EP0377818B1 - Method of measuring the wetting power between fluid and solid body - Google Patents
Method of measuring the wetting power between fluid and solid body Download PDFInfo
- Publication number
- EP0377818B1 EP0377818B1 EP89122114A EP89122114A EP0377818B1 EP 0377818 B1 EP0377818 B1 EP 0377818B1 EP 89122114 A EP89122114 A EP 89122114A EP 89122114 A EP89122114 A EP 89122114A EP 0377818 B1 EP0377818 B1 EP 0377818B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- wetting
- liquid
- oscillation
- solid body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N13/02—Investigating surface tension of liquids
- G01N2013/0225—Investigating surface tension of liquids of liquid metals or solder
Definitions
- the invention relates to a method for measuring the wetting between liquid and solid.
- the wetting force between a liquid medium and a solid medium plays a decisive role in the suitability of material combinations, in particular for the formation of a joining or adhesive layer between different materials.
- Applications include, for example, the introduction of fiber reinforcements in the manufacture of composite materials. In the case of layered bonds, too, the wetting ability between the individual fibers is often important for the quality of the connection.
- the measurement of the wettability plays an outstanding role when assessing the solderability, particularly in the field of electronics and microelectronics.
- a method for assessing the solderability by means of a wetting force measurement is from the article: "Solderability testing of state-of-the-art electronic components and substrates"; GEO Journal of Research; Volume 4, No. 4; 1986; Pages 270-274; IA Gunter, known.
- soldering processes play an important role, which allow a high degree of automation. These are processes such as wave soldering, drag soldering, reflow soldering and processes or process combinations derived therefrom.
- the object of the invention is to provide a method for measuring the wetting force between the liquid and the solid, which enables a quantitative measurement of the wetting forces.
- the method according to the invention assumes that wetting is a consequence of the driving forces of surface diffusion, i.e. that it follows the efforts of the surface to become saturated with atoms of a surrounding medium in such a way that the state of minimal energy occurs.
- wetting scale which measures the static forces over time in this process
- the force effect in a dynamic process - as this represents a vibration - is recorded in the method according to the invention. Due to the effect of the forces during the wetting process, a vibrating system, in which the test body is included, undergoes a change, e.g.
- damping or frequency shift as a result of the energy transfer between solid and liquid, which leads to the fact that the entire liquid / solid system is included in the vibration of a component depending on the wetting forces.
- the measurement of damping effects or frequency shifts is not limited by the expansion of the metallization layer, so it can also be carried out with very small metallization areas.
- the detuning of a vibrating system reacts much more sensitively to the effects of external forces than is the case with static measurements.
- the vibratable system with the test body is preferably set in longitutinal or torsional vibrations, and transverse vibrations and surface vibrations can also be usefully applied.
- a single frequency can be selected as the frequency, for example the resonance frequency of the system (transducer and sample). However, all frequencies within a certain frequency band can also be tuned for excitation. In the case of tuning, the influence of the wetting forces depending on the position of the excitation frequency can be considered.
- the vibration energy that is transmitted liquid / solid over the interface can also be used in the measurement, which also allows a statement about the wetting forces.
- the measurement of the energy via the transfer through the liquid / solid interface can also be done on its own to be viewed as.
- a sound pick-up is required to measure the energy transfer, which records the transmitted energy at another point (in the bathroom or in the solid body).
- the amplitude can be selected so that in the minimum of the wave (lowest point) the body just touches the bath, so that on the way to the maximum the bath is affected by the wetting forces is pulled up.
- a maximum deflection can be determined until the liquid is torn off.
- the damping of the vibration due to the forces between the bath and the solid surface can also be measured when the body is fully immersed.
- both the amplitude and the frequency can be kept constant or varied.
- the quartz crystal can be used as a frequency-determining element in an oscillator circuit ( Figure 5).
- the change in frequency as a function of time then reflects the course of the wetting.
- the damping that occurs as a result of wetting causes Increasing the resistance R L in the equivalent circuit diagram of the quartz crystal and can therefore be measured in resonance using the apparent conductance (Figure 6).
Landscapes
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Messung der Benetzung zwischen Flüssigkeit und Festkörper.The invention relates to a method for measuring the wetting between liquid and solid.
Für die Eignung von Werkstoffkombinationen, insbesondere für die Ausbildung einer Füge- oder Haftschicht zwischen verschiedenen Werkstoffen spielt die Benetzungskraft zwischen einem flüssigen Medium und einem Festkörpermedium eine maßgebende Rolle. Zu den Anwendungsfällen gehören z.B. das Einbringen von Faserverstärkungen bei der Herstellung von Kompositwerkstoffen. Auch bei Schichtverbunden ist für die Qualität der Verbindung vielfach die Benetzungsfähigkeit zwischen den einzelnen Fasern von Bedeutung. Eine herausragende Rolle spielt die Messung der Benetzungsfähigkeit bei der Beurteilung der Lötbarkeit, insbesondere im Bereich der Elektronik und Mikroelektronik. Ein Verfahren zur Beurteilung der Lötbarkeit mittels einer Benetzungskraft - Messung ist aus den Artikel: "Solderability testing of state-of-the- art electronic components and substrates"; GEO Journal of Research; Band 4, Nr. 4; 1986; Seiten 270-274; I.A. Gunter, bekannt.The wetting force between a liquid medium and a solid medium plays a decisive role in the suitability of material combinations, in particular for the formation of a joining or adhesive layer between different materials. Applications include, for example, the introduction of fiber reinforcements in the manufacture of composite materials. In the case of layered bonds, too, the wetting ability between the individual fibers is often important for the quality of the connection. The measurement of the wettability plays an outstanding role when assessing the solderability, particularly in the field of electronics and microelectronics. A method for assessing the solderability by means of a wetting force measurement is from the article: "Solderability testing of state-of-the-art electronic components and substrates"; GEO Journal of Research;
Die Zuverlässigkeit von Bauteilen und Komponenten der Elektrotechnik und der Elektronik ist wesentlich von der einwandfreien Ausführung der Lötverbindung insbesondere zwischen den Einzelbausteinen und der Leiterplatte abhängig. In der Großserienfertigung ist das wichtigste Verfahren für die Herstellung elektrisch leitender Verbindungen das Weichlöten. In modernen Produktionsprozessen nehmen dabei solche Lötverfahren eine bedeutsame Stellung ein, die einen hohen Automatisierungsgrad zulassen. Es sind dies Verfahren wie das Wellenlöten, Schlepplöten, Reflow-Löten und davon abgeleitete Prozesse oder Prozeßkombinationen.The reliability of parts and components in electrical engineering and electronics is largely dependent on the perfect execution of the soldered connection, in particular between the individual components and the printed circuit board. In large series production, the most important process for producing electrically conductive connections is soft soldering. In modern production processes, such soldering processes play an important role, which allow a high degree of automation. These are processes such as wave soldering, drag soldering, reflow soldering and processes or process combinations derived therefrom.
Um eine gleichbleibende kontrollierbare Qualität der Produkte und damit die erforderliche Zuverlässigkeit zu gewährleisten, ist es erforderlich, die Lötbarkeit reproduzierbar quantitativ zu erfassen. Die Lötbarkeit steht unmittelbar im Zusammenhang mit der Benetzbarkeit zwischen Lot und Substrat. Die Benetzungsreaktion ist eine Reaktion an der 3-Phasengrenzfläche zwischen flüssigem Lot, festem Substrat und dem umgebenden Medium. Somit ist die Benetzbarkeit abhängig von Art und Oberflächenzustand des Substratwerkstoffs, Temperatur, Zusammensetzung und Zustand des Lotes sowie vom Flußmittel. Die Prüfung der Benetzungsfähigkeit wird nach verschiedenen Verfahren durchgeführt. Als wichtigen Methoden seien genannt:
- 1. optische Prüfung
- 2. Ausbreitungsmessung nach DIN 8516
- 3. Hubtauchprüfung nach DIN 32506,
2, 3Teil - 4. Benetzungskraftmessung nach DIN 32506,
Teil 4 - 5. Lotkugelprüfung nach DIN IEC 68, Teil 2-20
- 6. Drehtauchtest nach DIN 40803,
Teil 1 - 7. Steighöhentest
Die Messung der Kräfte in Abhängigkeit von der Zeit beim Eintauchen eines Prüfkörpers in das Lotbad spielt für die Beurteilung der Lötbarkeit eine herausragende Rolle, da mit Hilfe dieser Methode eine Reihe von reproduzierbaren und aussagekräftigen Zahlenwerten gewonnen werden können. Der Verlauf der an einer Benetzungswaage zu messenden Kräfte über der Zeit während des Eintauchvorgangs ergibt sich daraus, daß ein zu belotender Testkörper, der in das Lot getaucht wird, zunächst die Oberflächenspannung sowie die Reibungskräfte aufgrund der Zähigkeit des Lots und beim Durchstoßen der Oxidhaut überwinden muß (Bild 1 a). Bei einsetzendem Benetzungsvorgang wird die Benetzungskraft wirksam, die das Lot an der Oberfläche hochsteigen läßt bzw. den Testkörper durch die Benetzungskräfte in das Lot zieht. Entgegengerichtet zur Benetzungskraft ist schließlich noch der Auftrieb am Testkörper wirksam (Bild 1 b). Der Verlauf der Kräfte über der Zeit bei einem Eintauchvorgang eines Prüflings in das Lotbad ergibt den Verlauf einer Benetzungskraftkurve, die in einer reproduzierbaren Weise eine quantitative Darstellung der Lötbarkeit zuläßt. Die mit Hilfe der Benetzungswaage aufgenommenen Kraft-Zeit-Diagramme spiegeln den Ablauf der beschriebenen Vorgänge beim Eintauchen wieder (Bild 3). Die Benetzungskraftmessungen mit Hilfe der Benetzungswaage haben Variationen erfahren, insbesondere zur präziseren Erfassung des Beginns der Benetzung und/oder des Abreissens des Lotes bei der Entfernung des Prüflings aus dem Lotbad. Auch Abweichungen vom senkrechten Eintauchen durch Anwendung verschiedener Eintauchwinkel sind vorgenommen worden.In order to ensure a constant, controllable quality of the products and thus the required reliability, it is necessary to quantitatively record the solderability. The solderability is directly related to the wettability between the solder and the substrate. The wetting reaction is a reaction at the 3-phase interface between liquid Solder, solid substrate and the surrounding medium. So the wettability depends on the type and surface condition of the substrate material, temperature, composition and condition of the solder as well as on the flux. The wetting ability is tested according to various methods. The following are important methods:
- 1. optical inspection
- 2. Propagation measurement according to DIN 8516
- 3.Lift immersion test according to DIN 32506,
2, 3part - 4.Wetting force measurement according to DIN 32506,
part 4 - 5. Solder ball test according to DIN IEC 68, part 2-20
- 6.Diving immersion test according to DIN 40803,
part 1 - 7. Rising altitude test
The measurement of the forces as a function of time when a test specimen is immersed in the solder bath plays an outstanding role in assessing the solderability, since a number of reproducible and meaningful numerical values can be obtained using this method. The course of the forces to be measured on a wetting scale over time during the immersion process results from the fact that a test body to be soldered, which is immersed in the solder, first has to overcome the surface tension and the frictional forces due to the toughness of the solder and when the oxide skin is pierced (Photo 1 a). When the wetting process begins, the wetting force takes effect, which causes the solder to rise on the surface or pulls the test specimen into the solder by the wetting forces. In the opposite direction to the wetting force, the buoyancy on the test body is finally effective (Figure 1 b). The course of the forces over time during an immersion process of a test specimen in the solder bath results in the course of a wetting force curve which allows a quantitative representation of the solderability in a reproducible manner. The force-time diagrams recorded with the aid of the wetting scale reflect the sequence of the described processes during immersion (Figure 3). The wetting force measurements with the help of the wetting scale have experienced variations, in particular for more precise detection of the start of wetting and / or the tearing off of the solder when the test specimen is removed from the solder bath. Deviations from vertical immersion by using different immersion angles have also been made.
Die Variationen in der Durchführung der Benetzungskraftmessungen mit Hilfe der Benetzungswaage stehen zum Teil im Zusammenhang mit den Schwierigkeiten, die sich bei der Feststellung der Lötbarkeit an miniaturisierten Bauelementen, insbesondere an Bauelementen der SMD-Technik, ergeben. Wegen der kleinen Ausdehnung der zu metallisierenden Flächen kann sich bei SMD-Bauteilen kein vollständiger Lotmeniskus mehr ausbilden. Beim Eintauchen von Bauteilen wie SMD's wird somit das Aufsteigen des Meniskus beim Eintauchen durch die Höhe der vorhandenen Metallisierung begrenzt und ist damit nicht mehr kennzeichnend für die Benetzungskraft. In den Benetzungskraftkurven äußert sich dies darin, daß bei geometrisch gleichen Bauteilen die maximale Benetzungskraft unabhängig von den Versuchsparametern immer in das gleiche Niveau einläuft. Es ist somit unter diesen Voraussetzungen lediglich noch Benetzung oder Nichtbenetzung zu unterscheiden, während die quantitative Messung der Benetzungskräfte nicht in der Art wie bei üblichen Benetzungskraftkurven an Bauteilen ohne geometrisch bedingte Begrenzung des Meniskus erfolgen kann (Bild 3).The variations in carrying out the wetting force measurements with the aid of the wetting scale are partly related to the difficulties that arise in determining the solderability of miniaturized components, in particular components of SMD technology. Due to the small extent of the surfaces to be metallized, a complete solder meniscus can no longer form in SMD components. When immersing components such as SMDs, the ascent of the meniscus when immersed is limited by the height of the existing metallization and is therefore no longer characteristic of the wetting force. In the wetting force curves, this manifests itself in the fact that with geometrically identical components, the maximum wetting force is always at the same level regardless of the test parameters. It is therefore only necessary to distinguish between wetting and non-wetting under these conditions, while the quantitative measurement of the wetting forces cannot be carried out in the manner of conventional wetting force curves on components without a geometrically determined limitation of the meniscus (Figure 3).
Aufgabe der Erfindung ist es, ein Verfahren zur Messung der Benetzungskraft zwischen Flüssigkeit und Festkörper zu schaffen, die eine quantitative Messung der Benetzungskräfte ermöglicht.The object of the invention is to provide a method for measuring the wetting force between the liquid and the solid, which enables a quantitative measurement of the wetting forces.
Diese Aufgabe wird durch ein Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved by a method having the characterizing features of
Zweckmäßige Weiterbildungen des Verfahrens sind in den Unteransprüchen gekennzeichnet.Appropriate further developments of the method are characterized in the subclaims.
Das erfindungsgemäße Verfahren geht davon aus, daß die Benetzung eine Folge der treibenden Kräfte der Oberflächendiffusion ist, d.h., daß sie dem Bestreben der Oberfläche folgt, sich so mit Atomen eines umgebenden Mediums abzusättigen, daß der Zustand minimaler Energie eintritt. Im Gegensatz zur Benetzungswaage, die bei diesem Vorgang die statischen Kräfte über der Zeit mißt, wird beim erfindungsgemäßen Verfahren die Kraftwirkung bei einem dynamischen Vorgang - wie dies eine Schwingung darstellt - erfaßt. Durch die Wirkung der Kräfte beim Benetzungsvorgang erfährt ein schwingendes System, in das der Testkörper einbezogen ist, eine Veränderung, z.B. durch Dämpfung oder Frequenzverschiebung als Folge der Energieübertragung zwischen Festkörper und Flüssigkeit, die dazu führt, daß in die Schwingung einer Komponente je nach den Benetzungskräften das gesamte System Flüssigkeit/Festkörper einbezogen wird. Die Messung von Dämpfungswirkungen oder Frequenzverschiebungen ist nicht durch die Ausdehnung der Metallisierungsschicht begrenzt, läßt sich also auch bei sehr kleinen Metallisierungsflächen durchführen. Hinzu kommt, daß die Verstimmung eines schwingenden Systems wesentlich feinfühliger auf die Einwirkung äußerer Kräfte reagiert als dies bei statischen Messungen der Fall ist.The method according to the invention assumes that wetting is a consequence of the driving forces of surface diffusion, i.e. that it follows the efforts of the surface to become saturated with atoms of a surrounding medium in such a way that the state of minimal energy occurs. In contrast to the wetting scale, which measures the static forces over time in this process, the force effect in a dynamic process - as this represents a vibration - is recorded in the method according to the invention. Due to the effect of the forces during the wetting process, a vibrating system, in which the test body is included, undergoes a change, e.g. by damping or frequency shift as a result of the energy transfer between solid and liquid, which leads to the fact that the entire liquid / solid system is included in the vibration of a component depending on the wetting forces. The measurement of damping effects or frequency shifts is not limited by the expansion of the metallization layer, so it can also be carried out with very small metallization areas. In addition, the detuning of a vibrating system reacts much more sensitively to the effects of external forces than is the case with static measurements.
Zur Durchführung der Messung nach dem erfindungsgemäßen Verfahren wird das schwingungsfähige System mit dem Testkörper bevorzugt in Longitutinal- oder Torsionsschwingungen versetzt, auch Transversalschwingungen und Oberflächenschwingungen sind sinnvoll anwendbar. Als Frequenz kann eine einzige Frequenz gewählt werden, z.B. die Resonanzfrequenz des Systems (Aufnehmer und Probe). Es kann aber auch zur Anregung eine Durchstimmung aller Frequenzen innerhalb eines bestimmten Frequenzbandes erfolgen. Im Falle der Durchstimmung kann der Einfluß der Benetzungskräfte in Abhängigkeit von der Lage der Anregungsfrequenz betrachtet werden. Zusätzlich zur Messung der Dämpfung und/oder Verschiebung der Frequenz oder der Frequenzen kann bei der Messung auch die über die Grenzfläche flüssig/fest übertragene Schwingungsenergie herangezogen werden, die ebenfalls eine Aussage über die Benetzungskräfte zuläßt. Die Messung der Energie über die Übertragung durch die Grenzfläche flüssig/fest kann auch für sich allein betrachtet werden. Für die Messung der Energieübertragung ist zusätzlich zum anregenden System ein Schallaufnehnmer erforderlich, der an einer anderen Stelle (im Bad oder im Festkörper) die durchgeleitete Energie aufnimmt.To carry out the measurement according to the method according to the invention, the vibratable system with the test body is preferably set in longitutinal or torsional vibrations, and transverse vibrations and surface vibrations can also be usefully applied. A single frequency can be selected as the frequency, for example the resonance frequency of the system (transducer and sample). However, all frequencies within a certain frequency band can also be tuned for excitation. In the case of tuning, the influence of the wetting forces depending on the position of the excitation frequency can be considered. In addition to the measurement of the damping and / or shift of the frequency or the frequencies, the vibration energy that is transmitted liquid / solid over the interface can also be used in the measurement, which also allows a statement about the wetting forces. The measurement of the energy via the transfer through the liquid / solid interface can also be done on its own to be viewed as. In addition to the stimulating system, a sound pick-up is required to measure the energy transfer, which records the transmitted energy at another point (in the bathroom or in the solid body).
Um die Benetzungskräfte und deren Einfluß auf den schwingenden Testkörper zu messen, kann die Amplitude so gewählt werden,-daß im Minimum der Welle (tiefster Punkt) der Körper das Bad gerade berührt, so daß auf dem Weg zum Maximum das Bad durch die Benetzungskräfte mit hochgezogen wird. Durch Veränderung der Amplitudenhöhe kann ein Maximalausschlag bis zum Abreißen der Flüssigkeit bestimmt werden. Es kann jedoch auch bei voll eingetauchtem Körper die Dämpfung der Schwingung infolge der Kräfte zwischen Bad und Festkörperoberfläche (Benetzungskräfte) gemessen werden. Während des Versuches läßt sich sowohl die Amplitude wie auch die Frequenz konstant halten oder variieren.In order to measure the wetting forces and their influence on the vibrating test body, the amplitude can be selected so that in the minimum of the wave (lowest point) the body just touches the bath, so that on the way to the maximum the bath is affected by the wetting forces is pulled up. By changing the amplitude level, a maximum deflection can be determined until the liquid is torn off. However, the damping of the vibration due to the forces between the bath and the solid surface (wetting forces) can also be measured when the body is fully immersed. During the experiment, both the amplitude and the frequency can be kept constant or varied.
Ein Ausführungsbeispiel zeigt die Beeinflussung der Frequenz durch die Benetzungkräfte. Das zu prüfende Bauelement wird mit einem Piezo-Blättchen fest verbunden, z. B. durch Kleben. Durch Anlegen einer Wechselspannung wird das System Piezo - Probe zu Schwingungen, z.B. sinusförmigen Schwingungen, angereget, so daß das Bauelement parallel zu seiner Längsachse schwingt (Bild 4). Die Frequenz wird in diesem Fall so gewählt, daß keine Eigenschwingungen der Probe angeregt werden. Wird nun das schwingende System in das Lotbad getaucht, so treten aufgrund der Benetzung zwei Effekte auf:
- 1. Die Eigenfrequenz des Systems wird durch die Benetzungskräfte verschoben.
- 2. Die Schwingung wird abhängig vom Grad der Benetzung gedämpft.
- 1. The natural frequency of the system is shifted by the wetting forces.
- 2. The vibration is damped depending on the degree of wetting.
Zur Messung der Änderung der Resonanzfrequenz kann z.B. der Schwingquarz als frequenzbestimmendes Glied in einer Oszillatorschaltung verwendet werden (Bild 5). Die Frequenzänderung in Abhängigkeit von der Zeit gibt dann den Verlauf der Benetzung wieder. Die durch die Benetzung auftretende Dämpfung bewirkt eine Erhöhung des Widerstands RL im Ersatzschaltbild des Schwingquarzes und ist daher über den Scheinleitwert in Resonanz meßbar (Bild 6).To measure the change in the resonance frequency, the quartz crystal can be used as a frequency-determining element in an oscillator circuit (Figure 5). The change in frequency as a function of time then reflects the course of the wetting. The damping that occurs as a result of wetting causes Increasing the resistance R L in the equivalent circuit diagram of the quartz crystal and can therefore be measured in resonance using the apparent conductance (Figure 6).
Für die Durchführung von Versuchen wurden SMD-Widerstände vom Typ MELF (Metal Electrode Face Bonding) mit den Abmessungen 5,9 x 2,2 mm sowie eine Piezoxid-Summermembran von Valvo (Durchmesser 12,5 mm, Resonanzfrequenz 12 kH, Kapazität 6 nF) verwendet. Gemessen wird der Scheinleitwert des Piezos. Zur Prüfung der Benetzbarkeit wird der Funktionsgenerator auf diejenige Frequenz eingestellt, bei der der Scheinleitwert sein Maximum aufweist. Die Messanordnung wird in Bild 7 wiedergegeben. Wird die Probe in ein Lotbad getaucht, so ändert sich der Scheinleitwert bei konstanter Frequenz des Funktionsgenerators aufgrund von:
- 1. Die Eigenfrequenz des Piezos wird durch die auftretenden zeitabhängigen Kräfte verschoben, so daß das Maximum des Scheinleitwertes bei einer anderen als der eingestellten Frequenz liegt.
- 2. Das System wird durch die Benetzung mit Lot gedämpft, was eine Verringerung des Scheinleitwertes zur Folge hat.
- 1. The natural frequency of the piezo is shifted by the occurring time-dependent forces, so that the maximum of the admittance is at a frequency other than the set frequency.
- 2. The system is dampened by wetting with solder, which results in a reduction in the apparent conductance.
Auszuschließen oder zu kompensieren sind Einflüsse auf die Frequenz durch die Temperaturschwankungen. Zur Darstellung des Verlaufes des Scheinleitwertes bei Benetzung und Nichtbenetzung dienen die mit der Versuchsanordnung aufgenommenen Kurven (Bild 8 und Bild 9). In Bild 9 ist deutlich zu sehen, wie durch die Benetzung zusätzliche Kräfte im Kurvenverlauf erscheinen, ebenso wie sich im Verlauf der Kurve die durch die Benetzung bewirkte Dämpfung manifestiert.The effects of frequency fluctuations due to temperature fluctuations must be excluded or compensated for. The curves recorded with the test arrangement serve to illustrate the course of the admittance for wetting and non-wetting (Fig. 8 and Fig. 9). Figure 9 clearly shows how additional forces appear in the curve due to the wetting, as well as the damping caused by the wetting is manifested in the course of the curve.
Aus der Interpretation des Verlaufs des Scheinleitwertes (Bild 9) können differenzierte Aussagen über die Benetzungskraft und damit die Lötfähigkeit von Bauelementen entnommen werden. Die Aussagen gehen dabei weit über die Möglichkeiten anderer bisher bekannter Benetzungstests hinaus.Different interpretations of the wetting force and thus the solderability of components can be derived from the interpretation of the course of the apparent conductance (Figure 9). The statements go far beyond the possibilities of other previously known wetting tests.
Claims (19)
- Process for the measurement of the wetting power between a liquid and a miniaturised solid body (third body), characterised in that one connects the solid body with an oscillating system and determines the changes of the oscillating behaviour in the case of the dipping of the solid body into the liquid in dependence upon the wetting power between the surface of the solid body and the liquid and that the change of the oscillating behaviour or of the transmission of the oscillating energy between solid body and liquid is used for the characterisation of the wetting power.
- Process according to claim 1, characterised in that one places the system with the drawn-in solid body in the case of the dipping-in procedure into the liquid, e.g. bath, in oscillations of differing modes and detects the change of the oscillation in the case of the dipping-in procedure over the course of time, whereby one determines characterising values for the wettability of the solid body from the damping of the oscillation and of the frequency change during the dipping-in or wetting procedure depending upon the time.
- Process according to claim 1, characterised in that one does not completely dip the test body into the liquid but rather, in the course of the oscillation, merely allows to come into contact with the liquid surface.
- Process according to claim 1, characterised in that one brings the test body into contact with the wetting medium while this is still in solid state, whereby, in the case of melting of the wetting medium, the change of the damping and/or frequency of the oscillating solid body is measured by the then occurring wetting.
- Process according to claim 1, characterised in that, in addition to the changing of the oscillation of the test body by the wetting, one measures the oscillation energy, i.e. the sound transmission, transmitted by the coupling of the liquid.
- Process according to claim 5, characterised in that one measures the oscillation transmission, e.g. sound transmission, solely caused by the wetting and the coupling value given therewith.
- Process according to claim 1, characterised in that one carries out measurements not in the stationary but rather in the flowing medium.
- Process according to claim 1, characterised in that one changes the temperature of the liquid medium during the measurement procedure.
- Process according to one or more of claims 1 to 8, characterised in that one fixes the solid test body not directly to the oscillator but rather via a suitable holding device firmly connected with the oscillator, a clamp, by underpressure or magnet.
- Process according to one or more of claims 1 to 9, characterised in that one dips the test body into the liquid, e.g. bath, not vertically but rather at any arbitrary angle.
- Process according to claim 1, characterised in that one so attaches several solid bodies in a holding device that these dip simultaneously or chronologically staggered into the wetting liquid.
- Process according to claim 1, characterised in that one initiates the oscillation, e.g. sound, in the liquid and measures the energy on the solid body transmitted in dependence upon the wetting.
- Process according to claim 1, characterised in that one initiates the oscillation, e.g. sound, in the solid body and measures the energy in the liquid, e.g. bath, transmitted in dependence upon the wetting.
- Process according to claim 1, characterised in that one selects for the initiated oscillation a specific frequency, e.g. a resonance frequency of the system.
- Process according to claim 1, characterised in that the activation of the oscillation takes place with variable frequencies with a frequency band of any desired breadth.
- Process according to claim 1, characterised in that one activates with constant amplitude.
- Process according to claim 1, characterised in that one activates with variable amplitude.
- Process according to claim 1, characterised in that one uses a sinusoidal oscillation for the activation.
- Process according to claim 1, characterised in that one uses a rectangular, triangular or other formed oscillation for the activation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3900845A DE3900845A1 (en) | 1989-01-13 | 1989-01-13 | METHOD FOR MEASURING THE WETING FORCE BETWEEN LIQUID AND SOLIDS |
DE3900845 | 1989-01-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0377818A2 EP0377818A2 (en) | 1990-07-18 |
EP0377818A3 EP0377818A3 (en) | 1991-02-27 |
EP0377818B1 true EP0377818B1 (en) | 1994-12-28 |
Family
ID=6372013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89122114A Expired - Lifetime EP0377818B1 (en) | 1989-01-13 | 1989-11-30 | Method of measuring the wetting power between fluid and solid body |
Country Status (4)
Country | Link |
---|---|
US (1) | US5001923A (en) |
EP (1) | EP0377818B1 (en) |
CA (1) | CA2007724A1 (en) |
DE (2) | DE3900845A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4284873B2 (en) | 2001-02-27 | 2009-06-24 | ソニー株式会社 | Solderability test apparatus and solderability test method |
DE102008017886A1 (en) * | 2008-04-09 | 2009-10-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Water absorption examining method for flat constructional element i.e. motor vehicle underbody lining, involves exciting constructional element and water held in container to vibrate |
DE102011079407A1 (en) * | 2011-07-19 | 2013-01-24 | Siemens Aktiengesellschaft | Carrier with a liquid solder wettable test surface and method for its use |
US20150285725A1 (en) * | 2012-11-21 | 2015-10-08 | Schlumberger Technology Corporation | Method and Apparatus for Determining Wettability of Materials |
WO2024053598A1 (en) * | 2022-09-06 | 2024-03-14 | Jfeスチール株式会社 | Method for evaluating wettability of solid surfaces |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1010297B (en) * | 1953-02-26 | 1957-06-13 | Atlas Werke Ag | Device for monitoring the properties of a medium by measuring the phase shift of acoustic waves |
DE1010397B (en) * | 1954-10-14 | 1957-06-13 | Dieter Schmalenberg | Occupant protection device for motor vehicles |
SE366588B (en) * | 1971-12-01 | 1974-04-29 | Project Ind Produkter Ab | |
SU658442A1 (en) * | 1977-05-19 | 1979-04-25 | Институт электрохимии АН СССР | Method of measuring the function of surface tension of solid electrode versus potential |
JPS5523436A (en) * | 1978-08-09 | 1980-02-19 | Toshiba Corp | Measuring instrument for wettability of solder |
JPS5933214B2 (en) * | 1978-11-20 | 1984-08-14 | 株式会社東芝 | Soldering evaluation method and device |
JPS5797427A (en) * | 1980-12-10 | 1982-06-17 | Toshiba Corp | Measuring and evaluating device for solderability |
DE3306406A1 (en) * | 1983-02-24 | 1984-08-30 | Ernst 2000 Hamburg Thöne | METHOD AND DEVICE FOR MEASURING THE VISCOSITY OF A LIQUID |
US4674322A (en) * | 1984-10-25 | 1987-06-23 | Chevron Research Company | On-line instrument for simultaneously measuring the viscosity, density, and surface tension of a fluid comprising a gas dissolved in a liquid |
SU1241104A1 (en) * | 1984-12-28 | 1986-06-30 | Институт Электрохимии Им.А.Н.Фрумкина | Method of determining variable surface tension of solid electrode |
FR2588664B1 (en) * | 1985-10-15 | 1988-07-15 | Metravib Sa | APPARATUS FOR MEASURING PHYSICAL PROPERTIES OF A MEDIUM, ESPECIALLY RHEOLOGICAL PROPERTIES. |
GB2200450B (en) * | 1986-12-17 | 1990-10-24 | Fuji Electric Co Ltd | Apparatus for detecting resonant frequency of a vibratory mem ber |
US4783987A (en) * | 1987-02-10 | 1988-11-15 | The Board Of Regents Of The University Of Washington | System for sustaining and monitoring the oscillation of piezoelectric elements exposed to energy-absorptive media |
US4754640A (en) * | 1987-03-17 | 1988-07-05 | National Metal And Refining Company, Ltd. | Apparatus and method for determining the viscoelasticity of liquids |
DE3714012A1 (en) * | 1987-04-27 | 1988-11-17 | Ist Ingenieurdienst Fuer Siche | Method for measuring wetting forces and a wetting solder balance |
US4920787A (en) * | 1987-06-12 | 1990-05-01 | Dual Juerg | Viscometer |
JPS6452339A (en) * | 1987-08-24 | 1989-02-28 | Nippon Telegraph & Telephone | Manufacture of high-temperature superconductive oxide |
-
1989
- 1989-01-13 DE DE3900845A patent/DE3900845A1/en not_active Withdrawn
- 1989-11-30 EP EP89122114A patent/EP0377818B1/en not_active Expired - Lifetime
- 1989-11-30 DE DE58908839T patent/DE58908839D1/en not_active Expired - Fee Related
-
1990
- 1990-01-10 US US07/462,484 patent/US5001923A/en not_active Expired - Fee Related
- 1990-01-12 CA CA002007724A patent/CA2007724A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP0377818A3 (en) | 1991-02-27 |
DE58908839D1 (en) | 1995-02-09 |
EP0377818A2 (en) | 1990-07-18 |
US5001923A (en) | 1991-03-26 |
CA2007724A1 (en) | 1990-07-13 |
DE3900845A1 (en) | 1990-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69610183T2 (en) | PIEZOELECTRIC QUARTZ MICRO SCALE | |
DE112012004953B4 (en) | Oscillator device and method for measuring physical properties | |
DE1287334B (en) | Method for testing and measuring surface properties of solid bodies | |
DE2659692C3 (en) | Device for analyzing the dynamic properties of a sample | |
EP0377818B1 (en) | Method of measuring the wetting power between fluid and solid body | |
DE19720519C2 (en) | Device for determining and / or monitoring a fill level of a medium in a container | |
DE69207859T2 (en) | High frequency acoustic rheometer, and device using this rheometer for measuring the viscosity of a fluid | |
EP4179307B1 (en) | Device for determining firstly a heat conductivity and/or the specific heat capacity of a gas mixture, and secondly a density and/or a viscosity of the gas mixture | |
WO2000026661A1 (en) | Sensor arrangement for detecting the physical properties of liquids | |
WO2006097382A1 (en) | Method and device for measuring the viscosity of non-newtonian liquids, in particular motor fuels | |
DE3885200T2 (en) | Device for measuring a property of a liquid. | |
WO2005052554A1 (en) | Sensor | |
AT508679B1 (en) | SENSOR ARRANGEMENT FOR MEASURING PROPERTIES OF FLUIDS | |
AT410737B (en) | PIEZOELECTRIC RESONATOR ELEMENT OF THE CRYSTALLOGRAPHIC POINT GROUP 32 | |
DE69517561T2 (en) | Accelerometer | |
DE3145309A1 (en) | MEASUREMENT METHOD FOR DETERMINING THE THICKNESS OF THIN LAYERS | |
DE19848878A1 (en) | Detecting changes in physical values associated with multi-component liquids involves using sensitized polymer network operated as transducer which detects change in mass or other mechanical properties and converts it into electrical signal | |
DE3842061C2 (en) | ||
DE102007028612B4 (en) | Kavitationsstärkenmessgerät | |
DE1077441B (en) | Stylus for precision buttons or surface tester | |
EP0214366A2 (en) | Device for determinating vibration parameters and application thereof | |
EP0113031A2 (en) | Apparatus for testing the purity of noble metal shaped bodies | |
DE19737880C1 (en) | Complex elasticity or shear modulus evaluation method for thin polymer layers | |
DE2648322C2 (en) | Method and arrangement for frequency-analogous diameter determination and defect detection for balls made of electrically conductive material | |
DD214030A1 (en) | PIEZOELECTRIC VIBRATOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): BE CH DE FR GB LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE CH DE FR GB LI NL SE |
|
17P | Request for examination filed |
Effective date: 19910725 |
|
17Q | First examination report despatched |
Effective date: 19930528 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB LI NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19941228 Ref country code: BE Effective date: 19941228 |
|
REF | Corresponds to: |
Ref document number: 58908839 Country of ref document: DE Date of ref document: 19950209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950328 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950321 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19951130 Ref country code: CH Effective date: 19951130 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970916 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970919 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19980121 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981130 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19981130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990730 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990901 |