[go: up one dir, main page]

EP0384200A1 - Steam condenser - Google Patents

Steam condenser Download PDF

Info

Publication number
EP0384200A1
EP0384200A1 EP90102198A EP90102198A EP0384200A1 EP 0384200 A1 EP0384200 A1 EP 0384200A1 EP 90102198 A EP90102198 A EP 90102198A EP 90102198 A EP90102198 A EP 90102198A EP 0384200 A1 EP0384200 A1 EP 0384200A1
Authority
EP
European Patent Office
Prior art keywords
bundle
steam
bundles
cooler
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90102198A
Other languages
German (de)
French (fr)
Other versions
EP0384200B1 (en
Inventor
Francisco Dr. Blangetti
Vaclav Svoboda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
ABB Asea Brown Boveri Ltd
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0384200A1 publication Critical patent/EP0384200A1/en
Application granted granted Critical
Publication of EP0384200B1 publication Critical patent/EP0384200B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/184Indirect-contact condenser
    • Y10S165/205Space for condensable vapor surrounds space for coolant
    • Y10S165/207Distinct outlets for separated condensate and gas
    • Y10S165/211Distinct outlets for separated condensate and gas including concave member adjacent to vapor outlet and partially covering a group of coolant tubes

Definitions

  • the invention relates to a steam condenser for ground-level arrangement with a steam turbine, the steam being deposited on pipes through which cooling water flows and which are combined in separate sub-bundles, and wherein the pipes of a bundle arranged in rows enclose a cavity in which a cooler for the non-condensable gases is arranged ,
  • Such a steam condenser for the so-called underfloor arrangement, is known from Swiss Patent No. 423 819.
  • the condenser tubes are arranged in several, so-called sub-bundles in a condenser housing.
  • the steam flows through an exhaust pipe into the condenser housing and is distributed in the room through flow channels. These narrow in the general direction of the flow in such a way that the flow velocity of the steam in these channels remains at least approximately constant.
  • the free inflow of steam to the outside tubes of the partial bundles is ensured.
  • the steam then flows through the bundles with a small resistance due to the low pipe depth.
  • the sub-bundles in the condenser are arranged next to each other in such a way that flow channels are created between them, which appear in the sectional view in the same order of magnitude as the sub-bundles themselves. Furthermore, the tubes in the successive rows form a self-contained wall, which is preferably continuous is of the same thickness.
  • This known condenser has the advantage that due to the loose arrangement of the partial bundles, all peripheral tubes of a partial bundle are well charged with steam without any noticeable pressure loss.
  • the requirement for at least approximately the same "wall thickness" of the tube-shaped sub-bundle around the cavity results in a relatively large overall height of the sub-bundle.
  • This known solution is less suitable for steam condensers of power plants, in which the condenser and the turbine are located approximately at the same height of the machine house foundation, for example due to a limitation in the height. In such cases, the capacitor can be arranged coaxially with the turbine shaft or laterally along the turbine. Underfloor arrangements are also not possible with watercraft driven by a steam turbine with a shallow draft.
  • the invention is therefore based on the object of providing a capacitor of the type mentioned at the outset which, while maintaining the known advantages of the partial bundle concept, is furthermore distinguished by low production costs.
  • this is achieved by - that the partial bundles are oriented horizontally in their longitudinal extent, that several sub-bundles are arranged one above the other in the vertical, - And that the cooler is formed asymmetrically within the sub-bundle and that its intake cross-section has its center of gravity below the longitudinal center line of the sub-bundle.
  • the tubes of the cooler are provided in the cavity of the bundle with a cover plate, which is also designed as a closed suction channel that communicates with the cooler zone via panels.
  • the multifunctional cover plate protects the cooler pipes from the condensate running down.
  • the heat exchanger shown is a surface condenser in a rectangular design, as it is suitable for the so-called "on floor” arrangement. As a rule, such capacitors have useful power ranges of ⁇ 300 MWe.
  • the steam flows into the condenser neck 1 via an evaporation nozzle 10, with which the condenser is connected to the turbine.
  • the best possible homogeneous flow field is generated therein in order to carry out a clean steam purging of the bundles 2 arranged downstream over their entire length.
  • the condensation space inside the condenser jacket contains four separate bundles 2. This has the aim, among other things, that a partial shutdown on the cooling water side can also be carried out during system operation, for example for the purpose of an inspection of a shutdown bundle on the cooling water side.
  • the independent application of cooling water is expressed in that the water chambers 7 (FIG. 2) are divided into compartments by horizontal partition walls (not shown).
  • the bundles consist of a number of tubes 5, which are fastened at their two ends in tube plates 6. Beyond the tube sheets, the water chambers 7 are arranged. The condensate flowing off from the bundles 2 is collected in the condensate collecting vessel 12 and from there it reaches the water / steam circuit, not shown.
  • a cavity 13 is formed in the interior of each bundle 2, in which the cavity contains gases that cannot be condensed - hereinafter called air - collects enriched steam.
  • An air cooler 14 is accommodated in this cavity 13. The steam-air mixture flows through this air cooler, with most of the steam condensing. The rest of the mixture is suctioned off at the cold end.
  • a cuboidal capacitor shell - the shape of the four bundles 2 is adapted so that the following goals are achieved: - Good use of the temperature gradient - Small pressure drop in the tube bundle despite the high packing density of the tubing - No stagnant air accumulation in the steam lanes and the bundles - No undercooling of the condensate - Good degassing of the condensate.
  • the bundles are designed in such a way that all pipes in the periphery have a good flow of steam without noticeable pressure loss.
  • the existing flow paths between the four bundles 2 on the one hand and between the outer bundles and their adjacent condenser wall are designed as follows:
  • the steam is now decelerated to zero speed with a simultaneous pressure recovery. This is achieved by making the second part of the flow path divergent. It should also be noted here that the channel expansion does not have to be optically recognizable due to the increasing decrease in the mass flow. It is important that the residual steam flowing towards the condenser bottom 8 generates a dynamic pressure there. This deflects the steam and also supplies the lower parts of the bundle.
  • the increase in temperature caused by the dynamic pressure benefits the condensate flowing down from pipe to pipe by heating up again if it has cooled below the saturation temperature. This ensures two advantages: There are no thermodynamic losses due to condensate hypothermia and the oxygen content of the condensate is reduced to a minimum.
  • the air cooler 14 is arranged in the interior of the bundle at the level at which the bundle of pressure runs through a relative minimum on both sides of the bundle.
  • the air cooler is therefore located in the rear half of the sub-bundle.
  • the bundle is designed so that the vapor intake into the hollow Room 13 - taking into account the effective pressure at the pipe periphery and due to the different pipe row thickness - acts homogeneously in the radial direction across all pipes in the cavity 13. This results in a homogeneous pressure gradient and thus a clear direction of flow of the steam and the non-condensable gases in the direction of the air cooler 14.
  • the cavity 13 opens upstream into a compensation lane 16 inside the bundle, which also ensures that the air-enriched steam from the core of the front half the bundle finds a smooth way to the air cooler.
  • the sheets cover the bundles, but in any case leave enough free space for pressure equalization and for pressure regeneration by stagnation of the residual steam speed at the end of the condensation path, i.e. impossible in the region of the capacitor bottom 8.
  • the resulting steam cushion causes any condensate subcooling to regress and the residual degassing of the condensate, which is finely divided at this point.
  • the entire condenser shell assembly ie housing, as well as partial bundles and condensate collecting plates, is in the longitudinal direction of the pipe slightly inclined about the turbine axis 24 in order to promote the rapid drainage of the condensate.
  • the air coolers within the partial bundles are asymmetrical in shape and of an ascentric position within the cavity 13.
  • the bundles 2 are subjected to a highly asymmetrical load when installed horizontally, since gravity and the inertial force of the vapor velocity are almost perpendicular to each other.
  • this asymmetry mainly relates to the condensate load in the bundle, which also leads to an asymmetrical localization of the pressure minimum in the pipe structure with regard to the geometrical bundle contours.
  • the location of the minimum pressure dictates the location of the air cooler as it is the location of the accumulation of non-condensable gases.
  • the condensate raining down from above increases the steam-side pressure loss in the lower half of the bundle and thus causes the pressure minimum to shift downwards.
  • the air cooler is therefore configured and arranged in such a way that it takes account of the asymmetry mentioned.
  • the air is drawn in below the longitudinal center line 22 of the bundle due to the chosen cooler configuration.
  • the air cooler 14 has the task of removing the non-condensable gases from the condenser. During this process, the steam losses are to be kept as low as possible. This is achieved in that the steam / air mixture is accelerated in the direction of the suction duct 17. The high speed results in good heat transfer, which leads to extensive condensation of the residual steam. In order to accelerate the mixture, the cross section in the direction of flow is increasingly smaller, as can be seen in FIG. 5. The air is sucked off through orifices 18 into the channel 17.
  • These covers, which are attached to the youngest part of the radiator cover are the physical separation of the condensation space from the suction channel. They are distributed several times over the entire length of the pipe and, by creating a pressure loss, ensure that the suction effect is homogeneous in all compartments of the condenser.
  • Part of the wall of the suction channel 17 is also designed as a funnel-shaped cover plate 19. This sheet is placed over the pipes of the cooler and protects them from the steam and condensate flow flowing from top to bottom. This also specifies the direction of entry of the mixture to be cooled, namely from the back to the front towards the screens 18.
  • the drainage of the suction channel 17 takes place through holes 23 arranged several times in the longitudinal direction of the channel at the lowest point of the channel.
  • a corresponding number of tubes 5 are left out of the bundles 2. Depending on the size and staggering of the tubes 5, this involves omitting either one or two rows of tubes. A plurality of suction lines 20 penetrating the bundle upward are led out through this recess. Parallel to the bundle, these suction lines are led to the condenser bottom 8, where they open into a collecting line 15 leading to the suction device.
  • vapor barriers The free space created by the omission of the pipes is filled with vapor barriers.
  • the primary goal of these is to prevent steam bypass.
  • these are dummy pipes which do not prevent the vertical exchange of steam or condensate. In the direction of the steam lane / cooler, they form a flow obstacle that should have the same pressure loss as the original pipe.
  • these blind pipes can also be used as support anchors between the pipe support plates, not shown.
  • the invention is not limited to the exemplary embodiment shown and described.
  • longitudinal, staggered, baffle-like sheets could be used as vapor barriers instead of the dummy pipes.
  • the vapor barriers could also be dispensed with entirely if the non-condensable gases are led out of the condenser in the longitudinal direction of the tube instead of across the bundle.
  • the suction channel respectively. the suction line connected to it penetrate one of the two tube plates 6 and the corresponding water chamber 7.
  • the condenser can of course also be divided into two and arranged on both sides of the turbine. Likewise, it can be set up in the extension of the turbine axis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In a floor-mounted steam condenser, in which the steam is precipitated on tubes (5) through which cooling water flows and which are grouped in separate bundles (2), the tubes (5) of a bundle, which are arranged in rows, enclosing a cavity (13), a cooler (14) for the non-condensable gases is arranged in the cavity (13). <??>The longitudinal extent of the sub-bundles (2) is aligned horizontally, and the sub-bundles are arranged vertically one above the other. The suction effect of the cooler (14) for the non-condensable gases is directed towards a zone below the longitudinal centre line (22) of the individual bundle (2). <IMAGE>

Description

Gebiet der ErfindungField of the Invention

Die Erfindung betrifft einen Dampfkondensator zur ebenerdigen Anordnung mit einer Dampfturbine, wobei der Dampf an kühlwas­serdurchflossenen, in separaten Teilbündeln zusammengefassten Rohren niedergeschlagen wird, und wobei die in Reihen angeord­neten Rohre eines Bündels einen Hohlraum umschliessen, in dem ein Kühler für die nicht kondensierbaren Gase angeordnet ist,The invention relates to a steam condenser for ground-level arrangement with a steam turbine, the steam being deposited on pipes through which cooling water flows and which are combined in separate sub-bundles, and wherein the pipes of a bundle arranged in rows enclose a cavity in which a cooler for the non-condensable gases is arranged ,

Stand der TechnikState of the art

Ein derartiger Dampfkondensator, allerdings für die sogenannte Unterfluranordnung, ist aus der schweizerischen Patentschrift Nr. 423 819 bekannt. Dort sind in einem Kondensatorgehäuse die Kondensatorrohre in mehreren, sogenannten Teilbündeln angeord­net. Der Dampf strömt durch einen Abdampfstutzen in das Kon­densatorgehäuse ein und verteilt sich im Raum durch Strö­mungskanäle. Diese verengen sich in der allgemeinen Richtung der Strömung derart , dass die Strömungsgeschwindigkeit des Dampfes in diesen Kanälen zumindest annähernd konstant bleibt. Die freie Zuströmung des Dampfes zu den aussenliegenden Rohren der Teilbündel ist gewahrt. Durch die Bündel strömt der Dampf anschliessend mit durch die geringe Rohrreihentiefe bedingtem kleinen Widerstand hindurch. Um die Bedingung der in den Zu­strömkanälen konstant zu haltenden Dampfgeschwindigkeit erfül­ len zu können, sind die Teilbündel im Kondensator so nebenein­ander angeordnet, dass zwischen ihnen Strömungskanäle entste­hen, die im Schnittbild in der gleichen Grössenordnung er­scheinen wie die Teilbündel selbst. Des weiteren bilden die Rohre in den hintereinanderfolgenden Reihen eine in sich ge­schlossene Wand, die vorzugsweise durchwegs von gleicher Dicke ist.Such a steam condenser, however for the so-called underfloor arrangement, is known from Swiss Patent No. 423 819. There, the condenser tubes are arranged in several, so-called sub-bundles in a condenser housing. The steam flows through an exhaust pipe into the condenser housing and is distributed in the room through flow channels. These narrow in the general direction of the flow in such a way that the flow velocity of the steam in these channels remains at least approximately constant. The free inflow of steam to the outside tubes of the partial bundles is ensured. The steam then flows through the bundles with a small resistance due to the low pipe depth. In order to meet the condition of the steam speed to be kept constant in the inflow channels len, the sub-bundles in the condenser are arranged next to each other in such a way that flow channels are created between them, which appear in the sectional view in the same order of magnitude as the sub-bundles themselves. Furthermore, the tubes in the successive rows form a self-contained wall, which is preferably continuous is of the same thickness.

Dieser bekannte Kondensator weist den Vorteil auf, dass durch die lockere Anordnung der Teilbündel alle peripheren Rohre ei­nes Teilbündels ohne merklichen Druckverlust gut mit Dampf be­schickt sind. Andererseits bedingt das Erfordernis nach zumin­dest annähernd gleicher "Wandstärke" des berohrten Teilbündels um den Hohlraum herum eine relativ grosse Bauhöhe des Teilbün­dels. Hieraus resultiert die hervorragende Eignung dieses Teilbündelkonzeptes für Grosskondensatoren, bei denen eine Mehrzahl von Teilbündeln stehend nebeneinander angeordnet wer­den. Weniger geeignet ist diese bekannte Lösung für Dampfkon­densatoren von Kraftwerksanlagen, bei denen sich der Kondensa­tor und die Turbine ungefähr auf der gleichen Höhe des Maschi­nenhausfundamentes befinden, bspw. infolge Beschränkung der Bauhöhe. In solchen Fällen kann der Kondensator koaxial mit der Turbinenwelle oder seitlich entlang der Turbine angeordnet sein. Auch bei mittels Dampfturbine angetriebenen Wasserfahr­zeugen mit geringem Tiefgang sind Unterfluranordnungen nicht möglich.This known condenser has the advantage that due to the loose arrangement of the partial bundles, all peripheral tubes of a partial bundle are well charged with steam without any noticeable pressure loss. On the other hand, the requirement for at least approximately the same "wall thickness" of the tube-shaped sub-bundle around the cavity results in a relatively large overall height of the sub-bundle. This results in the excellent suitability of this partial bundle concept for large capacitors, in which a plurality of partial bundles are arranged side by side. This known solution is less suitable for steam condensers of power plants, in which the condenser and the turbine are located approximately at the same height of the machine house foundation, for example due to a limitation in the height. In such cases, the capacitor can be arranged coaxially with the turbine shaft or laterally along the turbine. Underfloor arrangements are also not possible with watercraft driven by a steam turbine with a shallow draft.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt deshalb die Aufgabe zugrunde, einen Kon­densator der eingangs genannten Art zu schaffen, der sich bei Beibehaltung der bekannten Vorteile des Teilbündelkonzeptes zudem durch niedrige Fertigungskosten auszeichnet.The invention is therefore based on the object of providing a capacitor of the type mentioned at the outset which, while maintaining the known advantages of the partial bundle concept, is furthermore distinguished by low production costs.

Erfindungsgemäss wird dies dadurch erreicht,
- dass die Teilbündel in ihrer Längserstreckung horizontal gerichtet sind,
- dass mehrere Teilbündel in der Vertikalen übereinander angeordnet sind,
- und dass der Kühler innerhalb der Teilbündel asymmetrisch ausgebildet ist und dass sein Ansaugquerschnitt seinen Schwerpunkt unterhalb der Längsmittellinie der Teilbündel hat.
According to the invention, this is achieved by
- that the partial bundles are oriented horizontally in their longitudinal extent,
that several sub-bundles are arranged one above the other in the vertical,
- And that the cooler is formed asymmetrically within the sub-bundle and that its intake cross-section has its center of gravity below the longitudinal center line of the sub-bundle.

Die Vorteile der Erfindung sind darin zu sehen, dass infolge der bewusst realisierten Druckabsenkung in den durchströmten Gassen auf der Höhe des Luftkühlers zu beiden Seiten des je­weiligen Bündels der dampfseitige Druckabfall über das Bündel etwa konstant ist, so dass sich ein homogener Druckgradient in Richtung Kühler ergibt. Mit dieser Massnahme wird eine gute Dampfdurchspülung durch das Bündel erreicht. Nach Durchlauf der maximalen Geschwindigkeit erfährt der Dampf in den Gassen eine Abbremsung bis auf Null mit Druckrückgewinn auf dem Ni­veau des Kondensatsammelbehälters. Dies bewirkt eine Erhöhung der Sättigungstemperatur des Dampfes und damit eine Rückbil­dung der stattgefundenen Kondensatunterkühlung und der Sauer­stoffkonzentration im Kondensat. Dadurch, dass durch die ge­wählte Strömungsführung der Stau erst am unteren Bündelende erfolgt, werden zudem Ansammlungen von nichtkondensierbaren Gasen in den Bündelgassen selbst vermieden.The advantages of the invention can be seen in the fact that as a result of the deliberately implemented pressure reduction in the flow-through alleys at the level of the air cooler on both sides of the respective bundle, the steam-side pressure drop across the bundle is approximately constant, so that there is a homogeneous pressure gradient in the direction of the cooler . With this measure, good steam flushing through the bundle is achieved. After passing through the maximum speed, the steam in the alleys is decelerated to zero with pressure recovery at the level of the condensate collector. This causes an increase in the saturation temperature of the steam and thus a regression of the condensate supercooling that has taken place and the oxygen concentration in the condensate. The fact that, due to the selected flow guidance, the accumulation only occurs at the lower end of the bundle, accumulations of non-condensable gases in the bundle lanes themselves are avoided.

Aufgrund des regenerativen Charakters dieser Bündelart und der gezielten Anordnung des Luftkühlers ist somit mit einer spezi­fischen Kondensationsleistung zu rechnen, die mindestens 10% über dem durch "Heat Exchanger Institute Standards" festgeleg­ten Modell liegt.Due to the regenerative character of this bundle type and the targeted arrangement of the air cooler, a specific condensation capacity is to be expected, which is at least 10% above the model defined by the "Heat Exchanger Institute Standards".

Daneben sind weitere Vorteile in der einfachen und schnellen Fertigung des Fundamentes sowie in kurzen Inbetriebssetzungs-­Zeiten zu sehen. Insbesondere besteht die Möglichkeit, auf die bisherigen Dehnungsorgane zu verzichten und den Kondensator direkt an das Abdampfgehäuse der Turbine anzuschliessen, und durch einfache Gleitschuhe abzustützen.In addition, other advantages can be seen in the simple and fast manufacture of the foundation and in short commissioning times. In particular, there is the possibility of dispensing with the previous expansion elements and the capacitor to be connected directly to the exhaust steam casing of the turbine and to be supported by simple sliding shoes.

Es ist zweckmässig, wenn die Rohre des Kühlers im Hohlraum des Bündels mit einem Abdeckblech versehen sind, welches zudem als geschlossener Absaugkanal ausgebildet ist, der mit der Kühler­zone über Blenden kommuniziert. Das multifunktionale Abdeck­blech schützt dabei die Kühlerrohre vor dem herabrinnenden Kondensat.It is expedient if the tubes of the cooler are provided in the cavity of the bundle with a cover plate, which is also designed as a closed suction channel that communicates with the cooler zone via panels. The multifunctional cover plate protects the cooler pipes from the condensate running down.

Zum Herauszuführen aus dem Kondensator empfiehlt es sich, dass das vom Kühler in den Saugkanal einströmende Dampf-Luftgemisch aus dem Kanal über mindestens eine, jedes Bündel durchdrin­gende Saugleitung abzusaugen, wozu an der Trennfläche zwischen den beiden Flüssen ein resp. zwei Rohrreihen im ansonsten ge­schlossenen Mantel fehlen und durch Blindrohre ersetzt sind. Diese als Dampfsperren wirkende Blindrohre verhindern ein di­rektes Einströmen des Dampfes zu den Luftkühlern.To lead out of the condenser, it is recommended that the steam-air mixture flowing from the cooler into the suction channel be sucked out of the channel via at least one suction line penetrating each bundle, for which purpose a resp. two rows of pipes in the otherwise closed jacket are missing and replaced by blind pipes. These dummy pipes, which act as vapor barriers, prevent the steam from flowing directly into the air coolers.

Eine ähnliche Abschirmung ist zwar aus der bereits genannten CH-PS 423 819 bekannt. Indes handelt es sich dort um eine ge­schlossene Verschalung, welche in der Vertikalen ein Strö­mungshindernis darstellt, insbesondere für das herabtropfende Kondensat.A similar shielding is known from the previously mentioned CH-PS 423 819. However, there is a closed casing, which is an obstacle to flow in the vertical direction, in particular for the condensate dripping down.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung an­hand eines Kraftwerkkondensators schematisch dargestellt. Es zeigen:

  • Fig. 1 und 2 eine skizzenhafte Vorderansicht und Draufsicht einer Niederdruckturbine mitsamt Kondensator;
  • Fig.3 einen Querschnitt durch den Kondensator;
  • Fig.4 einen Querschnitt durch ein Teilbündel;
  • Fig.5 einen Querschnitt durch einen Kühler.
In the drawing, an embodiment of the invention is shown schematically using a power plant capacitor. Show it:
  • 1 and 2 a sketchy front view and top view of a low-pressure turbine together with the condenser;
  • 3 shows a cross section through the capacitor;
  • 4 shows a cross section through a sub-bundle;
  • 5 shows a cross section through a cooler.

Beim dargestellten Wärmeaustauscher handelt es sich um einen Oberflächenkondensator in rechteckiger Bauform, wie er ge­eignet ist für die sogenannte "on floor"- Anordnung. In der Regel weisen derartige Kondensatoren sinnvolle Leistungsberei­che von <300 MWe auf.The heat exchanger shown is a surface condenser in a rectangular design, as it is suitable for the so-called "on floor" arrangement. As a rule, such capacitors have useful power ranges of <300 MWe.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Ueber einen Abdampfstutzen 10, mit dem der Kondensator an der Turbine angeschlossen ist, strömt der Dampf in den Kondensa­torhals 1 ein. Darin wird ein möglichst gutes homogenes Strö­mungsfeld erzeugt, um eine saubere Dampfbespülung der stromab­wärts angeordneten Bündel 2 über deren ganze Länge vorzuneh­men.The steam flows into the condenser neck 1 via an evaporation nozzle 10, with which the condenser is connected to the turbine. The best possible homogeneous flow field is generated therein in order to carry out a clean steam purging of the bundles 2 arranged downstream over their entire length.

Der Kondensationsraum im Innern des Kondensatormantels bein­haltet vier getrennte Bündel 2. Dies hat unter anderem zum Ziel, dass auch während des Anlagenbetriebes eine kühlwasser­seitige Teilabschaltung vorgenommen werden kann, beispiels­weise zum Zwecke einer kühlwasserseitigen Inspektion eines ab­geschalteten Bündels. Die unabhängige Kühlwasserbeaufschlagung kommt dadurch zum Ausdruck, dass die Wasserkammern 7 (Fig.2) durch nicht gezeigte horizontale Trennwände in Kompartimente unterteilt sind.The condensation space inside the condenser jacket contains four separate bundles 2. This has the aim, among other things, that a partial shutdown on the cooling water side can also be carried out during system operation, for example for the purpose of an inspection of a shutdown bundle on the cooling water side. The independent application of cooling water is expressed in that the water chambers 7 (FIG. 2) are divided into compartments by horizontal partition walls (not shown).

Die Bündel bestehen aus einer Anzahl Rohre 5, die an ihren beiden Enden jeweils in Rohrböden 6 befestigt sind. Jenseits der Rohrböden sind jeweils die Wasserkammern 7 angeordnet. Das von den Bündeln 2 abfliessende Kondensat wird im Kondensatsam­melgefäss 12 aufgefangen und gelangt von dort in den nicht dargestellten Wasser/Dampf-Kreislauf.The bundles consist of a number of tubes 5, which are fastened at their two ends in tube plates 6. Beyond the tube sheets, the water chambers 7 are arranged. The condensate flowing off from the bundles 2 is collected in the condensate collecting vessel 12 and from there it reaches the water / steam circuit, not shown.

Gemäss Fig.3 ist im Innern jedes Bündels 2 ein Hohlraum 13 ausgebildet, in dem sich der mit nicht kondensierbaren Gasen - nachstehend Luft genannt - angereicherte Dampf sammelt. In diesem Hohlraum 13 ist ein Luftkühler 14 untergebracht. Das Dampf-Luftgemisch durchströmt diesen Luftkühler, wobei der grösste Teil des Dampfes kondensiert. Der Rest des Gemisches wird am kalten Ende abgesaugt.According to FIG. 3, a cavity 13 is formed in the interior of each bundle 2, in which the cavity contains gases that cannot be condensed - hereinafter called air - collects enriched steam. An air cooler 14 is accommodated in this cavity 13. The steam-air mixture flows through this air cooler, with most of the steam condensing. The rest of the mixture is suctioned off at the cold end.

Abgesehen von der horizontalen Ausrichtung sind Teilbündelkon­densatoren soweit bekannt. Dabei ist zu beachten, dass der sich im Innern des Rohrbündels befindliche Luftkühler die Wir­kung hat, dass das Dampf-Gasgemisch innerhalb des Kondensator­bündels beschleunigt wird. Dadurch verbessern sich die Ver­hältnisse insofern, als keine kleinen Strömungsgeschwindigkei­ten vorherrschen, die den Wärmeübergang beeinträchtigen könn­ten.Apart from the horizontal alignment, sub-group capacitors are known so far. It should be noted that the air cooler located inside the tube bundle has the effect of accelerating the steam-gas mixture within the condenser bundle. This improves the situation in that there are no low flow velocities that could impair the heat transfer.

Ausgehend von der vorgegebenen Aussenform des Kondensators - im vorliegenden Fall eine quaderförmige Kondensatorschale -, ist die Form der vier Bündel 2 so angepasst, dass folgende Ziele erreicht werden:
- Gute Ausnützung des Temperaturgefälles
- Kleiner Druckabfall im Rohrbündel trotz hoher Packungs­dichte der Berohrung
- Keine stagnierenden Luftansammlungen in den Dampfgassen und den Bündeln
- Keine Unterkühlung des Kondensates
- Gute Entgasung des Kondensates.
Based on the specified external shape of the capacitor - in this case a cuboidal capacitor shell - the shape of the four bundles 2 is adapted so that the following goals are achieved:
- Good use of the temperature gradient
- Small pressure drop in the tube bundle despite the high packing density of the tubing
- No stagnant air accumulation in the steam lanes and the bundles
- No undercooling of the condensate
- Good degassing of the condensate.

Hierzu sind die Bündel so gestaltet, dass aller Rohre der Pe­ripherie ohne merklichen Druckverlust gut mit Dampf angeströmt sind. Um nun eine homogene, saubere Dampfströmung zu gewähr­leisten und insbesondere um Stauungen innerhalb des Bündels auszuschliessen, sind die vorhandenen Strömungspfade zwischen den vier Bündeln 2 einerseits sowie zwischen den äusseren Bün­deln und deren benachbarter Kondensatorwand folgendermassen ausgebildet:For this purpose, the bundles are designed in such a way that all pipes in the periphery have a good flow of steam without noticeable pressure loss. In order to ensure a homogeneous, clean steam flow and in particular to exclude congestion within the bundle, the existing flow paths between the four bundles 2 on the one hand and between the outer bundles and their adjacent condenser wall are designed as follows:

Zunächst wird vorausgesetzt, dass über dem gesamten Ausström­querschnitt des Kondensatorhalses 1 ein einigermassen homoge­nes Strömungsfeld vorherrscht. Der überwiegende erste Teil des Strömungspfades zwischen Bündelanfang und Bündelende ist kon­vergent ausgebildet. Darin erfährt der strömende Dampf eine räumliche Beschleunigung mit entsprechender Senkung des stati­schen Druckes. Dies verläuft ungefähr homogen an beiden Seiten der Bündel. Bei der vorzunehmenden Kanalverengung beidseits der Bündel ist dabei der Tatsache Rechnung zu tragen, dass in­folge der Kondensation der Dampfmassenstrom zunehmend geringer wird.First, it is assumed that a somewhat homogeneous flow field prevails over the entire outflow cross section of the condenser neck 1. The predominant first part of the flow path between the beginning and end of the bundle is designed to be convergent. The flowing steam experiences a spatial acceleration with a corresponding decrease in the static pressure. This is approximately homogeneous on both sides of the bundle. When narrowing the channel on both sides of the bundle, account must be taken of the fact that due to the condensation, the steam mass flow becomes increasingly smaller.

Nach Erreichen der maximal vorgegebenen Geschwindigkeit wird der Dampf nunmehr bis auf die Geschwindigkeit Null abgebremst mit gleichzeitigem Druckrückgewinn. Dies wird dadurch er­reicht, dass der zweite Teil des Strömungspfades divergent ausgeführt wird. Auch hier gilt es zu beachten, dass die Kana­lerweiterung infolge der zunehmenden Abnahme des Massenstromes optisch nicht erkennbar sein muss. Massgebend ist, dass der zum Kondensatorboden 8 hinströmende Restdampf dort einen Stau­druck erzeugt. Dadurch wird der Dampf umgelenkt und versorgt so auch die unteren Teile der Bündel. Die durch den Staudruck bedingte Temperaturerhöhung kommt dem von Rohr zu Rohr hinab­fliessenden Kondensat zugute, indem es sich, falls es sich un­ter Sättigungstemperatur abgekühlt hatte, wieder erwärmt. Da­durch sichert man sich zwei Vorteile: Thermodynamische Verlu­ste wegen Kondensatunterkühlung sind nicht vorhanden und der Sauerstoffgehalt des Kondensates ist auf ein Minimun redu­ziert.After reaching the maximum specified speed, the steam is now decelerated to zero speed with a simultaneous pressure recovery. This is achieved by making the second part of the flow path divergent. It should also be noted here that the channel expansion does not have to be optically recognizable due to the increasing decrease in the mass flow. It is important that the residual steam flowing towards the condenser bottom 8 generates a dynamic pressure there. This deflects the steam and also supplies the lower parts of the bundle. The increase in temperature caused by the dynamic pressure benefits the condensate flowing down from pipe to pipe by heating up again if it has cooled below the saturation temperature. This ensures two advantages: There are no thermodynamic losses due to condensate hypothermia and the oxygen content of the condensate is reduced to a minimum.

Als weitere Massnahme, die der gleichmässigen Bündelbeauf­schlagung mit Dampf dient, wird der Luftkühler 14 im Bündelin­nern auf jenem Niveau angeordnet, auf dem beidseitig der Bün­del der Druckverlauf in der durchströmten Gasse ein relatives Minimum durchläuft. Im gezeigten Beispiel befindet sich der Luftkühler somit in der hinteren Hälfte der Teilbündel. Das Bündel ist so gestaltet, dass die Dampfansaugung in den Hohl­ raum 13 - unter Berücksichtigung des wirksamen Druckes an der Rohrperipherie und auf Grund der unterschiedlichen Rohrreihen­dicke - in radialer Richtung homogen über alle im Hohlraum 13 angrenzenden Rohre wirkt. Daraus resultiert ein homogener Druckgradient und damit eine eindeutige Fliessrichtung des Dampfes und der nicht kondensierbaren Gase in Richtung Luft­kühler 14. Der Hohlraum 13 mündet stromaufwärts in eine bün­delinterne Ausgleichgasse 16, die dafür sorgt, dass auch der mit Luft angereicherte Dampf aus dem Kern der vorderen Hälfte des Bündels einen reibungsfreien Weg zum Luftkühler findet.As a further measure, which serves the uniform application of steam to the bundle, the air cooler 14 is arranged in the interior of the bundle at the level at which the bundle of pressure runs through a relative minimum on both sides of the bundle. In the example shown, the air cooler is therefore located in the rear half of the sub-bundle. The bundle is designed so that the vapor intake into the hollow Room 13 - taking into account the effective pressure at the pipe periphery and due to the different pipe row thickness - acts homogeneously in the radial direction across all pipes in the cavity 13. This results in a homogeneous pressure gradient and thus a clear direction of flow of the steam and the non-condensable gases in the direction of the air cooler 14. The cavity 13 opens upstream into a compensation lane 16 inside the bundle, which also ensures that the air-enriched steam from the core of the front half the bundle finds a smooth way to the air cooler.

Im Betrieb kondensiert der Dampf an den Rohren 5 und das Kon­densat tropft gegen Kondensatsammelbleche 11 ab. Dieses Ab­tropfen erfolgt innerhalb der Bündel, wobei das Kondensat mit Dampf steigenden Druckes in Berührung kommt. Diese Bleche 11 sind angebracht, um den Einfluss des herabfliessenden Konden­sates auf die darunter liegenden Bündel zu vermeiden. Zwischen dem obersten und dem zweitobersten sowie zwischen den unter­sten und dem zweituntersten Bündeln reichen diese Bleche von der Ebene des Lüftkühlers 14 bis in den Bereich des Kondensa­torbodens 8. Zwischen den mittleren Bündeln erstreckt sich das Blech 11 bis zur oberen Kante der Bündel. Der sparsame Umgang mit Kondensatsammelblechen ist dadurch begründet, dass diese gleichzeitig eine Abbremsung der Dampfströmung in der Dampf­versorgungsgasse hervorrufen und dadurch die Druckregeneration verhindern. Die Bleche überdecken die Bündel, lassen aber in jedem Fall ausreichend freien Platz zum Druckausgleich und um die Druckregeneration durch Stauung der Dampfrestgeschwindig­keit am Ende der Kondensationsstrecke, d.h. im Bereich des Kondensatorbodens 8 zu verunmöglichen. Das resultierende Dampfpolster bewirkt die Rückbildung jeglicher Kondensatunter­kühlung und die Restentgasung des an dieser Stelle fein zer­teilten Kondensates.In operation, the steam condenses on the tubes 5 and the condensate drips off against condensate collecting plates 11. This dripping takes place within the bundle, the condensate coming into contact with steam increasing pressure. These sheets 11 are attached in order to avoid the influence of the condensate flowing down on the bundles underneath. Between the top and second top and between the bottom and the second bottom bundles, these sheets extend from the level of the air cooler 14 to the area of the condenser bottom 8. Between the middle bundles, the sheet 11 extends to the upper edge of the bundles. The economical use of condensate collecting plates is due to the fact that they simultaneously slow down the steam flow in the steam supply lane and thereby prevent pressure regeneration. The sheets cover the bundles, but in any case leave enough free space for pressure equalization and for pressure regeneration by stagnation of the residual steam speed at the end of the condensation path, i.e. impossible in the region of the capacitor bottom 8. The resulting steam cushion causes any condensate subcooling to regress and the residual degassing of the condensate, which is finely divided at this point.

Die gesamte Baueinheit Kondensatorschale, d.h. Gehäuse, sowie Teilbündel und Kondensatsammelbleche ist in Rohrlängsrichtung leicht um die Turbinenachse 24 geneigt, um das rasche Abflies­sen des Kondensates zu fördern.The entire condenser shell assembly, ie housing, as well as partial bundles and condensate collecting plates, is in the longitudinal direction of the pipe slightly inclined about the turbine axis 24 in order to promote the rapid drainage of the condensate.

Wie insbesondere aus den Fig.4 und 5 ersichtlich, sind die Luftkühler innerhalb der Teilbündel von asymmetrischer Form und von aszentrischer Lage innerhalb des Hohlraumes 13. Im Un­terschied zur bereits erwähnten Unterfluranordnung des Konden­sators werden die Bündel 2 bei der horizontalen Aufstellung nämlich stark asymmetrisch belastet, da die Schwerkraft und die Trägheitskraft der Dampfgeschwindigkeit nahezu senkrecht zueinander gerichtet sind. Diese Asymmetrie bezieht sich al­lerdings hauptsächlich auf die Kondensatbelastung im Bündel, was bezüglich der geometrischen Bündelkonturen zu einer eben­falls asymmetrischen Lokalisierung des Druckminimums im Rohr­verband führt.As can be seen in particular from FIGS. 4 and 5, the air coolers within the partial bundles are asymmetrical in shape and of an ascentric position within the cavity 13. In contrast to the already mentioned underfloor arrangement of the condenser, the bundles 2 are subjected to a highly asymmetrical load when installed horizontally, since gravity and the inertial force of the vapor velocity are almost perpendicular to each other. However, this asymmetry mainly relates to the condensate load in the bundle, which also leads to an asymmetrical localization of the pressure minimum in the pipe structure with regard to the geometrical bundle contours.

Die Lage des minimalen Druckes diktiert die Lage des Luftküh­lers, da dieser der Ort der Ansammlung der nichtkondensierba­ren Gase ist. Das von oben herabregnende Kondensat verstärkt den dampfseitigen Druckverlust in der unteren Bündelhälfte und verursacht damit die Verlagerung des Druckminimums nach unten. Der Luftkühler ist deshalb so konfiguriert und angeordnet, dass er der genannten Asymmetrie Rechnung trägt. Das Ansaugen der Luft geschieht infolge der gewählten Kühlerkonfiguration unterhalb der Längsmittellinie 22 des Bündels.The location of the minimum pressure dictates the location of the air cooler as it is the location of the accumulation of non-condensable gases. The condensate raining down from above increases the steam-side pressure loss in the lower half of the bundle and thus causes the pressure minimum to shift downwards. The air cooler is therefore configured and arranged in such a way that it takes account of the asymmetry mentioned. The air is drawn in below the longitudinal center line 22 of the bundle due to the chosen cooler configuration.

Der Luftkühler 14 hat die Aufgabe, die nichtkondensierbaren Gase aus dem Kondensator zu entfernen. Bei diesem Vorgang sind die Dampfverluste so gering wie möglich zu halten. Dies wird dadurch erreicht, dass das Dampf/Luftgemisch in Richtung Ab­saugkanal 17 beschleunigt wird. Die hohe Geschwindigkeit hat einen guten Wärmeübergang zur Folge, was zu einer weitgehenden Kondensation des Restdampfes führt. Zwecks Beschleunigung des Gemisches wird der Querschnitt in Strömungsrichtung zunehmend kleiner bemessen, wie es aus Fig. 5 hervorgeht. Die Luft wird über Blenden 18 in den Kanal 17 abgesaugt. Diese Blenden, wel­che an der jüngsten Stelle der Kühlerabdeckung angebracht sind, stellen die physikalische Trennung des Kondensationsrau­mes vom Absaugkanal dar. Sie sind mehrfach über die ganze Rohrlänge verteilt und bewirken durch die Erzeugung eines Druckverlustes, dass die Saugwirkung in allen Kompartimenten des Kondensators homogen ist.The air cooler 14 has the task of removing the non-condensable gases from the condenser. During this process, the steam losses are to be kept as low as possible. This is achieved in that the steam / air mixture is accelerated in the direction of the suction duct 17. The high speed results in good heat transfer, which leads to extensive condensation of the residual steam. In order to accelerate the mixture, the cross section in the direction of flow is increasingly smaller, as can be seen in FIG. 5. The air is sucked off through orifices 18 into the channel 17. These covers, which are attached to the youngest part of the radiator cover are the physical separation of the condensation space from the suction channel. They are distributed several times over the entire length of the pipe and, by creating a pressure loss, ensure that the suction effect is homogeneous in all compartments of the condenser.

Ein Teil der Wandung des Absaugkanals 17 ist gleichzeitig als trichterförmiges Abdeckblech 19 konzipiert. Dieses Blech ist über die Rohre des Kühlers gestülpt und schützt diese vor der von oben nach unten fliessenden Dampf- und Kondensatströmung. Damit ist auch die Eintrittsrichtung des abzukühlenden Gemi­sches vorgegeben, nämlich von hinten nach vorn zu den Blenden 18 hin.Part of the wall of the suction channel 17 is also designed as a funnel-shaped cover plate 19. This sheet is placed over the pipes of the cooler and protects them from the steam and condensate flow flowing from top to bottom. This also specifies the direction of entry of the mixture to be cooled, namely from the back to the front towards the screens 18.

Die Entwässerung des Absaugkanals 17 erfolgt durch in Kanal­längserstreckung mehrfach angeordnete Löcher 23 am jeweils tiefsten Punkt des Kanals.The drainage of the suction channel 17 takes place through holes 23 arranged several times in the longitudinal direction of the channel at the lowest point of the channel.

Um die Luft aus dem Absaugkanal 17 zum nicht dargestellten Saugapparat zu leiten, sind eine entsprechende Anzahl Rohre 5 aus den Bündeln 2 ausgespart. Je nach Grösse und Staffelung der Rohre 5 handelt es sich dabei um das Fortlassen entweder einer oder zweier Rohrreihen. Durch diese Aussparung werden mehrere, das Bündel nach oben durchdringende Saugleitungen 20 herausgeführt. Parallel zum Bündel werden diese Saugleitungen bis zum Kondensatorboden 8 geführt, wo sie in eine zum Saugap­parat führende Sammelleitung 15 münden.In order to guide the air from the suction duct 17 to the suction apparatus (not shown), a corresponding number of tubes 5 are left out of the bundles 2. Depending on the size and staggering of the tubes 5, this involves omitting either one or two rows of tubes. A plurality of suction lines 20 penetrating the bundle upward are led out through this recess. Parallel to the bundle, these suction lines are led to the condenser bottom 8, where they open into a collecting line 15 leading to the suction device.

Der durch das Fortlassen der Rohre entstehende freie Raum wird mittels Dampfsperren bestückt. Diese haben primär zum Ziel, einen Dampfbypass zu verhindern. Es handelt sich im vorliegen­den Fall um Blindrohre, welche den vertikalen Dampf- oder Kon­densataustausch nicht unterbinden. In Richtung Dampfgasse/­Kühler bilden sie ein Strömungshindernis, das den gleichen Druckverlust aufweisen sollte wie die Originalberohrung. Dane­ben können diese Blindrohre auch als Stützanker zwischen den nicht gezeigten Rohrstützplatten verwendet werden.The free space created by the omission of the pipes is filled with vapor barriers. The primary goal of these is to prevent steam bypass. In the present case, these are dummy pipes which do not prevent the vertical exchange of steam or condensate. In the direction of the steam lane / cooler, they form a flow obstacle that should have the same pressure loss as the original pipe. In addition, these blind pipes can also be used as support anchors between the pipe support plates, not shown.

Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. So könnten beispielsweise als Dampfsperren statt der Blindrohre genau so gut längsgerichtete, gestaffelte, schikanartige Bleche zur An­wendung gelangen. Man könnte auch ganz auf die Dampfsperren verzichten, wenn die nichtkondensierbaren Gase - statt quer durch die Bündel - in Rohrlängsrichtung aus dem Kondensator herausgeführt werden. In diesem Fall müsste der Absaugkanal resp. die daran angeschlossene Saugleitung einen der beiden Rohrböden 6 und die entsprechende Wasserkammer 7 durchdringen In Abweichung zur beschriebenen Lösung, gemäss der der ganze Kondensator leicht gegenüber der Turbinenachse geneigt ist, bestünde auch die Möglichkeit, nur die Kondensatsammelbleche und den Saugkanal zwecks Kondensatablauf leicht zu neigen. Schliesslich kann der Kondensator selbstverständlich auch zweigeteilt sein und beidseitig der Turbine angeordnet sein. Desgleichen kann er in der Verlängerunng der Turbinenachse aufgestellt sein.Of course, the invention is not limited to the exemplary embodiment shown and described. For example, longitudinal, staggered, baffle-like sheets could be used as vapor barriers instead of the dummy pipes. The vapor barriers could also be dispensed with entirely if the non-condensable gases are led out of the condenser in the longitudinal direction of the tube instead of across the bundle. In this case, the suction channel, respectively. the suction line connected to it penetrate one of the two tube plates 6 and the corresponding water chamber 7. Finally, the condenser can of course also be divided into two and arranged on both sides of the turbine. Likewise, it can be set up in the extension of the turbine axis.

BEZUGSZEICHENLISTEREFERENCE SIGN LIST

  • 1 Kondensatorhals1 condenser neck
  • 2 Teilbündel2 sub-bundles
  • 3 Turbine3 turbine
  • 4 Kondensatormantel4 capacitor jacket
  • 5 Rohr5 pipe
  • 6 Rohrboden6 tube plate
  • 7 Wasserkammer7 water chamber
  • 8 Kondensatorboden8 capacitor bottom
  • 9 Fundament9 foundation
  • 10 Abdampfstutzen10 evaporation nozzle
  • 11 Kondensatsammelblech11 Condensate collecting plate
  • 12 Kondensatsammelgefäss12 condensate collector
  • 13 Hohlraum13 cavity
  • 14 Luftkühler14 air cooler
  • 15 Sammelleitung15 manifold
  • 16 Ausgleichgasse16 compensation alley
  • 17 Saugkanal17 suction channel
  • 18 Blende18 aperture
  • 19 Abdeckblech19 cover plate
  • 20 Saugleitung20 suction line
  • 22 Längsmittellinie von 222 longitudinal center line of 2
  • 23 Entwässerungsloch in 1723 drainage hole in 17
  • 24 Turbinenachse24 turbine axis

Claims (5)

1. Dampfkondensator zur ebenerdigen Anordnung mit einer Dampfturbine, wobei der Dampf an kühlwasserdurchflosse­nen, in separaten Teilbündeln (2) zusammengefassten Roh­ren (5) niedergeschlagen wird, und wobei die in Reihen angeordneten Rohre eines Bündels einen Hohlraum (13) um­schliessen, in dem ein Kühler (14) für die nicht konden­sierbaren Gase angeordnet ist,
dadurch gekennzeichnet,
- dass die Teilbündel (2) in ihrer Längserstreckung horizontal gerichtet sind,
- dass mehrere Teilbündel in der Vertikalen übereinander angeordnet sind,
- und dass der Kühler (14) innerhalb der Teilbündel asymmetrisch ausgebildet ist und dass sein Ansaug­querschnitt seinen Schwerpunkt unterhalb der Längs­mittellinie (22) der Teilbündel hat.
1. steam condenser for ground-level arrangement with a steam turbine, the steam being deposited on pipes (5), through which cooling water flows and which are combined in separate sub-bundles (2), and wherein the pipes of a bundle arranged in rows enclose a cavity (13) in which a cooler (14) is arranged for the non-condensable gases,
characterized,
- That the partial bundles (2) are horizontally directed in their longitudinal extent,
that several sub-bundles are arranged one above the other in the vertical,
- And that the cooler (14) is asymmetrical within the sub-bundle and that its intake cross-section has its center of gravity below the longitudinal center line (22) of the sub-bundle.
2. Dampfkondensator nach Anspruch 1, dadurch gekennzeichnet, dass die Rohre des Kühlers (14) im Hohlraum (13) des Bün­dels (2) mit einem Abdeckblech (19) versehen sind, wel­ches als geschlossener Saugkanal (17) ausgebildet ist, wobei letzterer mit der kältesten Kühlerzone über Blenden (18) kommuniziert.2. Steam condenser according to claim 1, characterized in that the tubes of the cooler (14) in the cavity (13) of the bundle (2) are provided with a cover plate (19) which is designed as a closed suction channel (17), the latter with the coldest cooler zone communicates via panels (18). 3. Dampfkondensator nach Anspruch 2, dadurch gekennzeichnet, dass das vom Kühler in den Saugkanal einströmende Dampf-­Luftgemisch aus dem Kanal über mindestens eine, das Bün­del durchdringende Saugleitung (20) abgezogen wird, wozu innerhalb des Teilbündels ein resp. zwei Rohrreihen im ansonsten geschlossenen Mantel fehlen und durch Blind­rohre (21) ersetzt sind.3. Steam condenser according to claim 2, characterized in that the steam-air mixture flowing into the suction channel from the cooler is withdrawn from the channel via at least one suction line (20) penetrating the bundle, for which purpose within the sub-bundle a two rows of pipes in the otherwise closed jacket are missing and replaced by blind pipes (21). 4. Dampfkondensator nach Anspruch 1, dadurch gekennzeichnet, dass zwischen je zwei Teilbündeln (2) ein horizontal aus­gerichtetes Kondensatsammelblech (11) angeordnet ist, welches sich mindestens von der Ebene des Kühlers (14) bis in den Bereich des Kondensatorbodens (8) erstreckt.4. Steam condenser according to claim 1, characterized in that a horizontally oriented condensate collecting plate (11) is arranged between two sub-bundles (2), which extends at least from the plane of the cooler (14) to the region of the condenser bottom (8). 5. Dampfkondensator nach Anspruch 1, dadurch gekennzeichnet, dass die Baueinheit Kondensatorschale/Teilbündel/Kon­densatsammelbleche in Rohrlängsrichtung gegenüber der Turbinenachse (24) leicht geneigt ist.5. Steam condenser according to claim 1, characterized in that the structural unit condenser shell / partial bundle / condensate collecting plates is slightly inclined in the longitudinal direction of the pipe relative to the turbine axis (24).
EP90102198A 1989-02-23 1990-02-05 Steam condenser Expired - Lifetime EP0384200B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH670/89 1989-02-23
CH67089 1989-02-23

Publications (2)

Publication Number Publication Date
EP0384200A1 true EP0384200A1 (en) 1990-08-29
EP0384200B1 EP0384200B1 (en) 1993-09-22

Family

ID=4192419

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90102198A Expired - Lifetime EP0384200B1 (en) 1989-02-23 1990-02-05 Steam condenser

Country Status (5)

Country Link
US (1) US5018572A (en)
EP (1) EP0384200B1 (en)
JP (1) JP2930647B2 (en)
DE (1) DE59002779D1 (en)
HU (1) HU212653B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523923A1 (en) * 1995-06-30 1997-01-02 Abb Management Ag Low pressure steam turbine
DE19642100A1 (en) * 1996-10-12 1998-04-16 Asea Brown Boveri Steam condenser
DE19715492A1 (en) * 1997-04-14 1998-10-15 Siemens Ag Steam turbine and condenser arrangement e.g. for power station
EP0957325A1 (en) 1998-05-14 1999-11-17 Asea Brown Boveri AG Steam condenser
EP0976998A1 (en) 1998-07-30 2000-02-02 Asea Brown Boveri AG Steam condenser
EP1126227A1 (en) 2000-02-09 2001-08-22 ALSTOM POWER (Schweiz) AG Steam condenser
US6550249B2 (en) 2000-07-11 2003-04-22 Alstom (Switzerland) Ltd Condenser neck between a steam turbine and a condenser
WO2013117730A2 (en) 2012-02-10 2013-08-15 Alstom Technology Ltd Water/steam cycle and method for operating the same
EP2264286A3 (en) * 2009-05-28 2014-05-14 General Electric Company Steam turbine two flow low pressure configuration

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576292B2 (en) * 1991-01-29 1997-01-29 株式会社日立製作所 Condenser and power plant using the same
DE4422344A1 (en) * 1994-06-27 1996-01-04 Siemens Ag Condenser for steam power installations
DE69530047T2 (en) 1994-12-02 2004-01-29 Hitachi Ltd Condenser and power plant
US6269867B1 (en) * 1994-12-02 2001-08-07 Hitachi, Ltd Condenser and power plant
JP3735405B2 (en) * 1995-12-15 2006-01-18 株式会社東芝 Condenser
DE10016080A1 (en) * 2000-03-31 2001-10-04 Alstom Power Nv Condenser for condensation of vapor-form fluid has at least one bundle of parallel arranged tubes, through which first fluid flows and around which vapor-form fluid flows
US6526755B1 (en) * 2001-05-07 2003-03-04 Joseph W. C. Harpster Condensers and their monitoring
US7765628B2 (en) 2006-06-09 2010-08-03 Whirlpool Corporation Steam washing machine operation method having a dual speed spin pre-wash
US7730568B2 (en) 2006-06-09 2010-06-08 Whirlpool Corporation Removal of scale and sludge in a steam generator of a fabric treatment appliance
US7941885B2 (en) 2006-06-09 2011-05-17 Whirlpool Corporation Steam washing machine operation method having dry spin pre-wash
US7681418B2 (en) 2006-08-15 2010-03-23 Whirlpool Corporation Water supply control for a steam generator of a fabric treatment appliance using a temperature sensor
US7665332B2 (en) 2006-08-15 2010-02-23 Whirlpool Corporation Steam fabric treatment appliance with exhaust
US7841219B2 (en) 2006-08-15 2010-11-30 Whirlpool Corporation Fabric treating appliance utilizing steam
US7886392B2 (en) 2006-08-15 2011-02-15 Whirlpool Corporation Method of sanitizing a fabric load with steam in a fabric treatment appliance
US7707859B2 (en) 2006-08-15 2010-05-04 Whirlpool Corporation Water supply control for a steam generator of a fabric treatment appliance
US7753009B2 (en) 2006-10-19 2010-07-13 Whirlpool Corporation Washer with bio prevention cycle
JP2008241211A (en) * 2007-03-28 2008-10-09 Toshiba Corp Horizontal inflow type condenser and its operation method
US8393183B2 (en) 2007-05-07 2013-03-12 Whirlpool Corporation Fabric treatment appliance control panel and associated steam operations
US8037565B2 (en) 2007-08-31 2011-10-18 Whirlpool Corporation Method for detecting abnormality in a fabric treatment appliance having a steam generator
US7690062B2 (en) 2007-08-31 2010-04-06 Whirlpool Corporation Method for cleaning a steam generator
US7918109B2 (en) 2007-08-31 2011-04-05 Whirlpool Corporation Fabric Treatment appliance with steam generator having a variable thermal output
US7966683B2 (en) 2007-08-31 2011-06-28 Whirlpool Corporation Method for operating a steam generator in a fabric treatment appliance
JP6207957B2 (en) * 2013-10-04 2017-10-04 三菱重工業株式会社 Condenser
EP2878907A1 (en) 2013-11-28 2015-06-03 Alstom Technology Ltd Integrated condenser
WO2015111318A1 (en) * 2014-01-23 2015-07-30 三菱日立パワーシステムズ株式会社 Condenser
CN113513924B (en) * 2021-07-23 2022-04-01 杭州国能汽轮工程有限公司 Circular laterally-arranged scissor-shaped tube bundle condenser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812591A (en) * 1930-11-26 1931-06-30 Worthington Pump & Mach Corp Condenser
US2939685A (en) * 1955-12-14 1960-06-07 Lummus Co Condenser deaerator
CH423819A (en) * 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Condensation system for steam turbine exhaust steam
DE1501339A1 (en) * 1966-04-02 1969-12-04 Weser Ag Steam condenser

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1578031A (en) * 1921-08-04 1926-03-23 Westinghouse Electric & Mfg Co Condenser
US2848197A (en) * 1955-09-02 1958-08-19 Lummus Co Condenser
US2869833A (en) * 1957-04-03 1959-01-20 Worthington Corp Modular heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1812591A (en) * 1930-11-26 1931-06-30 Worthington Pump & Mach Corp Condenser
US2939685A (en) * 1955-12-14 1960-06-07 Lummus Co Condenser deaerator
CH423819A (en) * 1965-01-15 1966-11-15 Bbc Brown Boveri & Cie Condensation system for steam turbine exhaust steam
DE1501339A1 (en) * 1966-04-02 1969-12-04 Weser Ag Steam condenser

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523923C2 (en) * 1995-06-30 2003-09-18 Alstom Low-pressure steam turbine
US5779435A (en) * 1995-06-30 1998-07-14 Asea Brown Boveri Ag Low-pressure steam turbine
DE19523923A1 (en) * 1995-06-30 1997-01-02 Abb Management Ag Low pressure steam turbine
DE19642100A1 (en) * 1996-10-12 1998-04-16 Asea Brown Boveri Steam condenser
EP0841527A2 (en) 1996-10-12 1998-05-13 Asea Brown Boveri AG Steam condenser
EP0841527A3 (en) * 1996-10-12 1998-12-02 Asea Brown Boveri AG Steam condenser
US5941301A (en) * 1996-10-12 1999-08-24 Asea Brown Boveri Ag Steam condenser
DE19642100B4 (en) * 1996-10-12 2011-09-29 Alstom steam condenser
DE19715492A1 (en) * 1997-04-14 1998-10-15 Siemens Ag Steam turbine and condenser arrangement e.g. for power station
DE19715492C2 (en) * 1997-04-14 1999-08-12 Siemens Ag Steam turbine plant
EP0957325A1 (en) 1998-05-14 1999-11-17 Asea Brown Boveri AG Steam condenser
EP0976998A1 (en) 1998-07-30 2000-02-02 Asea Brown Boveri AG Steam condenser
US6360543B2 (en) 2000-02-09 2002-03-26 Alstom (Schweiz) Ag Steam condenser
EP1126227A1 (en) 2000-02-09 2001-08-22 ALSTOM POWER (Schweiz) AG Steam condenser
US6550249B2 (en) 2000-07-11 2003-04-22 Alstom (Switzerland) Ltd Condenser neck between a steam turbine and a condenser
EP2264286A3 (en) * 2009-05-28 2014-05-14 General Electric Company Steam turbine two flow low pressure configuration
WO2013117730A2 (en) 2012-02-10 2013-08-15 Alstom Technology Ltd Water/steam cycle and method for operating the same
US9453428B2 (en) 2012-02-10 2016-09-27 Alstom Technology Ltd Water/steam cycle and method for operating the same

Also Published As

Publication number Publication date
HU900903D0 (en) 1990-05-28
US5018572A (en) 1991-05-28
EP0384200B1 (en) 1993-09-22
JPH02242088A (en) 1990-09-26
HUT56919A (en) 1991-10-28
HU212653B (en) 1996-09-30
DE59002779D1 (en) 1993-10-28
JP2930647B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
EP0384200B1 (en) Steam condenser
DE2545061C2 (en)
DE2026941C3 (en) Device for treating a flowing fluid
EP0325758B1 (en) Steam condenser
EP0619466B1 (en) Steam condenser
DE19642100B4 (en) steam condenser
DE2524080C3 (en) Heat exchanger in which a vaporous medium condenses while giving off heat to another medium
DE69810247T2 (en) cooling tower
EP0795729B1 (en) Steam condenser
DE68913233T2 (en) Air-cooled steam condenser with vacuum.
DE69102879T2 (en) GAS COOLER FOR HEAT TRANSFER BY CONVECTION.
EP0561012B1 (en) Method and apparatus for water treatment in a surface condenser
EP0957325A1 (en) Steam condenser
EP1139051A2 (en) Condenser
DE4141809A1 (en) Evaporative coolant circuit esp. for vehicular air-conditioning - equalises distribution of coolant injected in liq. state through expansion jets into corresp. individual evaporator tubes
DE726296C (en) Moist heat exchanger (condenser or cooler)
EP0976998A1 (en) Steam condenser
DE715842C (en) Device for steaming, in particular printed fabrics
CH210334A (en) Device for condensing vapors and cooling gases.
DE3121346C2 (en)
AT118083B (en) Device for heating and ventilating drying devices.
DE605798C (en) Evaporator
DE1501337C (en) Surface condenser for steam turbine exhaust steam
EP0085131B1 (en) Heat-transfer apparatus for cooling gases contaminated with particles
DE1298107B (en) Absorption refrigeration system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR IT LI NL SE

17P Request for examination filed

Effective date: 19910221

17Q First examination report despatched

Effective date: 19920406

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI NL SE

REF Corresponds to:

Ref document number: 59002779

Country of ref document: DE

Date of ref document: 19931028

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90102198.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ASEA BROWN BOVERI AG TRANSFER- ALSTOM

Ref country code: CH

Ref legal event code: NV

Representative=s name: GIACOMO BOLIS C/O ALSTOM (SWITZERLAND) LTD CHSP IN

NLS Nl: assignments of ep-patents

Owner name: ALSTOM (SWITZERLAND) LTD

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB SCHWEIZ HOLDING AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090219

Year of fee payment: 20

Ref country code: NL

Payment date: 20090217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090217

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090221

Year of fee payment: 20

Ref country code: SE

Payment date: 20090216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090213

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20100205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100205