[go: up one dir, main page]

EP0377405B1 - Caverne souterraine artificielle pour l'emmagasinage de gaz naturelle à l'état gazeux sous pression élevée et à basse température et sa méthode de fabrication - Google Patents

Caverne souterraine artificielle pour l'emmagasinage de gaz naturelle à l'état gazeux sous pression élevée et à basse température et sa méthode de fabrication Download PDF

Info

Publication number
EP0377405B1
EP0377405B1 EP19890810902 EP89810902A EP0377405B1 EP 0377405 B1 EP0377405 B1 EP 0377405B1 EP 19890810902 EP19890810902 EP 19890810902 EP 89810902 A EP89810902 A EP 89810902A EP 0377405 B1 EP0377405 B1 EP 0377405B1
Authority
EP
European Patent Office
Prior art keywords
cavern
natural gas
storage
lining
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890810902
Other languages
German (de)
English (en)
Other versions
EP0377405A1 (fr
Inventor
Charles Dr. Mandrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0377405A1 publication Critical patent/EP0377405A1/fr
Application granted granted Critical
Publication of EP0377405B1 publication Critical patent/EP0377405B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/005Underground or underwater containers or vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/038Refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0157Location of cavity
    • F17C2270/016Location of cavity onshore

Definitions

  • the invention relates to an artificial, underground cavern for storing gaseous natural gas according to the preamble of claim 1 and a method for its production.
  • natural caverns It is known to store natural gas under high pressure and low temperature in natural caverns.
  • these natural caverns consist, for example, of salt caverns, exhausted gas fields, so-called aquifer caverns or porous rocks at greater depths in the order of several hundred or even several thousand meters.
  • the invention is based on the formation of an artificial, underground cavern for the storage of natural gas under high pressure, in the order of 100 to 200 bar at a low temperature in the order of approximately -50 to -70 ° C, which gas-tight against surrounding rock and which can be created in an economical manner.
  • Fig. 1 shows a schematic representation of an embodiment of an underground, horizontally arranged cavern, while the
  • 1a to 1f show the various stages in the production of the gas-tight cover layer of the cavern, including the cavern in the state of natural gas storage.
  • FIG. 2 shows a schematic representation of an embodiment of a subterranean, horizontally arranged cavern modified compared to FIG. 1, while the
  • 2a to 2g show the various stages in the production of the gas-tight cover layer of the cavern, including the cavern in the state of natural gas storage.
  • the cavern 1 shown in Fig. 1 is tunnel-shaped and, for example, at a depth of 150 to 200 m in the surrounding rock, e.g. Granite blasted out. Although this horizontal arrangement of the cavern is particularly advantageous, the invention also encompasses e.g. vertically formed caverns.
  • the cavern is not arranged at a depth that ensures that the storage pressure withstands the hydrostatic head of the water contained in the surrounding rock.
  • a cladding 2 is introduced at a short distance from the cavern wall of, for example, approximately 2 to 10 cm, and ends at a short distance from the cavern base area of, for example, 10 centimeters.
  • This formwork 2 can be made of steel, aluminum or plastic, for example. Its wall thickness is determined in accordance with the hydrostatic water pressure in method step 2 described later (see FIG. 1b).
  • the formwork itself which in most cases is composed of several pieces, in particular is welded together, cannot be produced for the prints mentioned.
  • this formwork does not have to be gas-tight, but instead can have cracks and smaller holes, for example, which, as described below, are closed with the measures according to the invention, so that when natural gas is stored, the required gas tightness is secured against the surrounding rock.
  • the cavern 1 is closed off from the outside atmosphere by means of a pin 4 inserted into a bore 3, which e.g. can consist of metal or possibly also of plastic. Depending on the design of the cavern, in principle several pins can also be arranged.
  • the pin 4 is penetrated by three lines 5, 6 and 7.
  • the line 5 which is firmly fixed in the journal, ends in the gap space 8 formed by the cavern 1 and casing 2. It serves to supply water or to vent the gap space 8.
  • the line 7 is movable, ie slidably mounted in the pin 4 and penetrates the formwork 2.
  • This line serves either water or gas or remove liquid refrigerant from cavern 1 or introduce water or liquid refrigerant into it.
  • the line 7 is pushed into the lower region of the storage space 9 in a first process step (see FIG. 1a) and water is introduced through it until the storage space 9 and the surrounding gap space 8 are completely filled with water.
  • the pressure in the cavern corresponds to the sum of the atmospheric pressure and the hydrostatic height of the water in the cavern.
  • the temperature in the cavern space is approximately 4 ° C.
  • the cavern In the second process step (see FIG. 1b), water is pressed out of cavern 1 with the aid of natural gas, the cavern being under a pressure of approximately 20 bar.
  • the natural gas is introduced through line 6 and extracts water from the cavern through line 7, the end of which is in its lowest position.
  • Line 5 is closed, so that the gap space 8 remains filled with water.
  • the interior of the cavern is at approximately ambient temperature. It depends on the temperature of the natural gas injected.
  • the Formwork 2 At the end of this step, the Formwork 2 withstand the hydrostatic pressure of the water accumulated in the gap space 8.
  • the line 7 is moved upwards so far that its end lies above the water level of the water w located above the base area of the cavern, but still occupies a position in the lower region of the storage space 9.
  • liquid refrigerant k e.g. Propane
  • liquid refrigerant k e.g. Propane
  • Other hydrocarbons such as e.g. Ethane or ethylene
  • refrigerants such as Ammonia, freons and the like are not suitable for environmental or cost reasons.
  • the liquid refrigerant is introduced at ambient temperature, and since a pressure of approximately 20 bar is maintained in the cavern, the refrigerant will not start to boil.
  • the fourth method step can now begin (see FIG. 1d).
  • Natural gas is drawn off from the storage space 9 through line 6, and the refrigerant k in the lower storage space 9 begins to boil, as a result of which the temperature in all parts flooded by the refrigerant drops below 0 ° C., so that the water level is above the base area of the Cavern 1 and the corresponding water w located in the lower part of the gap space 9 freezes to ice e.
  • the storage space 9 is flooded with liquid refrigerant k.
  • the liquid refrigerant k which is continuously introduced through line 7, should boil immediately when it exits into the storage space 9, in order to avoid reheating at any point within the cavern 1.
  • the line 7 is continuously shifted upwards during the flooding in such a way that the outlet of the line 7 is always above the level of the boiling refrigerant k.
  • Refrigerant vapor and some natural gas generated during the boiling process flow out through line 6.
  • the level of the refrigerant rises continuously until the storage space 9 is completely filled with boiling refrigerant.
  • it must be taken into account that the boiling temperature of the refrigerant k rises in the bottom space of the storage space 9, even if the pressure on the surface of the boiling refrigerant is kept constant. The reason for this there is the level of the hydrostatic pressure of the liquid refrigerant in the floor space.
  • the ice will still not melt unless the heat from the rock surrounding the cavern is so great that the ice begins to melt.
  • an advantageous measure consists in reducing the pressure at the level of the boiling refrigerant while the refrigerant is rising and also not dimensioning the cavern depth too great.
  • the refrigerant k is removed from the storage space 9 of the cavern 1, namely by the fact that the refrigerant is pressed through line 7 with cold natural gas, for which purpose the cold natural gas of, for example, approx. -20 to - 70 ° C is introduced through line 6.
  • the pressure at the refrigerant level k is kept low, e.g. to 1 to 2 bar in order to ensure that some refrigerant k constantly boils.
  • the formation of the ice jacket in the gap space 8 also, for example, instead of the procedure described above can only be done with cold gas. In this case, however, very large amounts of gas have to be circulated and recooled because of the relatively poor heat transfer between gas and water.
  • a seventh process step the process of storing natural gas at a pressure of approximately 60 to 150 bar and a temperature of approximately -70 ° C is explained (see FIG. 1g).
  • This natural gas can originate, for example, from a pipeline or from a plant as described in Swiss Patent Application No. 827 / 88-3.
  • the cavern is ready for storage (cf. FIG. 1g).
  • Cold natural gas is initially introduced through the line 7 pushed into the lower part of the storage space 9, for example with pipeline pressure at approximately 60 bar and approximately -70 ° C. Lines 5 and 6 are closed.
  • the methane in the natural gas is hydrated at the "open" locations of the formwork 2, ie in its cracks and small openings upon contact with the ice from the gap space 8.
  • This methane hydrate thus formed has elastic properties and seals the previously open positions gas-tight to the outside.
  • the ice in the gap space 8 is brittle at the pressure and temperature conditions mentioned.
  • the natural gas to be stored is compressed to the desired storage pressure of, for example, 150 bar and introduced into the storage space 9 through line 7. If necessary, stored natural gas is withdrawn from cavern 1 through line 6.
  • cold natural gas is taken from a refrigeration system, not shown, installed above ground and introduced through line 7 into the storage space 9, and a corresponding amount of natural gas heated therein is taken through line 6 and recirculated into the refrigeration system.
  • This measure is advantageous because it ensures that the cavern always stays cold and prevents ice from melting at any point in the "ice jacket" surrounding the storage space 9.
  • FIG. 2 shows a variant embodiment of a cavern designed according to the invention compared to the exemplary embodiment described above (see FIG. 1).
  • This embodiment offers certain advantages over the first embodiment, which mainly consist in the fact that considerably less refrigerant is required to produce a gas-tight cover for the storage space of the cavern with respect to the surrounding rock.
  • a second formwork 10 is arranged within this at a distance of a few centimeters, the ends of which are set back by a distance from the first formwork 2'.
  • This formwork corresponds in its training in terms of material and method of manufacture with the formwork 2 '.
  • two lines 11 and 12 are passed through the pin 4 ', which open into the gap space 13 formed by the two casings 2' and 10. These two lines, which are fixed in the pin 4 ', serve to fill the gap 13 with gas or liquid or to remove gas from it.
  • the cavern 1 ' is vented analogously to the first exemplary embodiment (see FIG. 1a) and filled with water for this purpose. All four lines 5 ', 6', 11 and 12 are used to displace the cavern air.
  • liquid refrigerant k is introduced into the gap space 13, namely until the water level above the base of the cavern 1 'and the lowermost part of the casing 10 are completely flooded with refrigerant.
  • the lines 5 ', 7' and 11 are closed and the lines 6 'and 12 are open to lower the pressure in the cavern 1', so that the refrigerant k boils.
  • the pressure between the gap space 13 and the storage space 9 ' is controlled in such a way that a higher level of the liquid refrigerant k in the gap space 13 than in the storage space 9' is maintained. In this case, however, the lower part of the casing 10 remains flooded with refrigerant k.
  • the water located in the bottom of the cavern 1 freezes the water in the lower part of the outer gap space 8 'to ice e.
  • liquid refrigerant k is introduced into the lower gap space 13 through line 12 at room temperature. Gas and refrigerant vapor escape through line 12 from the gap space 13 and through line 6 'from the storage space 9'.
  • the amounts of gas or vapor discharged are controlled such that the liquid level in the storage space 9 'is lower than in the gap space 13, the level of the boiling refrigerant k in the gap space 13 constantly increasing until this gap space is completely filled with boiling refrigerant. When this is reached, the water w in the outer gap space 8 'is completely frozen to ice e.
  • the pressure on the uppermost surface of the refrigerant in the gap 13 is greater than in the interior 9 ', so that the refrigerant boils in the gap 13, but not in the interior 9'.
  • FIGS. 2e and 1e shows the savings in refrigerant when using a double casing 2 ', 10 compared to a single casing 2, since with simple casing the interior 9 of the cavern 1 must be completely filled with refrigerant.
  • the liquid refrigerant from the gap space 13 and from the storage space 9 'with the help of cold natural gas at about -70 ° C through the lines 12 and 6' is pressed.
  • the Movable line 7 ' is lowered and used to suck off the refrigerant located in the bottom of the cavern 1'.
  • This method step essentially corresponds to the corresponding one of the first exemplary embodiment.
  • methane hydrate which closes the open areas in a gas-tight manner with respect to the surrounding rock.
  • FIGS. 1g and 2g further shows that more effective cooling can be achieved in a cavern with a double formwork than in a cavern with a simple formwork, since the gas velocities on the surface of the formwork 1 'are higher and therefore a better one Heat transfer is achieved.
  • the formwork can be produced in an extremely cost-effective manner, since it does not have to be made absolutely gas-tight. Even if during the time in which the reservoir is filled, due to pressure fluctuations, e.g. may be caused by earth movements or due to thermal expansion of the ice layer, e.g. As a result of heat from the surrounding rock, cracks in the casing or in the ice layer should develop, methane hydrate immediately forms again in the "open areas" due to the low storage temperature and the high storage pressure, so that gas tightness to the surrounding area also occurs during storage Rock is guaranteed.
  • the formwork In order to absorb the expansion of the water during ice formation in the gap space, it is advisable to produce the formwork from a material with elastic properties, or to bring about a sufficient elasticity of the formwork by appropriate shaping of the wall.
  • the wall can be made from corrugated sheets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (12)

1. Caverne souterraine, artificielle, pour le stockage de gaz naturel dont le constituant principal est du méthane, sous une pression élevée et à basse température, caractérisée en ce qu'à l'intérieur des parois de la caverne, à une courte distance, il est placé un coffrage qui se termine à une courte distance au-dessus de la surface du fond de la caverne et en ce qu'une fermeture étanche au gaz, faite d'une couche élastique de glace et de méthane hydraté, est prévue contre les parois de la caverne, les points non étanches du coffrage étant fermés de manière étanche au gaz par le méthane hydraté formé pendant le stockage, et en ce qu'en outre la caverne est isolée de l'atmosphère au moyen d'une colonne à travers laquelle passent des conduits d'arrivée et de départ.
2. Caverne selon la revendication 1, caractérisée en ce qu'à l'intérieur du coffrage est placé, à une courte distance, un autre coffrage qui se termine à une courte distance au-dessus de l'extrémité du premier coffrage, deux conduits, traversant la colonne, débouchant dans l'espace formé entre les deux coffrages.
3. Procédé de fabrication d'une caverne souterraine, artificielle, selon la revendication 1, caractérisé en ce que l'on chasse tout d'abord l'air de la caverne, à l'aide d'eau, en ce que l'on envoie ensuite sous pression de l'eau, au moyen de gaz naturel comprimé, dans l'espace formé entre le coffrage et les parois de la caverne et en ce qu'on congèle ensuite cette eau ainsi qu'une couche d'eau se trouvant encore au-dessus de la surface du fond de la caverne, au moyen d'un réfrigérant circulant à l'intérieur de la caverne.
4. Procédé selon la revendication 3, caractérisé en ce que le réfrigérant est du gaz naturel froid.
5. Procédé selon la revendication 3, caractérisé,en ce qu'on utilise comme réfrigérant un fluide frigorigène évaporable.
6. Procédé selon la revendication 5, caractérisé en ce que le fluide frigorigène est un hydrocarbure.
7. Procédé selon la revendication 6, caractérisé en ce que l'hydrocarbure est du propane, de l'éthyle ou de l'éthylène.
8. Procédé selon la revendication 3, caractérisé en ce qu'on ajoute à l'eau un additif qui augmente les propriétés élastiques de la glace produite à la pression et à la température de stockage.
9. Procédé selon la revendication 8, caractérisé en ce qu'on utilise comme additif du méthanol.
10. Procédé selon la revendication 3, caractérisé en ce que lors du stockage de gaz naturel, en des points ouverts du coffrage, la glace formée entre celui-ci et la roche l'entourant est amenée en contact avec le méthane du gaz naturel, ce qui donne lieu à la formation de méthane hydraté qui ferme de manière étanche au gaz les points ouverts du coffrage.
11. Procédé selon la revendication 10, caractérisé en ce que pendant les périodes où le gaz naturel stocké n'est pas utilisé, une faible quantité de gaz naturel est prélevée de l'enceinte de stockage, refroidie à l'extérieur de la caverne et renvoyée dans l'enceinte de stockage.
12. Procédé, selon la revendication 5, de fabrication d'une caverne selon la revendication 2, caractérisé en ce que les pressions régnant dans l'enceinte de stockage et dans l'espace formé par les deux coffrages sont réglées de manière que l'espace soit totalement rempli de fluide frigorigène et que seule la partie inférieure de l'enceinte de stockage soit remplie de fluide frigorigène, l'extrémité inférieure du coffrage intérieur étant submergée.
EP19890810902 1988-12-06 1989-11-24 Caverne souterraine artificielle pour l'emmagasinage de gaz naturelle à l'état gazeux sous pression élevée et à basse température et sa méthode de fabrication Expired - Lifetime EP0377405B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH451588 1988-12-06
CH4515/88 1988-12-06

Publications (2)

Publication Number Publication Date
EP0377405A1 EP0377405A1 (fr) 1990-07-11
EP0377405B1 true EP0377405B1 (fr) 1992-04-01

Family

ID=4277537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890810902 Expired - Lifetime EP0377405B1 (fr) 1988-12-06 1989-11-24 Caverne souterraine artificielle pour l'emmagasinage de gaz naturelle à l'état gazeux sous pression élevée et à basse température et sa méthode de fabrication

Country Status (6)

Country Link
EP (1) EP0377405B1 (fr)
CA (1) CA2004000A1 (fr)
DE (1) DE58901092D1 (fr)
FI (1) FI895818A0 (fr)
NO (1) NO171329C (fr)
SE (1) SE8904075L (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108150220A (zh) * 2018-01-22 2018-06-12 重庆大学 一种盐穴储气库修复方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511729C2 (sv) * 1998-02-13 1999-11-15 Sydkraft Ab Sätt vid operation av ett bergrum för gas
EP0963780B1 (fr) * 1998-06-08 2006-03-15 Wild-Vaucher, Pierrette Procédé pour éliminer le CO2 des gaz d'échappement de combustion, conversion en CH4 et stockage en dehors de l'atmosphère terrestre
CN104386409B (zh) * 2014-10-21 2016-08-24 中国矿业大学 一种煤矿区地面钻孔引导水源蓄存采空区的保水方法
CN105545359B (zh) * 2016-02-16 2017-09-26 中国石油天然气集团公司 一种水封洞库连接巷道与水幕巷道的注水导通装置及方法
CN109356650B (zh) * 2017-10-25 2021-03-26 中国矿业大学 一种利用煤矿井下巷道进行压缩空气储能的方法
CN108222904A (zh) * 2017-12-12 2018-06-29 浙江海洋大学 一种大型地下水封石洞库水幕补水系统三维物理模型的装置
DE102023101619B3 (de) 2023-01-24 2024-06-27 Ontras Gastransport Gmbh Verfahren zum Befüllen eines Kavernenspeichers mit flüssigem Wasserstoff

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB959328A (en) * 1960-08-24 1964-05-27 Shell Res Ltd Storage of gases which are in the liquid phase
DE2236059C2 (de) * 1972-07-22 1974-08-22 Rheinisch-Westfaelisches Elektrizitaetswerk Ag, 4300 Essen Luft-Pumpspeicherwerk für Kraftwerksanlagen
SE373636B (sv) * 1973-08-06 1975-02-10 E I Janelid Sett for tetning av berg omkring ett i berget anornat bergrum for ett medium, vars temperatur avviker fran bergets naturliga temperatur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108150220A (zh) * 2018-01-22 2018-06-12 重庆大学 一种盐穴储气库修复方法
CN108150220B (zh) * 2018-01-22 2019-06-25 重庆大学 一种盐穴储气库修复方法

Also Published As

Publication number Publication date
SE8904075D0 (sv) 1989-12-01
NO171329C (no) 1993-02-24
SE8904075L (sv) 1990-06-07
DE58901092D1 (de) 1992-05-07
NO894870D0 (no) 1989-12-05
NO171329B (no) 1992-11-16
NO894870L (no) 1990-06-07
FI895818A0 (fi) 1989-12-05
CA2004000A1 (fr) 1990-06-06
EP0377405A1 (fr) 1990-07-11

Similar Documents

Publication Publication Date Title
DE69900496T2 (de) Verfahren zum gebrauch einer gas-kaverne
DE1533794A1 (de) Verfahren und Vorrichtung zum Lagern verfluessigter Gase
EP0377405B1 (fr) Caverne souterraine artificielle pour l'emmagasinage de gaz naturelle à l'état gazeux sous pression élevée et à basse température et sa méthode de fabrication
DE2815499A1 (de) Verfahren zur gewinnung von erdgas aus unter wasserdruck stehenden gaslagerstaetten
EP2538072B1 (fr) Centrale souterraine d'accumulation par pompage
DE3410132C2 (fr)
DE2002552A1 (de) Verfahren und Vorrichtung zum Zwischenlagern eines normalerweise gasfoermigen Stoffs,insbesondere Erdgas
DE1255904B (de) Erdbehaelter fuer Fluessiggase und Verfahren zu seiner Herstellung
DE2032101C3 (de) Verfahren zum Herstellen von dichten Untertagekammerspeichern für die Speicherung von Gasen oder Flüssigkeiten
DE4115431A1 (de) Vorrichtung zur nutzbarmachung von geothermischer energie
DE2320151C3 (de) Unterirdischer Speicherbehälter für verflüssigtes Gas
DE102013107677A1 (de) Druckgasspeicher zur unterirdischen Druckgasspeicherung
DE2146135A1 (de) Anlage zur unterirdischen Lagerung von Gas
DE3036842A1 (de) Verfahren zum bodengefrieren
DE2510552C3 (de) Verfahren zum Absenken eines schwimmfähigen Hohlkörpers und Hohlkörper zur Durchführung des Verfahrens
DE1434604A1 (de) Verfahren zur Speicherung von Gas in unterirdischen Hohlraeumen
AT404247B (de) Druckbehälter für zu speichernde gase
DE828388C (de) Verfahren zur Klimatisierung der Grubenluft
DE854185C (de) Gefrierverfahren und Einrichtung zur Durchfuehrung des Verfahrens
DE202023103627U1 (de) Unterirdisches rotierendes Überschall-Luftmesser für ringförmige Kavitations- und Sickerwassererhöhungsanlagen
DE2928326A1 (de) Verfahren zum abdichten der aus stahloder spannbeton bestehenden innenwand eines doppelwandigen behaelters sowie nach diesem verfahren abgedichteter behaelter
EP1739686A1 (fr) Procede de stockage souterrain de matieres dangereuses pour l'environnement et dispositif de mise en oeuvre de ce procede
CH616124A5 (en) Method for the safe subterranean storage of cold products and corresponding storage system
DE2253407A1 (de) Behaelter zum lagern kalter fluessigkeiten, insbesondere von fluessiggas, sowie verfahren zu ihrer herstellung
DE2364340B2 (de) Verfahren zum Sprengen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19910917

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920401

Ref country code: NL

Effective date: 19920401

Ref country code: FR

Effective date: 19920401

Ref country code: GB

Effective date: 19920401

REF Corresponds to:

Ref document number: 58901092

Country of ref document: DE

Date of ref document: 19920507

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19921130

Ref country code: LI

Effective date: 19921130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803