurality of recesses (10) formed in the other side of said mold panel (8) in placements corresponding to the respective projections (9).
a plurality of mold panel units each of which includes a mold panel (8) having sides and made of one of a synthetic resinous material and fiber-reinforced plastic material, a plurality of projections (9) identical in configuration with each other, said projections being formed on the one side of said mold panel, and a plurality of recesses (10) formed in the other side of said mold panel in placements corresponding to the respective projection (9);
wherein said mold panel units are laid on the grade slab (32) such that end faces (9a) of the respective projections of each of said mold panel units are in abutment with an upper surface of the grade slab, and said recesses of the mold panel unit open upwardly; and
a cement filler after-cast on said mold panel units.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3761989 | 1989-03-31 | ||
JP37619/89U | 1989-03-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0390702A2 true EP0390702A2 (en) | 1990-10-03 |
EP0390702A3 EP0390702A3 (en) | 1991-07-03 |
EP0390702B1 EP0390702B1 (en) | 1993-06-02 |
Family
ID=12502642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90400888A Expired - Lifetime EP0390702B1 (en) | 1989-03-31 | 1990-03-30 | Mold panel unit and spring-water processing structure using mold panel units |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0390702B1 (en) |
KR (1) | KR900014692A (en) |
DE (1) | DE69001776T2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107268837A (en) * | 2017-08-07 | 2017-10-20 | 北京天基新材料股份有限公司 | A kind of swollen stone walling plate of assembled and combinations thereof installation method |
CN107859276A (en) * | 2017-10-30 | 2018-03-30 | 书香门地(上海)新材料科技有限公司 | A kind of waterproof composite board |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100926767B1 (en) * | 2007-10-11 | 2009-11-17 | 김상오 | Architectural Slab Foam |
CN106049815B (en) * | 2016-08-05 | 2018-05-04 | 无锡市天龙装饰材料有限公司 | A kind of consolidated floor easy to mat formation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3286421A (en) * | 1963-07-31 | 1966-11-22 | Wayne P Branstrator | Floor and wall construction |
FR2109533A5 (en) * | 1970-10-27 | 1972-05-26 | Matom Ag | |
NL7311047A (en) * | 1973-08-09 | 1975-02-11 | Schaden Karl | Building construction component for wall surface insulation - Comprising a plate of synthetic matl. forming cavitieeiitiesities and surface reinforcement |
WO1982003099A1 (en) * | 1981-03-11 | 1982-09-16 | Jon Bergsland | A protective sheet,in particular for a foundation wall or a floor on the ground |
US4807412A (en) * | 1984-09-25 | 1989-02-28 | Jydsk Fjederfabrik A/S | Grating or mat element |
-
1990
- 1990-03-29 KR KR1019900004237A patent/KR900014692A/en not_active Application Discontinuation
- 1990-03-30 DE DE90400888T patent/DE69001776T2/en not_active Expired - Fee Related
- 1990-03-30 EP EP90400888A patent/EP0390702B1/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3286421A (en) * | 1963-07-31 | 1966-11-22 | Wayne P Branstrator | Floor and wall construction |
FR2109533A5 (en) * | 1970-10-27 | 1972-05-26 | Matom Ag | |
NL7311047A (en) * | 1973-08-09 | 1975-02-11 | Schaden Karl | Building construction component for wall surface insulation - Comprising a plate of synthetic matl. forming cavitieeiitiesities and surface reinforcement |
WO1982003099A1 (en) * | 1981-03-11 | 1982-09-16 | Jon Bergsland | A protective sheet,in particular for a foundation wall or a floor on the ground |
US4807412A (en) * | 1984-09-25 | 1989-02-28 | Jydsk Fjederfabrik A/S | Grating or mat element |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107268837A (en) * | 2017-08-07 | 2017-10-20 | 北京天基新材料股份有限公司 | A kind of swollen stone walling plate of assembled and combinations thereof installation method |
CN107859276A (en) * | 2017-10-30 | 2018-03-30 | 书香门地(上海)新材料科技有限公司 | A kind of waterproof composite board |
CN107859276B (en) * | 2017-10-30 | 2020-04-17 | 书香门地(上海)美学家居股份有限公司 | Waterproof composite board |
Also Published As
Publication number | Publication date |
---|---|
EP0390702B1 (en) | 1993-06-02 |
EP0390702A3 (en) | 1991-07-03 |
KR900014692A (en) | 1990-10-24 |
DE69001776T2 (en) | 1994-05-05 |
DE69001776D1 (en) | 1993-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5105595A (en) | Mold panel unit and spring-water processing structure using mold panel units | |
US6907704B2 (en) | Interlocking mortarless load bearing building block system | |
US6539682B1 (en) | Building elements and methods in relation to same | |
US5771654A (en) | Method of construction using molded polymer blocks | |
WO2003048471A1 (en) | Embedment-type mould for manufacturing building slab structures | |
US20190093348A1 (en) | Insulating Construction Panels, Systems and Methods | |
EP0390702B1 (en) | Mold panel unit and spring-water processing structure using mold panel units | |
US8800218B2 (en) | Insulating construction panels, systems and methods | |
KR20150135659A (en) | slope retaing wall using precast concrete and method therefore | |
US4040225A (en) | Building block and wall construction | |
CN111719577B (en) | Construction method of building foundation | |
US4719737A (en) | Interlocking construction block | |
US3464176A (en) | Building construction | |
EP0327563B1 (en) | In situ brick or block making formwork | |
US6397555B1 (en) | Interlocking blocks of precise height | |
JPH0328424A (en) | Drainage structure of underground structure | |
CN218714105U (en) | Assembly type building structure | |
JPH02300423A (en) | Form panel and spring water treatment structure using it | |
JP3016148U (en) | Drainage panel | |
CN222120700U (en) | Bump brick | |
CA2044928A1 (en) | Structural concrete brick and method of construction using same | |
US1642952A (en) | Building construction | |
AU735489B2 (en) | Improvements in or relating to building elements and methods in relation to same | |
JP2522712B2 (en) | Foundation slab construction method | |
JPH03271430A (en) | Gutter construction in underground structure and method for gutter construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KOZEKI, SABURO, C/O SHIMIZU CONSTRUCTION CO.,LTD. Inventor name: SHINOZAKI,AKIO, C/O SHIMIZU CONSTRUCTION CO.,LTD. Inventor name: OBATA, MASAO, C/O SHIMIZU CONSTRUCTION CO., LTD. Inventor name: SUMIYAMA,KAZUFUMI,C/O SHIMIZU CONSTRUCTION CO.,LT Inventor name: SEKI, YOICHI, C/O SHIMIZU CONSTRUCTION CO., LTD Inventor name: TOKEI, SHINTARO, C/O SHIMIZU CONSTRUCTION CO.,LTD. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19911106 |
|
17Q | First examination report despatched |
Effective date: 19911218 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69001776 Country of ref document: DE Date of ref document: 19930708 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940126 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19940322 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940326 Year of fee payment: 5 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19950330 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19950330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19951130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050330 |