EP0375025A1 - Cast light alloy - Google Patents
Cast light alloy Download PDFInfo
- Publication number
- EP0375025A1 EP0375025A1 EP89203151A EP89203151A EP0375025A1 EP 0375025 A1 EP0375025 A1 EP 0375025A1 EP 89203151 A EP89203151 A EP 89203151A EP 89203151 A EP89203151 A EP 89203151A EP 0375025 A1 EP0375025 A1 EP 0375025A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mass
- aluminum
- magnesium
- material according
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
Definitions
- the invention relates to a cast lightweight casting material based on aluminum.
- a comparatively higher mechanical and thermal resilience have aluminum-silicon alloys, the matrix of which is reinforced by, for example, 20 vol.% Fibers, such as from Al2O3, carbon, steel and the like, or whiskers, such as from SiC or the like.
- the press casting process is excellently suitable for the production of such fiber composite materials (Bader, MG: Alumina-fiber reinforced aluminum alloy castings for automotive applications, proc. of the int. Ass. For Vehicle Design, Vol. 2, 1984).
- fiber composite materials are comparatively complex in terms of their manufacture.
- Ceramic materials promise significantly improved high-temperature strength and more favorable corrosion behavior.
- the mass production of complex ceramic components e.g. monolithic pistons or turbine blades, however, is still an unsolved problem.
- the possible uses of ceramics in internal combustion engine construction are limited from the outset due to their great sensitivity to notches, mechanical impacts and thermal alternating loads.
- they increase the weight to an undesirable extent, can only be formed with considerable effort and their production is associated with considerable costs.
- Materials based on intermetallic phases combine metallic and ceramic properties, e.g. good thermal conductivity, a high melting temperature and partially satisfactory ductility, so that they appear to be suitable for filling the area between the conventional metallic lightweight materials based on aluminum and the high-temperature-resistant but brittle ceramics. This applies in particular to gas turbines and internal combustion engines in which improved materials enable the operating temperatures and thus the thermal efficiency to be increased.
- intermetallic phases has been used in light-alloy pistons made of aluminum-silicon alloys to the extent that they are eliminated by arc welding in the area of the first piston ring groove when part of the base material is melted and with nickel or copper materials is mixed.
- Hard intermetallic phases and primarily silicon are embedded in a highly supersaturated matrix of aluminum mixed crystal, which results in high wear resistance (US-A-4 562 327).
- an intermetallic phase alloy based on magnesium silicide for the production of moldings of high heat resistance, which contains up to 42% by weight aluminum and / or up to 22% by weight silicon can be added.
- the optimal composition of this alloy is limited by an area in the three-material system aluminum-magnesium-silicon by the eutectic groove, the quasi-binary cut and by 42% by weight aluminum.
- the disadvantage of such a cast light material consists in a gas porosity which cannot always be avoided, which occurs when the residual melt solidifies in the cast body, and on the gases dissolved in the melt, which are released during solidification as a result of the decreasing solubility.
- This task is solved by a light cast material on aluminum basis with the addition of 5 to 25 mass% magnesium silicide.
- This lightweight material primarily contains magnesium silicide and the remainder consists of binary Al-Mg2Si eutectic or ternary Al-Mg2Si-Si eutectic.
- the light material according to the invention can be fine-grained by adding up to 12% by mass, preferably 0.5 to 10% by mass, of silicon, although no primary silicon may occur.
- the silicon can be replaced in whole or in part by up to 15% by mass, preferably 5 to 12% by mass, of magnesium.
- a preferred composition of the lightweight aluminum-based material consists in the three-material system aluminum-magnesium-silicon in a surface on both sides of the quasi-binary cut Al / Mg2Si, which is limited by the liquidus temperature of ⁇ 700 ° C and the primary solidification range of magnesium silicide.
- the curing of the lightweight material can be accelerated considerably.
- the aluminum-based lightweight material according to the invention is produced by means of customary casting processes, either by charging an aluminum melt with magnesium silicide or by adding magnesium and silicon separately to the melt.
- the properties achieved with the invention are compared in the table below with the properties of an aluminum piston alloy of the type G-AlSi12CuMgNi. It shows that the thermal expansion coefficient is lower with 19.8 ⁇ 10 ⁇ 6K ⁇ 61 for a light material with the composition Al80-Mg2Si20.
- the value for the thermal conductivity at 173 W / mK is significantly higher than the value of the thermal conductivity for the conventional piston alloy.
- the density of the lightweight material is reduced to approximately 2.51 g / cm3, while the stiffness of the lightweight material characterized by the modulus of elasticity increases to 83 GPa.
- the remaining mechanical strength values can be influenced by the structure and the heat treatment.
- the composition of the light material based on aluminum which is particularly interesting for a technological use as a piston material, is represented by a hatched area on both sides of the quasi-binary cut Al / Mg2Si, which is characterized by the liquidus temperature of ⁇ 700 ° C and the primary solidification range of magnesium silicide is limited.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
Description
Die Erfindung betrifft einen gegossenen Gußleichtwerkstoff auf der Basis von Aluminium.The invention relates to a cast lightweight casting material based on aluminum.
Im Brennkraftmaschinenbau haben die aktuellen Entwicklungen - Steigerung der Zünddrücke und thermische Isolation des Brennraums im Hinblick auf einen reduzierten Kraftstoffverbrauch und eine verminderte Schadstoffemission - gravierende Auswirkungen auf die verwendeten Leichtwerkstoffe auf Aluminiumbasis, deren Tragfähigkeit ergänzend zu konstruktiven Maßnahmen erhöht werden muß.In internal combustion engine construction, current developments - increasing the ignition pressures and thermal insulation of the combustion chamber with a view to reduced fuel consumption and reduced pollutant emissions - have a serious impact on the lightweight aluminum-based materials used, whose load-bearing capacity must be increased in addition to constructive measures.
Herkömmliche Gußleichtwerkstoffe auf der Basis von Aluminium, wie z.B. Aluminium-Silizium-Kolbenlegierungen, sind in zahlreichen Fällen an den Grenzen ihrer Tragfähigkeit angelangt, da sie oberhalb einer Temperatur von ca. 300°C kaum noch über längere Zeit höhere mechanische und thermische Belastungen ertragen können.Conventional cast light materials based on aluminum, such as Aluminum-silicon piston alloys have reached the limits of their load-bearing capacity in numerous cases, since above a temperature of approx. 300 ° C they can hardly withstand higher mechanical and thermal loads over a longer period of time.
Durch Preßgießen, bei dem die in die Gießform gefüllte Schmelze unter hohem Druck von über 1000 bar zur Erstarrung gebracht wird, kann durch das dabei erzielte feine Gefüge die Temperaturwechselbeständigkeit von Aluminium-Silizium-Legierungen zwar leicht aber nicht ausreichend erhöht werden (Z. Metall 30, 1976, S. 46-54).By press casting, in which the melt filled in the casting mold is solidified under high pressure of over 1000 bar, the temperature change resistance of aluminum-silicon alloys can be increased slightly but not sufficiently by the fine structure obtained in this way (Z. Metall 30 , 1976, pp. 46-54).
Eine vergleichsweise höhere mechanische und thermische Belastbarkeit besitzen Aluminium-Silizium-Legierungen, deren Matrix durch z.B. 20 Vol.-% Fasern, wie aus Al₂O₃, Kohlenstoff, Stahl und dergleichen, oder Whiskern, wie aus SiC oder dergleichen, verstärkt ist. Das Preßgießverfahren eignet sich in hervorragender Weise zur Herstellung von solchen Faserverbundwerkstoffen (Bader, M.G.: Alumina-fibre reinforced aluminum alloy castings for automotive applications, Proc. of the Int. Ass. for Vehicle Design, Vol. 2, 1984). Faserverbundwerkstoffe sind jedoch im Hinblick auf ihre Herstellung vergleichsweise aufwendig.A comparatively higher mechanical and thermal resilience have aluminum-silicon alloys, the matrix of which is reinforced by, for example, 20 vol.% Fibers, such as from Al₂O₃, carbon, steel and the like, or whiskers, such as from SiC or the like. The press casting process is excellently suitable for the production of such fiber composite materials (Bader, MG: Alumina-fiber reinforced aluminum alloy castings for automotive applications, proc. of the int. Ass. For Vehicle Design, Vol. 2, 1984). However, fiber composite materials are comparatively complex in terms of their manufacture.
Keramische Werkstoffe versprechen wesentlich verbesserte Hochtemperaturfestigkeit und günstigeres Korrosionsverhalten. Die Massenherstellung komplizierter keramischer Bauteile, wie z.B. monolithischer Kolben oder Turbinenschaufeln, ist jedoch noch ein ungelöstes Problem. Ferner sind die Einsatzmöglichkeiten von Keramik im Brennkraftmaschinenbau wegen ihrer großen Empfindlichkeit gegenüber Kerben, mechanischen Stößen und thermischer Wechselbeanspruchung von vornherein begrenzt. Darüber hinaus erhöhen sie in unerwünschtem Maße das Gewicht, sind nur mit einem erheblichen Aufwand formbar und ihre Herstellung ist mit beachtlichen Kosten verbunden.Ceramic materials promise significantly improved high-temperature strength and more favorable corrosion behavior. The mass production of complex ceramic components, e.g. monolithic pistons or turbine blades, however, is still an unsolved problem. Furthermore, the possible uses of ceramics in internal combustion engine construction are limited from the outset due to their great sensitivity to notches, mechanical impacts and thermal alternating loads. In addition, they increase the weight to an undesirable extent, can only be formed with considerable effort and their production is associated with considerable costs.
Werkstoffe auf der Basis intermetallischer Phasen vereinigen in sich metallische und keramische Eigenschaften, wie z.B. eine gute thermische Leitfähigkeit, eine hohe Schmelztemperatur und teilweise befriedigende Duktilität, so daß sie als geeignet erscheinen, den Bereich zwischen den konventionellen metallischen Leichtwerkstoffen auf der Basis von Aluminium und den hochtemperaturfesten, aber spröden Keramiken auszufüllen. Das betrifft insbesondere Gasturbinen und Brennkraftmaschinen, bei denen verbesserte Werkstoffe eine Erhöhung der Betriebstemperaturen und damit des thermischen Wirkungsgrades ermöglichen.Materials based on intermetallic phases combine metallic and ceramic properties, e.g. good thermal conductivity, a high melting temperature and partially satisfactory ductility, so that they appear to be suitable for filling the area between the conventional metallic lightweight materials based on aluminum and the high-temperature-resistant but brittle ceramics. This applies in particular to gas turbines and internal combustion engines in which improved materials enable the operating temperatures and thus the thermal efficiency to be increased.
Der Einsatz von intermetallischen Phasen hat bei Leichtmetallkolben aus Aluminium-Silizium-Legierungen insoweit Anwendung gefunden, als diese über Lichtbogenschweißung im Bereich der ersten Kolbenringnut ausgeschieden werden, wenn ein Teil des Grundwerkstoffs aufgeschmolzen und mit Nickel- oder Kupferwerkstoffen vermischt wird. Harte intermetallische Phasen und primär Silizium sind in eine stark übersättigte Matrix aus Aluminium-Mischkristall eingebettet, wodurch sich eine hohe Verschleißbeständigkeit ergibt (US-A-4 562 327).The use of intermetallic phases has been used in light-alloy pistons made of aluminum-silicon alloys to the extent that they are eliminated by arc welding in the area of the first piston ring groove when part of the base material is melted and with nickel or copper materials is mixed. Hard intermetallic phases and primarily silicon are embedded in a highly supersaturated matrix of aluminum mixed crystal, which results in high wear resistance (US-A-4 562 327).
In der DE-A-3 702 721 ist für die Herstellung von Formkörpern hoher Warmfestigkeit eine intermetallische-Phasen-Legierung auf der Basis von Magnesiumsilizid vorgesehen, der bis zu 42 Gew.-% Aluminium und/oder bis zu 22 Gew.-% Silizium zugesetzt sein können. Die optimale Zusammensetzung dieser Legierung ist durch eine Fläche im Dreistoffsystem Aluminium-Magnesium-Silizium durch die eutektische Rinne, den quasibinären Schnitt und durch 42 Gew.-% Aluminium begrenzt. Der Nachteil eines solchen Guß-Leichtwerkstoffs besteht in einer nicht immer vermeidbaren Gasporosität, die beim Erstarren der Restschmelze im Gußkörper auftritt und auf die in der Schmelze gelösten Gase, die bei der Erstarrung infolge der rücklaufenden Löslichkeit freiwerden, zurückzuführen ist.In DE-A-3 702 721 an intermetallic phase alloy based on magnesium silicide is provided for the production of moldings of high heat resistance, which contains up to 42% by weight aluminum and / or up to 22% by weight silicon can be added. The optimal composition of this alloy is limited by an area in the three-material system aluminum-magnesium-silicon by the eutectic groove, the quasi-binary cut and by 42% by weight aluminum. The disadvantage of such a cast light material consists in a gas porosity which cannot always be avoided, which occurs when the residual melt solidifies in the cast body, and on the gases dissolved in the melt, which are released during solidification as a result of the decreasing solubility.
Es ist die Aufgabe der vorliegenden Erfindung, einen Gußleichtwerkstoff auf Aluminiumbasis zu schaffen, der unter ähnlichen Gießbedingungen wie eine herkömmliche Aluminiumkolbenlegierung, beispielsweise des Typs AlSi12CuNiMg, d.h. bei Temperaturen von 700 bis 750°C vergießbar ist, der eine Liquidustemperatur von 560 bis 700°C und eine Solidustemperatur von 550 bis 600°C besitzt und der einen thermischen Ausdehnungskoeffizienten von < 20 · 10⁻⁶K⁻¹ aufweist.It is the object of the present invention to provide an aluminum-based casting lightweight material which can be cast under similar casting conditions to a conventional aluminum piston alloy, for example of the AlSi12CuNiMg type, i.e. is pourable at temperatures of 700 to 750 ° C, which has a liquidus temperature of 560 to 700 ° C and a solidus temperature of 550 to 600 ° C and which has a thermal expansion coefficient of <20 · 10⁻⁶K⁻¹.
Gelöst ist diese Aufgabe durch einen Gußleichtwerkstoff auf Aluminiumbasis mit einem Zusatz von 5 bis 25 Masse-% Magnesiumsilizid. Dieser Leichtwerkstoff enthält gefügemäßig primär Magnesiumsilizid und besteht als Rest aus binärem Al-Mg₂Si-Eutektikum bzw. ternärem Al-Mg₂Si-Si-Eutektikum.This task is solved by a light cast material on aluminum basis with the addition of 5 to 25 mass% magnesium silicide. This lightweight material primarily contains magnesium silicide and the remainder consists of binary Al-Mg₂Si eutectic or ternary Al-Mg₂Si-Si eutectic.
In L.F. Mondolfo, Aluminum Alloys: Structure and Properties, London 1976, S. 787, ist zwar erwähnt, daß Aluminiumlegierungen Magnesiumsilizid bis etwa 2 Masse-% enthalten können..Oberhalb dieser Grenze lassen sich solche Aluminiumlegierungen nicht mehr umformen. Über Gußleichtwerkstoffe mit einem Zusatz an Mg₂Si wird in dieser Druckschrift nicht berichtet.In L.F. Mondolfo, Aluminum Alloys: Structure and Properties, London 1976, p. 787, it is mentioned that aluminum alloys can contain magnesium silicide up to about 2% by mass. Above this limit, such aluminum alloys can no longer be formed. This publication does not report on cast light materials with an addition of Mg₂Si.
Im Hinblick auf eine verbesserte Duktilität kann der erfindungsgemäße Leichtwerkstoff durch einen Zusatz von bis zu 12 Masse-%, vorzugsweise 0,5 bis 10 Masse-% Silizium korngefeint werden, wobei allerdings kein primäres Silizium auftreten darf.With a view to improved ductility, the light material according to the invention can be fine-grained by adding up to 12% by mass, preferably 0.5 to 10% by mass, of silicon, although no primary silicon may occur.
Das Silizium ist nach einem weiteren Erfindungsmerkmal ganz oder teilweise durch bis zu 15 Masse-%, vorzugsweise 5 bis 12 Masse-% Magnesium ersetzbar.According to a further feature of the invention, the silicon can be replaced in whole or in part by up to 15% by mass, preferably 5 to 12% by mass, of magnesium.
Eine vorzugsweise Zusammensetzung des Leichtwerkstoffs auf Aluminiumbasis besteht im Dreistoffsystem Aluminium-Magnesium-Silizium in einer beidseitig des quasibinären Schnitts Al/Mg₂Si liegenden Fläche, die durch die Liquidustemperatur von < 700°C und den Primärerstarrungsbereich von Magnesiumsilizid begrenzt ist.A preferred composition of the lightweight aluminum-based material consists in the three-material system aluminum-magnesium-silicon in a surface on both sides of the quasi-binary cut Al / Mg₂Si, which is limited by the liquidus temperature of <700 ° C and the primary solidification range of magnesium silicide.
Durch den Zusatz von bis zu 5 Masse-%, vorzugsweise 0,05 bis 2 Masse-% eines oder mehrerer der Elemente Mangan, Kupfer, Nickel und Kobalt kann die Aushärtung des Leichtwerkstoffs erheblich beschleunigt werden.By adding up to 5% by mass, preferably 0.05 to 2% by mass, of one or more of the elements manganese, copper, nickel and cobalt, the curing of the lightweight material can be accelerated considerably.
Die Herstellung des erfindungsgemäßen Leichtwerkstoffs auf Aluminiumbasis erfolgt mittels üblicher Gießverfahren, indem entweder eine Aluminiumschmelze mit Magnesiumsilizid chargiert wird oder Magnesium und Silizium getrennt der Schmelze zugegeben werden.The aluminum-based lightweight material according to the invention is produced by means of customary casting processes, either by charging an aluminum melt with magnesium silicide or by adding magnesium and silicon separately to the melt.
Die mit der Erfindung erzielten Eigenschaften sind in der nachfolgenden Tabelle den Eigenschaften einer Aluminiumkolbenlegierung des Typs G-AlSi12CuMgNi gegenübergestellt. Dabei zeigt sich, daß der thermische Ausdehnungskoeffizient mit 19,8 · 10⁻⁶K⁻¹ bei einem Leichtwerkstoff der Zusammensetzung Al80-Mg₂Si20 niedriger ist. Der Wert für die Wärmeleitfähigkeit mit 173 W/mK liegt deutlich über dem Wert der Wärmeleitfähigkeit für die herkömmliche Kolbenlegierung. Die Dichte des Leichtwerkstoffs ist auf etwa 2,51 g/cm³ reduziert, während die durch den E-Modul charakterisierte Steifigkeit des Leichtwerkstoffs auf 83 GPa zunimmt. Die übrigen mechanischen Festigkeitswerte können durch das Gefüge und die Wärmebehandlung beeinflußt werden.
Bei dem in der Zeichnung wiedergegebenen Dreistoffsystem Aluminium-Magnesium-Silizium ist die für eine technologische Verwendung als Kolbenwerkstoff besonders interessante Zusammensetzung des Leichtwerkstoffs auf der Basis von Aluminium durch eine schraffierte, beidseitig des quasibinären Schnitts Al/Mg₂Si liegende Fläche dargestellt, die durch die Liquidustemperatur von < 700°C und den Primärerstarrungsbereich von Magnesiumsilizid begrenzt ist.In the three-substance system aluminum-magnesium-silicon shown in the drawing, the composition of the light material based on aluminum, which is particularly interesting for a technological use as a piston material, is represented by a hatched area on both sides of the quasi-binary cut Al / Mg₂Si, which is characterized by the liquidus temperature of <700 ° C and the primary solidification range of magnesium silicide is limited.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3842812 | 1988-12-20 | ||
DE19883842812 DE3842812A1 (en) | 1988-12-20 | 1988-12-20 | CAST LIGHT MATERIAL |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0375025A1 true EP0375025A1 (en) | 1990-06-27 |
Family
ID=6369586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89203151A Withdrawn EP0375025A1 (en) | 1988-12-20 | 1989-12-09 | Cast light alloy |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0375025A1 (en) |
JP (1) | JPH02221349A (en) |
DE (1) | DE3842812A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4400896C1 (en) * | 1994-01-14 | 1995-03-30 | Bergische Stahlindustrie | Brake disc for disc brakes of rail vehicles |
WO1996015281A1 (en) * | 1994-11-15 | 1996-05-23 | Aluminium Rheinfelden Gmbh | Cast aluminium alloy |
EP0773302A1 (en) * | 1995-10-09 | 1997-05-14 | Honda Giken Kogyo Kabushiki Kaisha | Thixocasting process and thixocasting aluminium alloy material |
WO2005078147A1 (en) * | 2004-02-16 | 2005-08-25 | Mahle Gmbh | Material based on an aluminum alloy, method for the production thereof and its use |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007035124A1 (en) | 2007-07-27 | 2009-01-29 | FNE Forschungsinstitut für Nichteisen-Metalle GmbH | Lightweight construction material with dense, pore-free structure, comprises magnesium silicide reinforcing material in aluminum matrix and is obtained by squeeze-casting |
DE102007035115A1 (en) | 2007-07-27 | 2009-01-29 | FNE Forschungsinstitut für Nichteisen-Metalle GmbH | Aluminum-matrix material for building contains concentration gradient of magnesium silicide |
EP2767608B1 (en) * | 2011-10-11 | 2016-08-10 | Nippon Light Metal Company, Ltd. | METHOD FOR PRODUCING ALUMINUM ALLOY IN WHICH Al-Fe-Si-BASED COMPOUND AND PRIMARY CRYSTAL Si ARE FINELY DIVIDED |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1483229B1 (en) * | 1965-09-03 | 1973-12-13 | Honsel Werke Ag | Use of AIMgSi cast alloys, consisting of 0.6 to 4.5% silicon, 2.5 to 11% magnesium, the remainder aluminum with the usual production-related impurities |
DE1608165B1 (en) * | 1967-12-01 | 1974-05-02 | Honsel Werke Ag | Use of AlMgSi cast alloys for cylinder heads subject to thermal alternating stress |
DE3702721A1 (en) * | 1986-02-26 | 1987-08-27 | Metallgesellschaft Ag | Intermetallic-phase alloys and process for the production thereof |
-
1988
- 1988-12-20 DE DE19883842812 patent/DE3842812A1/en not_active Withdrawn
-
1989
- 1989-12-09 EP EP89203151A patent/EP0375025A1/en not_active Withdrawn
- 1989-12-20 JP JP33092289A patent/JPH02221349A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1483229B1 (en) * | 1965-09-03 | 1973-12-13 | Honsel Werke Ag | Use of AIMgSi cast alloys, consisting of 0.6 to 4.5% silicon, 2.5 to 11% magnesium, the remainder aluminum with the usual production-related impurities |
DE1608165B1 (en) * | 1967-12-01 | 1974-05-02 | Honsel Werke Ag | Use of AlMgSi cast alloys for cylinder heads subject to thermal alternating stress |
DE3702721A1 (en) * | 1986-02-26 | 1987-08-27 | Metallgesellschaft Ag | Intermetallic-phase alloys and process for the production thereof |
Non-Patent Citations (2)
Title |
---|
J.E. HATCH: "Properties and physical metallurgy", Auflage 1, 1984, Seiten 320-351, American Society for Metals, Ohio, US; "Properties of commercial casting alloys" * |
METALS ABSTRACTS, Band 19, Nr. 2, Februar 1986, Zusammenfassung Nr. 31-0581; E R. MISHIMA et al.: "Superplasticity of strip cast aluminum alloys", & JOURNAL OF JAPANESE INSTITUTION OF LIGHT METALS, August 1985, Band 35, Nr. 8, Seiten 455-462 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4400896C1 (en) * | 1994-01-14 | 1995-03-30 | Bergische Stahlindustrie | Brake disc for disc brakes of rail vehicles |
WO1995019510A1 (en) * | 1994-01-14 | 1995-07-20 | Bergische Stahl-Industrie | Brake disk for disk brakes of rail vehicles |
WO1996015281A1 (en) * | 1994-11-15 | 1996-05-23 | Aluminium Rheinfelden Gmbh | Cast aluminium alloy |
EP0773302A1 (en) * | 1995-10-09 | 1997-05-14 | Honda Giken Kogyo Kabushiki Kaisha | Thixocasting process and thixocasting aluminium alloy material |
WO2005078147A1 (en) * | 2004-02-16 | 2005-08-25 | Mahle Gmbh | Material based on an aluminum alloy, method for the production thereof and its use |
US7892482B2 (en) | 2004-02-16 | 2011-02-22 | Mahle Gmbh | Material on the basis of an aluminum alloy, method for its production, as well as use therefor |
Also Published As
Publication number | Publication date |
---|---|
DE3842812A1 (en) | 1990-06-21 |
JPH02221349A (en) | 1990-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112004001160B4 (en) | Aluminum alloy for a cast engine block, cast cylinder block for an internal combustion engine, and use of the aluminum alloy | |
EP1978120B1 (en) | Aluminium-silicon alloy and method for production of same | |
US4818308A (en) | Aluminum alloy and method for producing the same | |
DE102009012073B4 (en) | Use of an aluminum casting alloy | |
DE102007023323B4 (en) | Use of an Al-Mn alloy for high-temperature products | |
CA2281444C (en) | High strength aluminum alloy forgings | |
JP7500726B2 (en) | Heat-resistant aluminum powder material | |
US3037857A (en) | Aluminum-base alloy | |
US3973952A (en) | Heat resistant alloy casting | |
DE102009048124A1 (en) | Steel pistons for internal combustion engines | |
DE4103934A1 (en) | SUITABLE ALUMINUM ALLOY FOR PISTON | |
US6399020B1 (en) | Aluminum-silicon alloy having improved properties at elevated temperatures and articles cast therefrom | |
JPH05346166A (en) | Light alloy piston | |
EP0561204A2 (en) | Heat-resistant aluminum alloy powder, heat-resistant aluminum alloy and heat- and wear-resistant aluminum alloy-based composite material | |
US6419769B1 (en) | Aluminum-silicon alloy having improved properties at elevated temperatures and process for producing cast articles therefrom | |
US5178686A (en) | Lightweight cast material | |
EP0375025A1 (en) | Cast light alloy | |
EP0600474B1 (en) | High heat resisting and high abrasion resisting aluminum alloy | |
CN114574740A (en) | Aluminum alloy for casting and additive manufacturing of engine components for high temperature applications | |
US4537161A (en) | Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability | |
DE102012018934A1 (en) | Preparation of aluminum-iron alloy semi-finished product e.g. brake rotor, involves casting aluminum-iron alloy containing iron, copper, vanadium and element chosen from silicon, zinc and boron, and aluminum, cooling, and extruding | |
DE69125868T2 (en) | Sliding rail part using dispersion-reinforced iron-chromium-based alloys | |
KR101277456B1 (en) | Aluminium-based alloy and moulded part consisting of said alloy | |
DE3702721A1 (en) | Intermetallic-phase alloys and process for the production thereof | |
DE19724899C2 (en) | Highly heat-resistant magnesium material, especially for piston construction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19901115 |
|
17Q | First examination report despatched |
Effective date: 19920526 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19931209 |