EP0363233A1 - Method and apparatus for speech synthesis by wave form overlapping and adding - Google Patents
Method and apparatus for speech synthesis by wave form overlapping and adding Download PDFInfo
- Publication number
- EP0363233A1 EP0363233A1 EP89402394A EP89402394A EP0363233A1 EP 0363233 A1 EP0363233 A1 EP 0363233A1 EP 89402394 A EP89402394 A EP 89402394A EP 89402394 A EP89402394 A EP 89402394A EP 0363233 A1 EP0363233 A1 EP 0363233A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- synthesis
- period
- window
- speech
- fundamental
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 56
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims description 21
- 230000001755 vocal effect Effects 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims abstract description 7
- 230000007423 decrease Effects 0.000 claims abstract description 6
- 210000001260 vocal cord Anatomy 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract 2
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 claims description 17
- 230000015654 memory Effects 0.000 claims description 7
- 230000003936 working memory Effects 0.000 claims description 4
- 230000003247 decreasing effect Effects 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 238000001308 synthesis method Methods 0.000 claims 3
- 230000002194 synthesizing effect Effects 0.000 claims 1
- 230000010363 phase shift Effects 0.000 abstract 1
- 230000000638 stimulation Effects 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 16
- 238000001228 spectrum Methods 0.000 description 16
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 206010011878 Deafness Diseases 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 230000005428 wave function Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L13/00—Speech synthesis; Text to speech systems
- G10L13/06—Elementary speech units used in speech synthesisers; Concatenation rules
- G10L13/07—Concatenation rules
Definitions
- the invention relates to methods and devices for speech synthesis; it relates, more particularly, to the synthesis from a dictionary of sound elements by cutting up the text to be synthesized into microtrames each identified by a serial number of corresponding sound element and by prosodic parameters (information of sound height at the beginning and at the end of the sound element and duration of the sound element), then by adaptation and concatenation of the sound elements by an addition-recovery procedure.
- the sound elements stored in the dictionary will frequently be diphones, that is to say transitions between phonemes, which makes it possible, for the French language, to be satisfied with a dictionary of approximately 1300 sound elements; however, different sound elements can be used, for example syllables or even words.
- the prosodic parameters are determined according to criteria relating to the context: the pitch which corresponds to the intonation, depends on the location of the sound element in a word and in the sentence and the duration given to the element. sound is a function of the rhythm of the sentence.
- This source-duct voice deconvolution allows on the one hand the modification of the value of the fundamental frequency of the voiced sounds, that is to say sounds which have a harmonic structure and are caused by vibration of the vocal cords, and on the other hand, the compression of the data representing the speech signal.
- the speech synthesis according to the present invention belongs to the second group. It finds a particularly important application in the field of the transformation of a spelling chain (constituted for example by the text supplied by a printer) into a speech signal, for example restored directly or emitted on a normal telephone line.
- the present invention aims in particular to provide a relatively simple method and allowing acceptable speech reproduction. It starts from the hypothesis that voiced sounds can be considered as the sum of the impulse responses of a filter, stationary for several milliseconds, (corresponding to the vocal tract) excited by a Dirac sequence, that is to say by a "pulse comb", synchronously with the fundamental frequency of the source, that is to say vocal cords, which is reflected in the spectral domain by a harmonic spectrum, the harmonics being spaced from the fundamental frequency and weighted by an envelope having maxima called formants, depending on the transfer function of the vocal tract.
- the present invention aims to provide a method and a device for concatenating synthesis of waveforms which do not have the above limitation and which make it possible to provide good quality speech, while requiring only a small volume of arithmetic calculations. .
- the invention notably proposes a method characterized in that: - a windowing centered at the start of each impulse response from the vocal tract to the excitation of the vocal cords (at the start of each voice impulse) can be performed, at least on voiced voices of the sound elements a window having a maximum for said start and an amplitude decreasing to zero at the edge of the window, and - the windowed signals corresponding to each sound element are replaced with a time offset equal to the fundamental synthesis period to be obtained, less than or greater than the original fundamental period according to the prosodic pitch information of the fundamental frequency and a summation of these signals.
- the width of the window can vary between values less than and greater than twice the original period.
- the width of the window is advantageously chosen to be approximately twice the original period in the event of an increase in the fundamental period or approximately twice the final period of synthesis in the event of an increase in the fundamental frequency, in order to partially compensate for the energy modifications due to the change in the fundamental frequency, not compensated for by a possible normalization of the energy, taking into account the contribution of each window to the amplitude of the samples of the digital synthesis signal: in the case of a decrease in the fundamental period, the width of the window will therefore be less than twice the original fundamental period. It is undesirable to go below this value.
- the diphones are memorized with the natural fundamental frequency of the speaker.
- elementary waveforms With a window of duration equal to two consecutive fundamental periods in the voiced case, elementary waveforms are obtained whose spectrum represents substantially the envelope of the spectrum of the speech signal or short-term broadband spectrum - since this spectrum is obtained by convolution of the harmonic spectrum of the speech signal and the frequency response of the window, which in this case has a bandwidth greater than the distance between harmonics; the temporal redistribution of these elementary waveforms will give a signal having substantially the same envelope as the original signal but a modified distance between harmonics.
- deaf or unvoiced sounds can be represented by a signal whose shape is similar to that of white noise, but without synchronization of the windowed signals: this is intended to '' homogenize the processing on deaf sounds and voiced sounds, which allows on the one hand the smoothing between sound elements (diphones) and between deaf and voiced phonemes, and on the other hand a modification of the rhythm. There is a problem at the junction between diphones.
- the synthesis of a phoneme is carried out from two diphones stored in a dictionary, each phoneme being composed of two half-diphones.
- the sound "é” in “period” for example will be obtained from the second half-diphone of "pai” and the first half-diphone of "air".
- a phonetic orthographic translation and prosody calculation module (which is not part of the invention) provides, at a given instant, indications identifying: - the phoneme to be restored, of order P - the previous phoneme, of order P-1 - the following phoneme, of order P + 1 and giving the duration to be assigned to the phoneme P as well as the periods at the beginning and at the end ( Figure 1).
- a first analysis operation which is not modified by the invention, consists in determining, by decoding the names of the phonemes and prosodic indications, the two diphones selected for the phoneme to be used and the voicing.
- All the available diphones (1300 for example) are stored in a dictionary 10 provided with a table constituting the descriptor 12 and containing the address of the start of each diphone (in number of blocks of 256 bytes) the length of the diphone and the middle of the diphone (these last two parameters being expressed in number of samples from the start) and voicing marks marking the beginning of the response of the vocal tract to the excitation of the vocal cords in the case of a sound voiced (35 in number for example). Dictionaries of diphones meeting these criteria are available, for example, from the National Center for Telecommunications Studies.
- the diphones are then used in a process of analysis and synthesis shown diagrammatically in FIG. 1. This process will be described assuming that it is implemented in a synthesis device having the constitution shown in FIG. 2, intended to be connected to a host computer, such as the central processor of a personal computer. We will also assume that the sampling frequency giving the representation of the diphones is 16 kHz.
- the synthesis device (FIG. 2) then comprises a main random access memory 16 which contains a microcomputing program, the dictionary of diphones 10 (that is to say waveforms represented by samples) stored in the order of the addresses of the descriptor, the table 12 constituting the dictionary descriptor, and a Hanning window, sampled for example on 500 points.
- the random access memory 16 also constitutes micro-frame memory and working memory. It is connected by a data bus 18 and an address bus 20 to an access 22 to the host computer.
- Each micro-frame emitted to restore a phoneme ( Figure 2) is made up, for each of the two phonemes P and P + 1 which are involved - the serial number of the phoneme, - the value of the period at the start of the phoneme, the value of the period at the end of the phoneme, and - the total duration of the phoneme which can be replaced by the duration of the diphone for the second phoneme.
- the device also comprises, connected to the buses 18 and 20, a local computing unit 24 and a switching circuit 26.
- the latter makes it possible to connect a random access memory 28 serving as an output buffer either to the computer or to a controller 30 of digital / analog converter 32 output.
- the latter attacks a low-pass filter 34, generally limited to 8 kHz, which supplies a speech amplifier 36.
- the operation of the device is as follows.
- the host computer (not shown) loads the micro-frames into the table reserved in memory 16, via access 22 and buses 18 and 20, then it commands the start of synthesis to the calculation unit 24
- This calculation unit searches for the number of the current phoneme P, of the next phoneme P + 1 and of the previous phoneme P-1 in the micro-frame table, using an index stored in the working memory, initialized to 1.
- the calculating unit searches only for the numbers of the current phoneme and the next phoneme. In the case of the last phoneme, it picks up the number of the previous phoneme and that of the current phoneme.
- the computing unit loads, into working memory 16, the address of the diphone, its length, its middle as well as the thirty-five voicing marks. It then loads, into a descriptor table of the phoneme, the voicing marks corresponding to the second part of the diphone. Then she searches in the waveform dictionary for the second part of the diphone, which she places in a table representing the signal of the analysis phoneme. The marks kept in the phoneme descriptor table are decremented by the value of the middle of the diphone.
- This operation is repeated for the second part of the phoneme constituted by the first part of the second diphone.
- the voicing marks of the first part of the second diphone are added to the voicing marks of the phoneme and incremented by the value of the middle of the phoneme.
- the calculation unit stores in memory the number of marks of the natural phoneme, equal to the number of voicing marks, then determines the number of periods to be eliminated or added by making the difference between the number of synthesis periods and the number of periods of analysis, difference which is fixed by modifying the tone to be introduced from that corresponding to the dictionary.
- the calculation unit determines the analysis period selected from the phoneme periods based on the following considerations: the modification of the duration can be considered as the matching, by deformation of the time axis of the synthesis signal, of the n voicing marks of the analysis signal and of the p marks of the synthesis signal, n and p being predetermined integers; - to each of the p marks of the synthesis signal must be associated the mark closest to the analysis signal.
- the calculation unit determines the number of points to add or delete to the analysis period by making the difference between the latter and the summary period.
- the width of the analysis window as follows, illustrated in Figure 3: - if the synthesis period is less than the analysis period (lines A and B of Figure 3), the size of the window 38 is twice the synthesis period; - otherwise, the size of the window 40 is obtained by multiplying by two the lowest of the values of the current analysis period and of the previous analysis period (lines C and D).
- the calculation unit determines a progress step in reading the values of the window, tabulated for example on 500 points, the step then being equal to 500 divided by the size of the window previously calculated. It reads the samples from the previous period and the current period in the signal phoneme 28 signal buffer memory, weights them by the value of the Hanning window 38 or 40 indexed by the number of the current sample multiplied by the step of advancement in the tabulated window and adds, progressively, the calculated values to the buffer of the output signal indexed by the sum of the counter of the current output sample and the search index of the samples of the analysis phoneme. The current output counter is then incremented by the value of the synthesis period.
- the processing is analogous to the previous one, except that the value of the pseudo-periods (distance between two voicing marks) is never modified: the elimination of pseudo-periods in the center of the phoneme simply decreases the duration of this one.
- the duration of deaf phonemes is not increased, except by adding zeros in the middle of the "silent" phonemes.
- Windowing is carried out by period to normalize the sum of the values of the windows applied to the signal: - from the start of the previous period to the end of the previous period, the step forward in reading the tabbed window is (in the case of a tabulation on 500 points) equal to 500 divided by twice the duration of the previous period; - from the start of the current period to the end of the current period, the advancement step in the tabulated window is equal to 500 divided by twice the duration of the current period plus a constant offset of 250 points.
- the calculation unit stores the last period of the analysis and synthesis phoneme in the buffer memory 28 which allows the transition between phonemes.
- the counter of the output current sample is decremented by the value of the last synthesis period.
- the signal thus generated is sent, in blocks of 2,048 samples, to one of two memory spaces reserved for communication between the calculation unit and the controller 30 of the digital / analog converter 32.
- the controller 30 is activated by the calculation unit and empties this first buffer zone.
- the calculation unit fills a second buffer zone of 2048 samples.
- the calculation unit then alternately tests these two buffer zones with a flag to load the digital synthesis signal at the end of each synthesis sequence of a phoneme.
- the controller 30, at the end of reading of each buffer zone sets the corresponding flag.
- the controller empties the last buffer zone and sets a flag for the end of synthesis which the host computer can read via the communication access 22.
- FIGS. 4A-4C show that the temporal transformations of the digital speech signal do not affect the envelope of the synthesis signal, while modifying the distance between harmonics, i.e. the fundamental frequency of the speech signal.
- the complexity of the calculation remains low: the number of operations per sample is on average two multiplications and two additions for the weighting and the summation of the elementary functions provided by the analysis.
- the invention is susceptible of numerous variant embodiments and, in particular, as indicated above, a window of width greater than two periods, as shown in FIG. 6, possibly of fixed size, can give acceptable results. .
- the method of modifying the fundamental frequency on digital speech signals can also be used outside of its application to synthesis by diphones.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Electrophonic Musical Instruments (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
L'invention concerne les procédés et dispositifs de synthèse de la parole ; elle concerne, plus particulièrement, la synthèse à partir d'un dictionnaire d'éléments sonores par découpage du texte à synthétiser en microtrames identifiées chacune par un numéro d'ordre d'élément sonore correspondant et par des paramètres prosodiques (information de hauteur de son au début et à la fin de l'élément sonore et durée de l'élément sonore), puis par adaptation et concaténation des éléments sonores par une procédure d'addition-recouvrement.The invention relates to methods and devices for speech synthesis; it relates, more particularly, to the synthesis from a dictionary of sound elements by cutting up the text to be synthesized into microtrames each identified by a serial number of corresponding sound element and by prosodic parameters (information of sound height at the beginning and at the end of the sound element and duration of the sound element), then by adaptation and concatenation of the sound elements by an addition-recovery procedure.
Les éléments sonores stockés dans le dictionnaire seront fréquemment des diphones, c'est-à-dire des transitions entre phonèmes, ce qui permet, pour la langue française, de se contenter d'un dictionnaire d'environ 1300 éléments sonores ; on peut cependant utiliser des éléments sonores différents, par exemple des syllabes ou même des mots. Les paramètres prosodiques sont déterminés en fonction de critères portant sur le contexte : la hauteur de son qui correspond à l'intonation, dépend de l'emplacement de l'élément sonore dans un mot et dans la phrase et la durée donnée à l'élément sonore est fonction du rythme de la phrase.The sound elements stored in the dictionary will frequently be diphones, that is to say transitions between phonemes, which makes it possible, for the French language, to be satisfied with a dictionary of approximately 1300 sound elements; however, different sound elements can be used, for example syllables or even words. The prosodic parameters are determined according to criteria relating to the context: the pitch which corresponds to the intonation, depends on the location of the sound element in a word and in the sentence and the duration given to the element. sound is a function of the rhythm of the sentence.
Il faut rappeler au passage que les méthodes de synthèse de la parole se subdivisent en deux groupes. Celles qui utilisent un modèle mathématique du conduit vocal (synthèse par prédiction linéaire, synthèse à formants et synthèse à transformée de Fourier rapide) font intervenir une déconvolution de la source et de la fonction de transfert du conduit vocal et exigent en général une cinquantaine d'opérations arithmétiques par échantillon numérique de la parole avant conversion numérique-analogique et restitution.It should be remembered in passing that the methods of speech synthesis are subdivided into two groups. Those which use a mathematical model of the vocal tract (synthesis by linear prediction, synthesis with formants and synthesis with fast Fourier transform) involve a deconvolution of the source and the transfer function of the vocal tract and generally require around fifty arithmetic operations by digital sample of speech before digital-analog conversion and restitution.
Cette déconvolution source-conduit vocal permet d'une part la modification de la valeur de la fréquence fondamentale des sons voisés, c'est-à-dire des sons qui ont une structure harmonique et sont provoqués par vibration des cordes vocales, et d'autre part la compression des données représentant le signal de parole.This source-duct voice deconvolution allows on the one hand the modification of the value of the fundamental frequency of the voiced sounds, that is to say sounds which have a harmonic structure and are caused by vibration of the vocal cords, and on the other hand, the compression of the data representing the speech signal.
Celles qui appartiennent au second groupe de procédés utilisent la synthèse dans le domaine temporel par concaténation de formes d'onde. Cette solution a l'avantage de la flexibilité d'emploi et de la possibilité de réduire considérablement le nombre d'opérations arithmétiques par échantillons. En contrepartie, elle ne permet pas de réduire le débit nécessaire à la transmission autant que les méthodes basées sur un modèle mathématique. Mais cet inconvénient disparaît lorsqu'on recherche essentiellement une bonne qualité de restitution sans être gêné par la nécessité de transmettre des données sur un canal étroit.Those which belong to the second group of processes use synthesis in the time domain by concatenation of waveforms. This solution has the advantage of flexibility of use and the possibility of considerably reducing the number of arithmetic operations per sample. In return, it does not make it possible to reduce the bit rate necessary for transmission as much as the methods based on a mathematical model. However, this drawback disappears when essentially a good quality of reproduction is sought without being hampered by the need to transmit data over a narrow channel.
La synthèse de parole suivant la présente invention appartient au second groupe. Elle trouve une application particulièrement importante dans le domaine de la transformation d'une chaîne orthographique (constituée par exemple par le texte fourni par une imprimante) en un signal de parole, par exemple restitué directement ou émis sur une ligne téléphonique normale.The speech synthesis according to the present invention belongs to the second group. It finds a particularly important application in the field of the transformation of a spelling chain (constituted for example by the text supplied by a printer) into a speech signal, for example restored directly or emitted on a normal telephone line.
On connait déjà (Diphone synthesis using an overlap-add technique for speech waveforms concatenation, CHARPENTIER et al, ICASSP 1986, IEEE-IECEJ-ASJ International Conference on Acoustics Speech and Signal Processing, pages 2 015-2 018)un procédé de synthèse de parole à partir d'éléments sonores utilisant une technique d'addition-recouvrement de signaux à court-terme. Mais il s'agit de signaux à court-terme de synthèse, avec normalisation du recouvrement des fenêtres de synthèse, obtenus par un processus très complexe :
- analyse du signal original par fenêtrage synchrone du voisement ;
- transformée de Fourier du signal à court-terme ;
- détection d'enveloppe ;
- homothétie de l'axe fréquentiel sur le spectre de la source ;
- pondération du spectre modifié de la source par l'enveloppe du signal d'origine ;
- transformée de Fourier inverse.We already know (Diphone synthesis using an overlap-add technique for speech waveforms concatenation, CHARPENTIER et al, ICASSP 1986, IEEE-IECEJ-ASJ International Conference on Acoustics Speech and Signal Processing, pages 2 015-2 018) speech from sound elements using a short-term addition-recovery technique. But these are short-term synthesis signals, with normalization of the overlap of the synthesis windows, obtained by a very complex process:
- analysis of the original signal by synchronous windowing of the voicing;
- Fourier transform of the short-term signal;
- envelope detection;
- homothety of the frequency axis on the spectrum of the source;
weighting of the modified spectrum of the source by the envelope of the original signal;
- inverse Fourier transform.
La présente invention vise notamment à fournir un procédé relativement simple et permettant une reproduction acceptable de la parole. Elle part de l'hypothèse qu'on peut considérer les sons voisés comme la somme des réponses impulsionnelles d'un filtre, stationnaire durant plusieurs millisecondes, (correspondant au conduit vocal) excité par une suite de Dirac, c'est-à-dire par un "peigne d'impulsions", de façon synchrone de la fréquence fondamentale de la source, c'est-à-dire des cordes vocales, ce qui se traduit dans le domaine spectral par un spectre harmonique, les harmoniques étant espacés de la fréquence fondamentale et pondérés par une enveloppe présentant des maxima appelés formants, dépendant de la fonction de transfert du conduit vocal.The present invention aims in particular to provide a relatively simple method and allowing acceptable speech reproduction. It starts from the hypothesis that voiced sounds can be considered as the sum of the impulse responses of a filter, stationary for several milliseconds, (corresponding to the vocal tract) excited by a Dirac sequence, that is to say by a "pulse comb", synchronously with the fundamental frequency of the source, that is to say vocal cords, which is reflected in the spectral domain by a harmonic spectrum, the harmonics being spaced from the fundamental frequency and weighted by an envelope having maxima called formants, depending on the transfer function of the vocal tract.
On a déjà proposé (Micro-phonemic method of speech synthesis, Lucaszewic et al, ICASSP 1987, IEEE, pages 1426-1429) d'effectuer une synthèse de parole où la diminution de la fréquence fondamentale des sons voisés, lorsqu'elle est nécessaire pour respecter des données prosodiques, est effectuée par insertion de zéros, les microphonèmes stockés devant alors obligatoirement correspondre à la hauteur maximale possible du son à restituer, ou bien (brevet US 4 692 941) de diminuer de la même manière par insertion de zéros la fréquence fondamentale, et d'augmenter celle-ci en diminuant la taille de chaque période. Ces deux méthodes introduisent sur le signal de parole des distorsions non négligeables lors de la modification de la fréquence fondamentale.It has already been proposed (Micro-phonemic method of speech synthesis, Lucaszewic et al, ICASSP 1987, IEEE, pages 1426-1429) to perform speech synthesis where the reduction of the fundamental frequency of voiced sounds, when necessary to respect prosodic data, is carried out by insertion of zeros, the microphonemes stored must then necessarily correspond to the maximum possible height of the sound to be restored, or else (US Pat. No. 4,692,941) to decrease in the same way by insertion of zeros fundamental frequency, and to increase this by decreasing the size of each period. These two methods introduce significant distortions on the speech signal when the fundamental frequency is modified.
La présente invention vise à fournir un procédé et un dispositif de synthèse à concaténation de formes d'onde ne présentant pas la limitation ci-dessus et permettant de fournir une parole de bonne qualité, tout en ne nécessitant qu'un faible volume de calculs arithmétiques.The present invention aims to provide a method and a device for concatenating synthesis of waveforms which do not have the above limitation and which make it possible to provide good quality speech, while requiring only a small volume of arithmetic calculations. .
Dans ce but, l'invention propose notamment un procédé caractérisé en ce que :
- on effectue, au moins sur les sons voisés des éléments sonores, un fenêtrage centré sur le début de chaque réponse impulsionnelle du conduit vocal à l'excitation des cordes vocales (ce début pouvant être mémorisé dans un dictionnaire) à l'aide d'une fenêtre présentant un maximum pour ledit début et une amplitude décroissant jusqu'à zéro au bord de la fenêtre, et
- on replace les signaux fenêtrés correspondant à chaque élément sonore avec un décalage temporel égal à la période fondamentale de synthèse à obtenir, inférieur ou supérieur à la période fondamentale d'origine suivant l'information prosodique de hauteur de la fréquence fondamentale et on effectue une sommation de ces signaux.To this end, the invention notably proposes a method characterized in that:
- a windowing centered at the start of each impulse response from the vocal tract to the excitation of the vocal cords (at the start of each voice impulse) can be performed, at least on voiced voices of the sound elements a window having a maximum for said start and an amplitude decreasing to zero at the edge of the window, and
- the windowed signals corresponding to each sound element are replaced with a time offset equal to the fundamental synthesis period to be obtained, less than or greater than the original fundamental period according to the prosodic pitch information of the fundamental frequency and a summation of these signals.
Ces opérations constituent la procédure de recouvrement puis addition des formes d'onde élémentaires obtenues par fenêtrage du signal de parole.These operations constitute the recovery procedure then addition of the elementary waveforms obtained by windowing the speech signal.
En général, on utilisera des éléments sonores constitués par des diphones.In general, we will use sound elements consisting of diphones.
La largeur de la fenêtre peut varier entre des valeurs inférieures et supérieures à deux fois la période d'origine. Dans l'exemple de mise en oeuvre qui sera décrit plus loin, la largeur de la fenêtre est choisie avantageusement égale à environ deux fois la période d'origine en cas d'augmentation de la période fondamentale ou environ deux fois la période finale de synthèse en cas d'augmentation de la fréquence fondamentale, afin de compenser partiellement les modifications d'énergie dues au changement de la fréquence fondamentale, non compensées par une normalisation possible de l'énergie, tenant compte de la contribution de chaque fenêtre à l'amplitude des échantillons du signal numérique de synthèse : dans le cas d'une diminution de la période fondamentale, la largeur de la fenêtre sera donc inférieure à deux fois la période fondamentale d'origine. Il est peu souhaitable de descendre au dessous de cette valeur.The width of the window can vary between values less than and greater than twice the original period. In the example of implementation which will be described later, the width of the window is advantageously chosen to be approximately twice the original period in the event of an increase in the fundamental period or approximately twice the final period of synthesis in the event of an increase in the fundamental frequency, in order to partially compensate for the energy modifications due to the change in the fundamental frequency, not compensated for by a possible normalization of the energy, taking into account the contribution of each window to the amplitude of the samples of the digital synthesis signal: in the case of a decrease in the fundamental period, the width of the window will therefore be less than twice the original fundamental period. It is undesirable to go below this value.
Du fait qu'il est possible de modifier la valeur de la fréquence fondamentale dans les deux sens, les diphones sont mémorisés avec la fréquence fondamentale naturelle du locuteur.Because it is possible to modify the value of the fundamental frequency in both directions, the diphones are memorized with the natural fundamental frequency of the speaker.
Avec une fenêtre de durée égale à deux périodes fondamentales consécutives dans le cas voisé, on obtient des formes d'onde élémentaires dont le spectre représente sensiblement l'enveloppe du spectre du signal de parole ou spectre à court terme large bande -du fait que ce spectre est obtenu par convolution du spectre harmonique du signal de parole et de la réponse fréquentielle de la fenêtre, qui dans ce cas possède une largeur de bande supérieure à la distance entre harmoniques- ; la redistribution temporelle de ces formes d'onde élémentaires donnera un signal possédant sensiblement la même enveloppe que le signal d'origine mais une distance entre harmoniques modifiée.With a window of duration equal to two consecutive fundamental periods in the voiced case, elementary waveforms are obtained whose spectrum represents substantially the envelope of the spectrum of the speech signal or short-term broadband spectrum - since this spectrum is obtained by convolution of the harmonic spectrum of the speech signal and the frequency response of the window, which in this case has a bandwidth greater than the distance between harmonics; the temporal redistribution of these elementary waveforms will give a signal having substantially the same envelope as the original signal but a modified distance between harmonics.
Avec une fenêtre de durée supérieure à deux périodes fondamentales, on obtient des formes d'onde élémentaires dont le spectre est encore harmonique, ou spectre à court terme bande étroite -du fait que cette fois-ci la réponse fréquentielle de la fenêtre est moins large que la distance entre harmoniques- ; la redistribution temporelle de ces formes d'onde élémentaires donnera un signal possédant, comme le signal de synthèse précédent, sensiblement la même enveloppe que le signal d'origine à ceci près qu'on aura introduit des termes de réverbération (signaux dont le spectre possède une amplitude moindre, une phase différente, mais la même forme que le spectre d'amplitude du signal d'origine), dont l'effet ne sera audible qu'au delà de largeurs de fenêtre d'environ trois périodes, cet effet de réverbération ne dégradant pas la qualité du signal de synthèse lorsque son amplitude est faible.With a window of duration greater than two fundamental periods, we obtain elementary waveforms the spectrum of which is still harmonic, or short-term spectrum narrow band - the fact that this time the frequency response of the window is less wide that the distance between harmonics-; the temporal redistribution of these elementary waveforms will give a signal having, like the synthesis signal previous, roughly the same envelope as the original signal except that we will have introduced reverberation terms (signals whose spectrum has a smaller amplitude, a different phase, but the same shape as the amplitude spectrum of the signal original), the effect of which will only be audible beyond window widths of around three periods, this reverberation effect not degrading the quality of the synthesis signal when its amplitude is low.
On peut notamment utiliser une fenêtre de Hanning, bien que d'autres formes de fenêtre soient également acceptables.One can in particular use a Hanning window, although other forms of window are also acceptable.
Le traitement défini ci-dessus peut également être appliqué aux sons dits sourds ou non voisés, pouvant être représentés par un signal dont la forme s'apparente à celle d'un bruit blanc, mais sans synchronisation des signaux fenêtrés : ceci a pour but d'homogénéiser le traitement sur les sons sourds et les sons voisés, ce qui permet d'une part le lissage entre éléments sonores (diphones) et entre phonèmes sourds et voisés, et d'autre part une modification du rythme. Il se pose un problème à la jonction entre diphones. Une solution pour écarter cette difficulté consiste à omettre l'extraction de formes d'onde élémentaires à partir des deux périodes fondamentales adjacentes de transition entre diphones (dans le cas des sons sourds, les marques de voisement sont remplacées par des marques posées arbitrairement) : on pourra soit définir une troisième fonction d'onde élémentaire en calculant la moyenne des deux fonctions d'onde élémentaires extraites de part et d'autre du diphone, soit utiliser la procédure d'addition-recouvrement directement sur ces deux fonctions d'onde élémentaires.The processing defined above can also be applied to so-called deaf or unvoiced sounds, which can be represented by a signal whose shape is similar to that of white noise, but without synchronization of the windowed signals: this is intended to '' homogenize the processing on deaf sounds and voiced sounds, which allows on the one hand the smoothing between sound elements (diphones) and between deaf and voiced phonemes, and on the other hand a modification of the rhythm. There is a problem at the junction between diphones. One solution to avoid this difficulty consists in omitting the extraction of elementary waveforms from the two adjacent fundamental transition periods between diphones (in the case of deaf sounds, the voicing marks are replaced by arbitrary marks): we can either define a third elementary wave function by calculating the average of the two elementary wave functions extracted on either side of the diphone, or use the addition-recovery procedure directly on these two elementary wave functions .
L'invention sera mieux comprise à la lecture de la description qui suit d'un mode particulier de mise en oeuvre de l'invention, donné à titre d'exemple non limitatif. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
- - la Figure 1 est un graphe destiné à illustrer la synthèse de la parole par concaténation de diphones et modification des paramètres prosodiques dans le domaine temporel, conformément à l'invention ;
- - la Figure 2 est un schéma synoptique montrant une constitution possible du dispositif de synthèse, implanté sur un calculateur hôte ;
- - la Figure 3 montre, à titre d'exemple, comment on modifie les paramètres prosodiques d'un signal naturel, dans le cas d'un phonème particulier ;
- - les Figures 4A, 4B et 4C sont des graphiques destinés à montrer des modifications spectrales apportées à des signaux de synthèse voisés, la Figure 4A montrant le spectre d'origine, la Figure 4B le spectre avec diminution de la fréquence fondamentale et la Figure 4C le spectre avec augmentation de cette fréquence ;
- - la Figure 5 est un graphique montrant un principe d'atténuation des discontinuités entre diphones ;
- - la Figure 6 est un schéma montrant le fenêtrage sur plus de deux périodes.
- - Figure 1 is a graph intended to illustrate the synthesis of speech by concatenation of diphones and modification of the prosodic parameters in the time domain, in accordance with the invention;
- - Figure 2 is a block diagram showing a possible constitution of the synthesis device, installed on a host computer;
- - Figure 3 shows, by way of example, how the prosodic parameters of a natural signal are modified, in the case of a particular phoneme;
- - Figures 4A, 4B and 4C are graphs intended to show spectral modifications made to voiced synthesis signals, Figure 4A showing the original spectrum, Figure 4B the spectrum with decrease in fundamental frequency and Figure 4C the spectrum with increase in this frequency;
- - Figure 5 is a graph showing a principle of attenuation of discontinuities between diphones;
- - Figure 6 is a diagram showing windowing over more than two periods.
La synthèse d'un phonème est effectuée à partir de deux diphones stockés dans un dictionnaire, chaque phonème étant composé de deux demi-diphones. Le son "é" dans "période" par exemple sera obtenu à partir du second demi-diphone de "pai" et du premier demi-diphone de "air".The synthesis of a phoneme is carried out from two diphones stored in a dictionary, each phoneme being composed of two half-diphones. The sound "é" in "period" for example will be obtained from the second half-diphone of "pai" and the first half-diphone of "air".
Un module de traduction orthographique phonétique et de calcul de la prosodie (qui ne fait pas partie de l'invention) fournit à un instant donné, des indications identifiant :
- le phonème à restituer, d'ordre P
- le phonème précédent, d'ordre P-1
- le phonème suivant, d'ordre P+1
et donnant la durée à affecter au phonème P ainsi que les périodes au début et à la fin (Figure 1).A phonetic orthographic translation and prosody calculation module (which is not part of the invention) provides, at a given instant, indications identifying:
- the phoneme to be restored, of order P
- the previous phoneme, of order P-1
- the following phoneme, of order P + 1
and giving the duration to be assigned to the phoneme P as well as the periods at the beginning and at the end (Figure 1).
Une première opération d'analyse, qui n'est pas modifiée par l'invention, consiste à déterminer, par décodage du nom des phonèmes et des indications prosodiques, les deux diphones retenus pour le phonème à utiliser et le voisement.A first analysis operation, which is not modified by the invention, consists in determining, by decoding the names of the phonemes and prosodic indications, the two diphones selected for the phoneme to be used and the voicing.
Tous les diphones disponibles (au nombre de 1300 par exemple) sont mémorisés dans un dictionnaire 10 muni d'une table constituant le descripteur 12 et contenant l'adresse du début de chaque diphone (en nombre de blocs de 256 octets) la longueur du diphone et le milieu du diphone (ces deux derniers paramètres étant exprimés en nombre d'échantillons à partir du début) et des marques de voisement repérant le début de la réponse du conduit vocal à l'excitation des cordes vocales dans le cas d'un son voisé (au nombre de 35 par exemple). Des dictionnaires de diphones répondant à ces critères sont disponibles par exemple auprès du Centre National d'Etudes des Télécommunications.All the available diphones (1300 for example) are stored in a
Les diphones sont alors utilisés dans un processus d'analyse et de synthèse schématisé sur la Figure 1. On décrira ce processus en supposant qu'il est mis en oeuvre dans un dispositif de synthèse ayant la constitution montrée en figure 2, destiné à être relié à un calculateur hôte, tel que le processeur central d'un ordinateur personnel. On supposera également que la fréquence d'échantillonnage donnant la représentation des diphones est de 16 kHz.The diphones are then used in a process of analysis and synthesis shown diagrammatically in FIG. 1. This process will be described assuming that it is implemented in a synthesis device having the constitution shown in FIG. 2, intended to be connected to a host computer, such as the central processor of a personal computer. We will also assume that the sampling frequency giving the representation of the diphones is 16 kHz.
Le dispositif de synthèse (Figure 2) comporte alors une mémoire vive principale 16 qui contient un micro-programme de calcul, le dictionnaire de diphones 10 (c'est-à-dire des formes d'onde représentées par des échantillons) rangés dans l'ordre des adresses du descripteur, la table 12 constituant le descripteur de dictionnaire, et une fenêtre de Hanning, échantillonnée par exemple sur 500 points. La mémoire vive 16 constitue également mémoire de micro-trame et mémoire de travail. Elle est reliée par un bus de données 18 et un bus d'adresses 20 à un accès 22 au calculateur hôte.The synthesis device (FIG. 2) then comprises a main
Chaque micro-trame émise pour restituer un phonème (Figure 2) est constituée, pour chacun des deux phonèmes P et P+1 qui interviennent
- du numéro d'ordre du phonème,
- de la valeur de la période au début du phonème, de la valeur de période à la fin du phonème, et
- de la durée totale du phonème pouvant être remplacée par la durée du diphone pour le second phonème.Each micro-frame emitted to restore a phoneme (Figure 2) is made up, for each of the two phonemes P and P + 1 which are involved
- the serial number of the phoneme,
- the value of the period at the start of the phoneme, the value of the period at the end of the phoneme, and
- the total duration of the phoneme which can be replaced by the duration of the diphone for the second phoneme.
Le dispositif comprend encore, reliés aux bus 18 et 20, une unité de calcul locale 24 et un circuit d'aiguillage 26. Ce dernier permet de relier une mémoire vive 28 servant de tampon de sortie soit vers le calculateur, soit vers un contrôleur 30 de convertisseur numérique/analogique 32 de sortie. Ce dernier attaque un filtre passe-bas 34, généralement limité à 8 kHz, qui alimente un amplificateur de parole 36.The device also comprises, connected to the
Le fonctionnement du dispositif est le suivant.The operation of the device is as follows.
Le calculateur hôte (non représenté) charge les micro-trames dans le tableau réservé en mémoire 16, par l'intermédiaire de l'accès 22 et des bus 18 et 20, puis il commande le début de synthèse à l'unité de calcul 24. Cette unité de calcul recherche le numéro du phonème courant P, du phonème suivant P+1 et du phonème précédent P-1 dans le tableau de micro-trames, à l'aide d'un index mémorisé dans la mémoire de travail, initialisée à 1. Dans le cas du premier phonème, l'unité de calcul vient chercher uniquement les numéros du phonème courant et du phonème suivant. Dans le cas du dernier phonème, elle vient chercher le numéro du phonème précédent et celui du phonème courant.The host computer (not shown) loads the micro-frames into the table reserved in
Dans le cas général, un phonème est constitué de deux demi-diphones ; l'adresse de chaque diphone est recherchée par adressage matriciel dans le descripteur du dictionnaire par la formule suivante :
numéro du descripteur de diphone =
numéro du 1er phonème+ (numéro du 2ème phonème-1)*nombre de diphonesIn the general case, a phoneme consists of two half-diphones; the address of each diphone is sought by matrix addressing in the dictionary descriptor by the following formula:
diphone descriptor number =
number of 1st phoneme + (number of 2nd phoneme-1) * number of diphones
L'unité de calcul charge, en mémoire de travail 16, l'adresse du diphone, sa longueur, son milieu ainsi que les trente-cinq marques de voisement. Elle charge ensuite, dans un tableau descripteur du phonème, les marques de voisement correspondant à la deuxième partie du diphone. Puis elle recherche, dans le dictionnaire de formes d'onde, la deuxième partie du diphone, qu'elle place dans un tableau représentant le signal du phonème d'analyse. Les marques conservées dans le tableau descripteur du phonème sont décrémentées de la valeur du milieu du diphone.The computing unit loads, into working
Cette opération est répétée pour la deuxième partie du phonème constituée par la première partie du deuxième diphone. Les marques de voisement de la première partie du deuxième diphone sont ajoutées aux marques de voisement du phonème et incrémentées de la valeur du milieu du phonème.This operation is repeated for the second part of the phoneme constituted by the first part of the second diphone. The voicing marks of the first part of the second diphone are added to the voicing marks of the phoneme and incremented by the value of the middle of the phoneme.
Dans le cas des sons voisés, l'unité de calcul, à partir des paramètres prosodiques (durée, période début et période fin du phonème) détermine alors le nombre de périodes nécessaire à la durée du phonème, suivant la formule :
nombre de périodes=2*durée du phonème / (période début+période fin)In the case of voiced sounds, the calculation unit, from the prosodic parameters (duration, beginning period and end period of the phoneme) then determines the number of periods necessary for the duration of the phoneme, according to the formula:
number of periods = 2 * duration of the phoneme / (start period + end period)
L'unité de calcul range en mémoire le nombre de marques du phonème naturel, égal au nombre de marques de voisement, puis détermine le nombre de périodes à éliminer ou à ajouter en effectuant la différence entre le nombre de périodes de synthèse et le nombre de périodes d'analyse, différence qui est fixée par la modification de tonalité à introduire à partir de celle qui correspond au dictionnaire.The calculation unit stores in memory the number of marks of the natural phoneme, equal to the number of voicing marks, then determines the number of periods to be eliminated or added by making the difference between the number of synthesis periods and the number of periods of analysis, difference which is fixed by modifying the tone to be introduced from that corresponding to the dictionary.
Pour chaque période de synthèse retenue, l'unité de calcul détermine ensuite la période d'analyse retenue parmi les périodes du phonème à partir des considérations suivantes :
- la modification de la durée peut être considérée comme la mise en correspondance, par déformation de l'axe des temps du signal de synthèse, des n marques de voisement du signal d'analyse et des p marques du signal de synthèse, n et p étant des entiers prédéterminés ;
- à chacune des p marques du signal de synthèse doit être associée la marque la plus proche du signal d'analyse.For each synthesis period selected, the calculation unit then determines the analysis period selected from the phoneme periods based on the following considerations:
the modification of the duration can be considered as the matching, by deformation of the time axis of the synthesis signal, of the n voicing marks of the analysis signal and of the p marks of the synthesis signal, n and p being predetermined integers;
- to each of the p marks of the synthesis signal must be associated the mark closest to the analysis signal.
La duplication ou, au contraire, l'élimination de périodes également réparties sur tout le phonème modifie la durée de celui-ci.The duplication or, on the contrary, the elimination of periods equally distributed on all the phoneme modifies the duration of this one.
Il faut noter qu'on n'aura pas à extraire une forme d'onde élémentaire à partir des deux périodes adjacentes de transition entre diphones : l'opération d'addition-recouvrement des fonctions élémentaires extraites des deux dernières périodes du premier diphone et des deux premières périodes du deuxième diphone permet le lissage entre ces diphones comme le montre la figure 5.Note that we will not have to extract an elementary waveform from the two adjacent transition periods between diphones: the operation of addition-recovery of elementary functions extracted from the last two periods of the first diphone and first two periods of the second diphone allows smoothing between these diphones as shown in Figure 5.
Pour chaque période de synthèse, l'unité de calcul détermine le nombre de points à ajouter ou à supprimer à la période d'analyse en effectuant la différence entre cette dernière et la période de synthèse.For each summary period, the calculation unit determines the number of points to add or delete to the analysis period by making the difference between the latter and the summary period.
Comme on l'a indiqué plus haut, il est avantageux de choisir la largeur de la fenêtre d'analyse de la façon suivante, illustrée en Figure 3 :
- si la période de synthèse est inférieure à la période d'analyse (lignes A et B de la Figure 3), la taille de la fenêtre 38 est le double de la période de synthèse ;
- dans le cas contraire, la taille de la fenêtre 40 est obtenue en multipliant par deux la plus faible des valeurs de la période d'analyse courante et de la période d'analyse précédente (lignes C et D).As indicated above, it is advantageous to choose the width of the analysis window as follows, illustrated in Figure 3:
- if the synthesis period is less than the analysis period (lines A and B of Figure 3), the size of the
- otherwise, the size of the
L'unité de calcul détermine un pas d'avancement dans la lecture des valeurs de la fenêtre, tabulée par exemple sur 500 points, le pas étant alors égal à 500 divisé par la taille de la fenêtre précédemment calculée. Elle lit dans la mémoire tampon de signal du phonème d'analyse 28 les échantillons de la période précédente et de la période courante, les pondère par la valeur de la fenêtre de Hanning 38 ou 40 indexée par le numéro de l'échantillon courant multiplié par le pas d'avancement dans la fenêtre tabulée et ajoute, au fur et à mesure, les valeurs calculées à la mémoire tampon du signal de sortie indexé par la somme du compteur de l'échantillon courant de sortie et de l'index de recherche des échantillons du phonème d'analyse. Le compteur de sortie courant est ensuite incrémenté de la valeur de la période de synthèse.The calculation unit determines a progress step in reading the values of the window, tabulated for example on 500 points, the step then being equal to 500 divided by the size of the window previously calculated. It reads the samples from the previous period and the current period in the
Pour les phonèmes sourds, le traitement est analogue au précédent, excepté que la valeur des pseudo-périodes (distance entre deux marques de voisement) n'est jamais modifiée : l'élimination de pseudo-périodes au centre du phonème diminue simplement la durée de celui-ci.For deaf phonemes, the processing is analogous to the previous one, except that the value of the pseudo-periods (distance between two voicing marks) is never modified: the elimination of pseudo-periods in the center of the phoneme simply decreases the duration of this one.
On n'augmente pas la durée de phonèmes sourds, excepté par addition de zéros au milieu des phonèmes "silence".The duration of deaf phonemes is not increased, except by adding zeros in the middle of the "silent" phonemes.
Le fenêtrage s'effectue par période pour normaliser la somme des valeurs des fenêtres appliquées au signal :
- du début de la période précédente à la fin de la période précédente, le pas d'avancement dans la lecture de la fenêtre tabulée est (dans le cas d'une tabulation sur 500 points) égal à 500 divisé par deux fois la durée de la période précédente ;
- du début de la période courante à la fin de la période courante, le pas d'avancement dans la fenêtre tabulée est égal à 500 divisé par deux fois la durée de la période courante plus un décalage constant de 250 points.Windowing is carried out by period to normalize the sum of the values of the windows applied to the signal:
- from the start of the previous period to the end of the previous period, the step forward in reading the tabbed window is (in the case of a tabulation on 500 points) equal to 500 divided by twice the duration of the previous period;
- from the start of the current period to the end of the current period, the advancement step in the tabulated window is equal to 500 divided by twice the duration of the current period plus a constant offset of 250 points.
A la fin du calcul du signal d'un phonème de synthèse, l'unité de calcul range la dernière période du phonème d'analyse et de synthèse dans la mémoire tampon 28 qui permet la transition entre phonèmes. Le compteur de l'échantillon courant de sortie est décrémenté de la valeur de la dernière période de synthèse.At the end of the calculation of the signal of a synthesis phoneme, the calculation unit stores the last period of the analysis and synthesis phoneme in the
Le signal ainsi généré est envoyé, par blocs de 2048 échantillons, dans un de deux espaces mémoire reservés à la communication entre l'unité de calcul et le contrôleur 30 du convertisseur numérique/analogique 32. Dès que le premier bloc est chargé dans la première zone tampon, le contrôleur 30 est activé par l'unité de calcul et vide cette première zone tampon. Pendant ce temps, l'unité de calcul remplit une deuxième zone tampon de 2048 échantillons. L'unité de calcul vient ensuite alternativement tester ces deux zones tampons grâce à un drapeau pour y charger le signal numérique de synthèse à la fin de chaque séquence de synthèse d'un phonème. Le contrôleur 30, en fin de lecture de chaque zone tampon, positionne le drapeau correspondant. En fin de synthèse, le contrôleur vide la dernière zone tampon et positionne un drapeau de fin de synthèse que le calculateur hôte peut lire via l'accès de communication 22.The signal thus generated is sent, in blocks of 2,048 samples, to one of two memory spaces reserved for communication between the calculation unit and the
L'exemple de spectre de signal de parole voisé d'analyse et de synthèse illustré en Figures 4A-4C montre que les transformations temporelles du signal numérique de parole n'affectent pas l'enveloppe du signal de synthèse, tout en modifiant la distance entre harmoniques, c'est-à-dire la fréquence fondamentale du signal de parole.The example of analysis and synthesis voiced speech signal spectrum illustrated in FIGS. 4A-4C shows that the temporal transformations of the digital speech signal do not affect the envelope of the synthesis signal, while modifying the distance between harmonics, i.e. the fundamental frequency of the speech signal.
La complexité du calcul reste faible : le nombre d'opérations par échantillon est en moyenne de deux multiplications et deux additions pour la pondération et la sommation des fonctions élémentaires fournies par l'analyse.The complexity of the calculation remains low: the number of operations per sample is on average two multiplications and two additions for the weighting and the summation of the elementary functions provided by the analysis.
L'invention est susceptible de nombreuses variantes de réalisation et, en particulier, comme on l'a indiqué plus haut, une fenêtre de largeur supérieure à deux périodes, comme le montre la Figure 6, éventuellement de taille fixe, peut donner des résultats acceptables.The invention is susceptible of numerous variant embodiments and, in particular, as indicated above, a window of width greater than two periods, as shown in FIG. 6, possibly of fixed size, can give acceptable results. .
On peut aussi utiliser le procédé de modification de la fréquence fondamentale sur des signaux numériques de parole en dehors de son application à la synthèse par diphones.The method of modifying the fundamental frequency on digital speech signals can also be used outside of its application to synthesis by diphones.
Claims (5)
- on effectue, au moins sur les sons voisés des éléments sonores, une analyse par fenêtrage sensiblement centré sur le début de chaque réponse impulsionnelle du conduit vocal à l'excitation des cordes vocales à l'aide d'une fenêtre de filtrage présentant une amplitude décroissant jusqu'à zéro aux bords de la fenêtre dont la largeur est au moins égale à deux fois la période fondamentale d'origine ou deux fois la période fondamentale de synthèse,
- on replace les signaux résultant du fenêtrage correspondant à chaque élément sonore, avec un décalage temporel de ceux-ci égal à la période fondamentale de synthèse, inférieure ou supérieure à la période fondamentale d'origine, suivant l'information prosodique concernant la fréquence fondamentale de synthèse,
- on effectue la synthèse par sommation des signaux ainsi décalés.1. Method of speech synthesis from sound elements (words, syllables, diphones ...) characterized in that:
- a windowing analysis is carried out, at least on the voices voiced by the sound elements, substantially centered on the start of each impulse response of the vocal tract to the excitation of the vocal cords using a filtering window having an amplitude decreasing to zero at the edges of the window whose width is at least equal to twice the original fundamental period or twice the fundamental synthesis period,
- the signals resulting from the windowing corresponding to each sound element are replaced, with a time shift of these equal to the fundamental synthesis period, lower or greater than the original fundamental period, according to the prosodic information concerning the fundamental frequency of synthesis,
- Synthesis is carried out by summing the signals thus shifted.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8811517 | 1988-09-02 | ||
FR8811517A FR2636163B1 (en) | 1988-09-02 | 1988-09-02 | METHOD AND DEVICE FOR SYNTHESIZING SPEECH BY ADDING-COVERING WAVEFORMS |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0363233A1 true EP0363233A1 (en) | 1990-04-11 |
EP0363233B1 EP0363233B1 (en) | 1994-11-30 |
Family
ID=9369671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89402394A Expired - Lifetime EP0363233B1 (en) | 1988-09-02 | 1989-09-01 | Method and apparatus for speech synthesis by wave form overlapping and adding |
Country Status (9)
Country | Link |
---|---|
US (2) | US5327498A (en) |
EP (1) | EP0363233B1 (en) |
JP (1) | JP3294604B2 (en) |
CA (1) | CA1324670C (en) |
DE (1) | DE68919637T2 (en) |
DK (1) | DK175374B1 (en) |
ES (1) | ES2065406T3 (en) |
FR (1) | FR2636163B1 (en) |
WO (1) | WO1990003027A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2683367A1 (en) * | 1991-11-06 | 1993-05-07 | Korea Telecommunication | METHODS OF ENCODING SPEECH SEGMENTS AND HEIGHT CONTROL FOR SPEECH SYNTHESIS SYSTEMS. |
US5479564A (en) * | 1991-08-09 | 1995-12-26 | U.S. Philips Corporation | Method and apparatus for manipulating pitch and/or duration of a signal |
EP0702352A1 (en) * | 1994-09-13 | 1996-03-20 | AT&T Corp. | Systems and methods for performing phonemic synthesis |
US5611002A (en) * | 1991-08-09 | 1997-03-11 | U.S. Philips Corporation | Method and apparatus for manipulating an input signal to form an output signal having a different length |
WO1998000835A1 (en) * | 1996-07-03 | 1998-01-08 | Telia Ab (Publ) | A method for synthesising voiceless consonants |
WO1999033050A2 (en) * | 1997-12-19 | 1999-07-01 | Koninklijke Philips Electronics N.V. | Removing periodicity from a lengthened audio signal |
US6298322B1 (en) | 1999-05-06 | 2001-10-02 | Eric Lindemann | Encoding and synthesis of tonal audio signals using dominant sinusoids and a vector-quantized residual tonal signal |
EP1970894A1 (en) | 2007-03-12 | 2008-09-17 | France Télécom | Method and device for modifying an audio signal |
US7529672B2 (en) | 2002-09-17 | 2009-05-05 | Koninklijke Philips Electronics N.V. | Speech synthesis using concatenation of speech waveforms |
US7912708B2 (en) | 2002-09-17 | 2011-03-22 | Koninklijke Philips Electronics N.V. | Method for controlling duration in speech synthesis |
US8326613B2 (en) | 2002-09-17 | 2012-12-04 | Koninklijke Philips Electronics N.V. | Method of synthesizing of an unvoiced speech signal |
Families Citing this family (207)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0527529B1 (en) * | 1991-08-09 | 2000-07-19 | Koninklijke Philips Electronics N.V. | Method and apparatus for manipulating duration of a physical audio signal, and a storage medium containing a representation of such physical audio signal |
FR2689667B1 (en) * | 1992-04-01 | 1995-10-20 | Sagem | ON-BOARD RECEIVER FOR NAVIGATION OF A MOTOR VEHICLE. |
US5613038A (en) * | 1992-12-18 | 1997-03-18 | International Business Machines Corporation | Communications system for multiple individually addressed messages |
US5490234A (en) * | 1993-01-21 | 1996-02-06 | Apple Computer, Inc. | Waveform blending technique for text-to-speech system |
US6122616A (en) * | 1993-01-21 | 2000-09-19 | Apple Computer, Inc. | Method and apparatus for diphone aliasing |
JP2782147B2 (en) * | 1993-03-10 | 1998-07-30 | 日本電信電話株式会社 | Waveform editing type speech synthesizer |
JPH0736776A (en) * | 1993-07-23 | 1995-02-07 | Reader Denshi Kk | Apparatus and method for generating linearly filtered composite signal |
US6502074B1 (en) * | 1993-08-04 | 2002-12-31 | British Telecommunications Public Limited Company | Synthesising speech by converting phonemes to digital waveforms |
US5987412A (en) * | 1993-08-04 | 1999-11-16 | British Telecommunications Public Limited Company | Synthesising speech by converting phonemes to digital waveforms |
SE516521C2 (en) * | 1993-11-25 | 2002-01-22 | Telia Ab | Device and method of speech synthesis |
US5970454A (en) * | 1993-12-16 | 1999-10-19 | British Telecommunications Public Limited Company | Synthesizing speech by converting phonemes to digital waveforms |
US5787398A (en) * | 1994-03-18 | 1998-07-28 | British Telecommunications Plc | Apparatus for synthesizing speech by varying pitch |
JP3093113B2 (en) * | 1994-09-21 | 2000-10-03 | 日本アイ・ビー・エム株式会社 | Speech synthesis method and system |
IT1266943B1 (en) * | 1994-09-29 | 1997-01-21 | Cselt Centro Studi Lab Telecom | VOICE SYNTHESIS PROCEDURE BY CONCATENATION AND PARTIAL OVERLAPPING OF WAVE FORMS. |
US5694521A (en) * | 1995-01-11 | 1997-12-02 | Rockwell International Corporation | Variable speed playback system |
NZ304418A (en) * | 1995-04-12 | 1998-02-26 | British Telecomm | Extension and combination of digitised speech waveforms for speech synthesis |
US6591240B1 (en) * | 1995-09-26 | 2003-07-08 | Nippon Telegraph And Telephone Corporation | Speech signal modification and concatenation method by gradually changing speech parameters |
BE1010336A3 (en) * | 1996-06-10 | 1998-06-02 | Faculte Polytechnique De Mons | Synthesis method of its. |
US5751901A (en) | 1996-07-31 | 1998-05-12 | Qualcomm Incorporated | Method for searching an excitation codebook in a code excited linear prediction (CELP) coder |
US5832441A (en) * | 1996-09-16 | 1998-11-03 | International Business Machines Corporation | Creating speech models |
US5950162A (en) * | 1996-10-30 | 1999-09-07 | Motorola, Inc. | Method, device and system for generating segment durations in a text-to-speech system |
US5915237A (en) * | 1996-12-13 | 1999-06-22 | Intel Corporation | Representing speech using MIDI |
US6377917B1 (en) | 1997-01-27 | 2002-04-23 | Microsoft Corporation | System and methodology for prosody modification |
US5924068A (en) * | 1997-02-04 | 1999-07-13 | Matsushita Electric Industrial Co. Ltd. | Electronic news reception apparatus that selectively retains sections and searches by keyword or index for text to speech conversion |
US6020880A (en) * | 1997-02-05 | 2000-02-01 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for providing electronic program guide information from a single electronic program guide server |
US6130720A (en) * | 1997-02-10 | 2000-10-10 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for providing a variety of information from an information server |
KR100269255B1 (en) * | 1997-11-28 | 2000-10-16 | 정선종 | Pitch Correction Method by Variation of Gender Closure Signal in Voiced Signal |
JP3902860B2 (en) * | 1998-03-09 | 2007-04-11 | キヤノン株式会社 | Speech synthesis control device, control method therefor, and computer-readable memory |
DE19837661C2 (en) * | 1998-08-19 | 2000-10-05 | Christoph Buskies | Method and device for co-articulating concatenation of audio segments |
DE19861167A1 (en) * | 1998-08-19 | 2000-06-15 | Christoph Buskies | Method and device for concatenation of audio segments in accordance with co-articulation and devices for providing audio data concatenated in accordance with co-articulation |
US6178402B1 (en) | 1999-04-29 | 2001-01-23 | Motorola, Inc. | Method, apparatus and system for generating acoustic parameters in a text-to-speech system using a neural network |
JP2001034282A (en) * | 1999-07-21 | 2001-02-09 | Konami Co Ltd | Voice synthesizing method, dictionary constructing method for voice synthesis, voice synthesizer and computer readable medium recorded with voice synthesis program |
AU7991900A (en) * | 1999-10-04 | 2001-05-10 | Joseph E. Pechter | Method for producing a viable speech rendition of text |
US8645137B2 (en) | 2000-03-16 | 2014-02-04 | Apple Inc. | Fast, language-independent method for user authentication by voice |
WO2002023523A2 (en) * | 2000-09-15 | 2002-03-21 | Lernout & Hauspie Speech Products N.V. | Fast waveform synchronization for concatenation and time-scale modification of speech |
US7280969B2 (en) * | 2000-12-07 | 2007-10-09 | International Business Machines Corporation | Method and apparatus for producing natural sounding pitch contours in a speech synthesizer |
US7683903B2 (en) | 2001-12-11 | 2010-03-23 | Enounce, Inc. | Management of presentation time in a digital media presentation system with variable rate presentation capability |
US6950798B1 (en) * | 2001-04-13 | 2005-09-27 | At&T Corp. | Employing speech models in concatenative speech synthesis |
JP3901475B2 (en) * | 2001-07-02 | 2007-04-04 | 株式会社ケンウッド | Signal coupling device, signal coupling method and program |
ITFI20010199A1 (en) | 2001-10-22 | 2003-04-22 | Riccardo Vieri | SYSTEM AND METHOD TO TRANSFORM TEXTUAL COMMUNICATIONS INTO VOICE AND SEND THEM WITH AN INTERNET CONNECTION TO ANY TELEPHONE SYSTEM |
US7546241B2 (en) * | 2002-06-05 | 2009-06-09 | Canon Kabushiki Kaisha | Speech synthesis method and apparatus, and dictionary generation method and apparatus |
US8145491B2 (en) * | 2002-07-30 | 2012-03-27 | Nuance Communications, Inc. | Techniques for enhancing the performance of concatenative speech synthesis |
DE60305944T2 (en) | 2002-09-17 | 2007-02-01 | Koninklijke Philips Electronics N.V. | METHOD FOR SYNTHESIS OF A STATIONARY SOUND SIGNAL |
EP1628288A1 (en) * | 2004-08-19 | 2006-02-22 | Vrije Universiteit Brussel | Method and system for sound synthesis |
DE102004044649B3 (en) * | 2004-09-15 | 2006-05-04 | Siemens Ag | Speech synthesis using database containing coded speech signal units from given text, with prosodic manipulation, characterizes speech signal units by periodic markings |
JP5032314B2 (en) * | 2005-06-23 | 2012-09-26 | パナソニック株式会社 | Audio encoding apparatus, audio decoding apparatus, and audio encoded information transmission apparatus |
US8677377B2 (en) | 2005-09-08 | 2014-03-18 | Apple Inc. | Method and apparatus for building an intelligent automated assistant |
US7633076B2 (en) | 2005-09-30 | 2009-12-15 | Apple Inc. | Automated response to and sensing of user activity in portable devices |
US20070106513A1 (en) * | 2005-11-10 | 2007-05-10 | Boillot Marc A | Method for facilitating text to speech synthesis using a differential vocoder |
CN101490740B (en) * | 2006-06-05 | 2012-02-22 | 松下电器产业株式会社 | sound synthesis device |
US9318108B2 (en) | 2010-01-18 | 2016-04-19 | Apple Inc. | Intelligent automated assistant |
JP4805121B2 (en) * | 2006-12-18 | 2011-11-02 | 三菱電機株式会社 | Speech synthesis apparatus, speech synthesis method, and speech synthesis program |
EP2135231A4 (en) * | 2007-03-01 | 2014-10-15 | Adapx Inc | System and method for dynamic learning |
US8977255B2 (en) | 2007-04-03 | 2015-03-10 | Apple Inc. | Method and system for operating a multi-function portable electronic device using voice-activation |
US8706496B2 (en) * | 2007-09-13 | 2014-04-22 | Universitat Pompeu Fabra | Audio signal transforming by utilizing a computational cost function |
US9053089B2 (en) | 2007-10-02 | 2015-06-09 | Apple Inc. | Part-of-speech tagging using latent analogy |
US8620662B2 (en) | 2007-11-20 | 2013-12-31 | Apple Inc. | Context-aware unit selection |
US10002189B2 (en) | 2007-12-20 | 2018-06-19 | Apple Inc. | Method and apparatus for searching using an active ontology |
US9330720B2 (en) | 2008-01-03 | 2016-05-03 | Apple Inc. | Methods and apparatus for altering audio output signals |
US8065143B2 (en) | 2008-02-22 | 2011-11-22 | Apple Inc. | Providing text input using speech data and non-speech data |
US8996376B2 (en) | 2008-04-05 | 2015-03-31 | Apple Inc. | Intelligent text-to-speech conversion |
US10496753B2 (en) | 2010-01-18 | 2019-12-03 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US8464150B2 (en) | 2008-06-07 | 2013-06-11 | Apple Inc. | Automatic language identification for dynamic text processing |
US20100030549A1 (en) | 2008-07-31 | 2010-02-04 | Lee Michael M | Mobile device having human language translation capability with positional feedback |
US8768702B2 (en) | 2008-09-05 | 2014-07-01 | Apple Inc. | Multi-tiered voice feedback in an electronic device |
US8898568B2 (en) | 2008-09-09 | 2014-11-25 | Apple Inc. | Audio user interface |
US8583418B2 (en) | 2008-09-29 | 2013-11-12 | Apple Inc. | Systems and methods of detecting language and natural language strings for text to speech synthesis |
US8712776B2 (en) | 2008-09-29 | 2014-04-29 | Apple Inc. | Systems and methods for selective text to speech synthesis |
US8676904B2 (en) | 2008-10-02 | 2014-03-18 | Apple Inc. | Electronic devices with voice command and contextual data processing capabilities |
US9959870B2 (en) | 2008-12-11 | 2018-05-01 | Apple Inc. | Speech recognition involving a mobile device |
US8862252B2 (en) | 2009-01-30 | 2014-10-14 | Apple Inc. | Audio user interface for displayless electronic device |
US8380507B2 (en) | 2009-03-09 | 2013-02-19 | Apple Inc. | Systems and methods for determining the language to use for speech generated by a text to speech engine |
US10255566B2 (en) | 2011-06-03 | 2019-04-09 | Apple Inc. | Generating and processing task items that represent tasks to perform |
US10540976B2 (en) | 2009-06-05 | 2020-01-21 | Apple Inc. | Contextual voice commands |
US9858925B2 (en) | 2009-06-05 | 2018-01-02 | Apple Inc. | Using context information to facilitate processing of commands in a virtual assistant |
US10241752B2 (en) | 2011-09-30 | 2019-03-26 | Apple Inc. | Interface for a virtual digital assistant |
US10241644B2 (en) | 2011-06-03 | 2019-03-26 | Apple Inc. | Actionable reminder entries |
EP2451076B1 (en) * | 2009-06-29 | 2018-10-03 | Mitsubishi Electric Corporation | Audio signal processing device |
US9431006B2 (en) | 2009-07-02 | 2016-08-30 | Apple Inc. | Methods and apparatuses for automatic speech recognition |
US8682649B2 (en) | 2009-11-12 | 2014-03-25 | Apple Inc. | Sentiment prediction from textual data |
US8600743B2 (en) | 2010-01-06 | 2013-12-03 | Apple Inc. | Noise profile determination for voice-related feature |
US8381107B2 (en) | 2010-01-13 | 2013-02-19 | Apple Inc. | Adaptive audio feedback system and method |
US8311838B2 (en) | 2010-01-13 | 2012-11-13 | Apple Inc. | Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts |
US10679605B2 (en) | 2010-01-18 | 2020-06-09 | Apple Inc. | Hands-free list-reading by intelligent automated assistant |
US10705794B2 (en) | 2010-01-18 | 2020-07-07 | Apple Inc. | Automatically adapting user interfaces for hands-free interaction |
US10276170B2 (en) | 2010-01-18 | 2019-04-30 | Apple Inc. | Intelligent automated assistant |
US10553209B2 (en) | 2010-01-18 | 2020-02-04 | Apple Inc. | Systems and methods for hands-free notification summaries |
US8977584B2 (en) | 2010-01-25 | 2015-03-10 | Newvaluexchange Global Ai Llp | Apparatuses, methods and systems for a digital conversation management platform |
US8682667B2 (en) | 2010-02-25 | 2014-03-25 | Apple Inc. | User profiling for selecting user specific voice input processing information |
US8713021B2 (en) | 2010-07-07 | 2014-04-29 | Apple Inc. | Unsupervised document clustering using latent semantic density analysis |
US8719006B2 (en) | 2010-08-27 | 2014-05-06 | Apple Inc. | Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis |
US8719014B2 (en) | 2010-09-27 | 2014-05-06 | Apple Inc. | Electronic device with text error correction based on voice recognition data |
US10762293B2 (en) | 2010-12-22 | 2020-09-01 | Apple Inc. | Using parts-of-speech tagging and named entity recognition for spelling correction |
US10515147B2 (en) | 2010-12-22 | 2019-12-24 | Apple Inc. | Using statistical language models for contextual lookup |
US8781836B2 (en) | 2011-02-22 | 2014-07-15 | Apple Inc. | Hearing assistance system for providing consistent human speech |
US9262612B2 (en) | 2011-03-21 | 2016-02-16 | Apple Inc. | Device access using voice authentication |
WO2012160767A1 (en) * | 2011-05-25 | 2012-11-29 | 日本電気株式会社 | Fragment information generation device, audio compositing device, audio compositing method, and audio compositing program |
US10057736B2 (en) | 2011-06-03 | 2018-08-21 | Apple Inc. | Active transport based notifications |
US20120310642A1 (en) | 2011-06-03 | 2012-12-06 | Apple Inc. | Automatically creating a mapping between text data and audio data |
US8812294B2 (en) | 2011-06-21 | 2014-08-19 | Apple Inc. | Translating phrases from one language into another using an order-based set of declarative rules |
JPWO2013014876A1 (en) * | 2011-07-28 | 2015-02-23 | 日本電気株式会社 | Segment processing apparatus, segment processing method, and segment processing program |
US8706472B2 (en) | 2011-08-11 | 2014-04-22 | Apple Inc. | Method for disambiguating multiple readings in language conversion |
US8994660B2 (en) | 2011-08-29 | 2015-03-31 | Apple Inc. | Text correction processing |
US8762156B2 (en) | 2011-09-28 | 2014-06-24 | Apple Inc. | Speech recognition repair using contextual information |
US10134385B2 (en) | 2012-03-02 | 2018-11-20 | Apple Inc. | Systems and methods for name pronunciation |
US9483461B2 (en) | 2012-03-06 | 2016-11-01 | Apple Inc. | Handling speech synthesis of content for multiple languages |
US9280610B2 (en) | 2012-05-14 | 2016-03-08 | Apple Inc. | Crowd sourcing information to fulfill user requests |
US8775442B2 (en) | 2012-05-15 | 2014-07-08 | Apple Inc. | Semantic search using a single-source semantic model |
US10417037B2 (en) | 2012-05-15 | 2019-09-17 | Apple Inc. | Systems and methods for integrating third party services with a digital assistant |
US10019994B2 (en) | 2012-06-08 | 2018-07-10 | Apple Inc. | Systems and methods for recognizing textual identifiers within a plurality of words |
US9721563B2 (en) | 2012-06-08 | 2017-08-01 | Apple Inc. | Name recognition system |
US9495129B2 (en) | 2012-06-29 | 2016-11-15 | Apple Inc. | Device, method, and user interface for voice-activated navigation and browsing of a document |
US9576574B2 (en) | 2012-09-10 | 2017-02-21 | Apple Inc. | Context-sensitive handling of interruptions by intelligent digital assistant |
US9547647B2 (en) | 2012-09-19 | 2017-01-17 | Apple Inc. | Voice-based media searching |
US8744854B1 (en) | 2012-09-24 | 2014-06-03 | Chengjun Julian Chen | System and method for voice transformation |
US8935167B2 (en) | 2012-09-25 | 2015-01-13 | Apple Inc. | Exemplar-based latent perceptual modeling for automatic speech recognition |
DE212014000045U1 (en) | 2013-02-07 | 2015-09-24 | Apple Inc. | Voice trigger for a digital assistant |
US9977779B2 (en) | 2013-03-14 | 2018-05-22 | Apple Inc. | Automatic supplementation of word correction dictionaries |
US9733821B2 (en) | 2013-03-14 | 2017-08-15 | Apple Inc. | Voice control to diagnose inadvertent activation of accessibility features |
US10642574B2 (en) | 2013-03-14 | 2020-05-05 | Apple Inc. | Device, method, and graphical user interface for outputting captions |
US9368114B2 (en) | 2013-03-14 | 2016-06-14 | Apple Inc. | Context-sensitive handling of interruptions |
US10572476B2 (en) | 2013-03-14 | 2020-02-25 | Apple Inc. | Refining a search based on schedule items |
US10652394B2 (en) | 2013-03-14 | 2020-05-12 | Apple Inc. | System and method for processing voicemail |
AU2014227586C1 (en) | 2013-03-15 | 2020-01-30 | Apple Inc. | User training by intelligent digital assistant |
WO2014168730A2 (en) | 2013-03-15 | 2014-10-16 | Apple Inc. | Context-sensitive handling of interruptions |
US9922642B2 (en) | 2013-03-15 | 2018-03-20 | Apple Inc. | Training an at least partial voice command system |
US10748529B1 (en) | 2013-03-15 | 2020-08-18 | Apple Inc. | Voice activated device for use with a voice-based digital assistant |
WO2014144579A1 (en) | 2013-03-15 | 2014-09-18 | Apple Inc. | System and method for updating an adaptive speech recognition model |
WO2014197336A1 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for detecting errors in interactions with a voice-based digital assistant |
US9582608B2 (en) | 2013-06-07 | 2017-02-28 | Apple Inc. | Unified ranking with entropy-weighted information for phrase-based semantic auto-completion |
WO2014197334A2 (en) | 2013-06-07 | 2014-12-11 | Apple Inc. | System and method for user-specified pronunciation of words for speech synthesis and recognition |
WO2014197335A1 (en) | 2013-06-08 | 2014-12-11 | Apple Inc. | Interpreting and acting upon commands that involve sharing information with remote devices |
US10176167B2 (en) | 2013-06-09 | 2019-01-08 | Apple Inc. | System and method for inferring user intent from speech inputs |
JP6259911B2 (en) | 2013-06-09 | 2018-01-10 | アップル インコーポレイテッド | Apparatus, method, and graphical user interface for enabling conversation persistence across two or more instances of a digital assistant |
EP3008964B1 (en) | 2013-06-13 | 2019-09-25 | Apple Inc. | System and method for emergency calls initiated by voice command |
AU2014306221B2 (en) | 2013-08-06 | 2017-04-06 | Apple Inc. | Auto-activating smart responses based on activities from remote devices |
US10296160B2 (en) | 2013-12-06 | 2019-05-21 | Apple Inc. | Method for extracting salient dialog usage from live data |
US9620105B2 (en) | 2014-05-15 | 2017-04-11 | Apple Inc. | Analyzing audio input for efficient speech and music recognition |
US10592095B2 (en) | 2014-05-23 | 2020-03-17 | Apple Inc. | Instantaneous speaking of content on touch devices |
US9502031B2 (en) | 2014-05-27 | 2016-11-22 | Apple Inc. | Method for supporting dynamic grammars in WFST-based ASR |
US9715875B2 (en) | 2014-05-30 | 2017-07-25 | Apple Inc. | Reducing the need for manual start/end-pointing and trigger phrases |
US9842101B2 (en) | 2014-05-30 | 2017-12-12 | Apple Inc. | Predictive conversion of language input |
US9734193B2 (en) | 2014-05-30 | 2017-08-15 | Apple Inc. | Determining domain salience ranking from ambiguous words in natural speech |
US10170123B2 (en) | 2014-05-30 | 2019-01-01 | Apple Inc. | Intelligent assistant for home automation |
US9785630B2 (en) | 2014-05-30 | 2017-10-10 | Apple Inc. | Text prediction using combined word N-gram and unigram language models |
US9760559B2 (en) | 2014-05-30 | 2017-09-12 | Apple Inc. | Predictive text input |
US10078631B2 (en) | 2014-05-30 | 2018-09-18 | Apple Inc. | Entropy-guided text prediction using combined word and character n-gram language models |
US10289433B2 (en) | 2014-05-30 | 2019-05-14 | Apple Inc. | Domain specific language for encoding assistant dialog |
US9430463B2 (en) | 2014-05-30 | 2016-08-30 | Apple Inc. | Exemplar-based natural language processing |
WO2015184186A1 (en) | 2014-05-30 | 2015-12-03 | Apple Inc. | Multi-command single utterance input method |
US9633004B2 (en) | 2014-05-30 | 2017-04-25 | Apple Inc. | Better resolution when referencing to concepts |
US10659851B2 (en) | 2014-06-30 | 2020-05-19 | Apple Inc. | Real-time digital assistant knowledge updates |
US9338493B2 (en) | 2014-06-30 | 2016-05-10 | Apple Inc. | Intelligent automated assistant for TV user interactions |
US10446141B2 (en) | 2014-08-28 | 2019-10-15 | Apple Inc. | Automatic speech recognition based on user feedback |
US9818400B2 (en) | 2014-09-11 | 2017-11-14 | Apple Inc. | Method and apparatus for discovering trending terms in speech requests |
US10789041B2 (en) | 2014-09-12 | 2020-09-29 | Apple Inc. | Dynamic thresholds for always listening speech trigger |
US9668121B2 (en) | 2014-09-30 | 2017-05-30 | Apple Inc. | Social reminders |
US10074360B2 (en) | 2014-09-30 | 2018-09-11 | Apple Inc. | Providing an indication of the suitability of speech recognition |
US9886432B2 (en) | 2014-09-30 | 2018-02-06 | Apple Inc. | Parsimonious handling of word inflection via categorical stem + suffix N-gram language models |
US10127911B2 (en) | 2014-09-30 | 2018-11-13 | Apple Inc. | Speaker identification and unsupervised speaker adaptation techniques |
US9646609B2 (en) | 2014-09-30 | 2017-05-09 | Apple Inc. | Caching apparatus for serving phonetic pronunciations |
DE102014114845A1 (en) * | 2014-10-14 | 2016-04-14 | Deutsche Telekom Ag | Method for interpreting automatic speech recognition |
US10552013B2 (en) | 2014-12-02 | 2020-02-04 | Apple Inc. | Data detection |
US9711141B2 (en) | 2014-12-09 | 2017-07-18 | Apple Inc. | Disambiguating heteronyms in speech synthesis |
US10015030B2 (en) * | 2014-12-23 | 2018-07-03 | Qualcomm Incorporated | Waveform for transmitting wireless communications |
US9865280B2 (en) | 2015-03-06 | 2018-01-09 | Apple Inc. | Structured dictation using intelligent automated assistants |
US10567477B2 (en) | 2015-03-08 | 2020-02-18 | Apple Inc. | Virtual assistant continuity |
US9721566B2 (en) | 2015-03-08 | 2017-08-01 | Apple Inc. | Competing devices responding to voice triggers |
US9886953B2 (en) | 2015-03-08 | 2018-02-06 | Apple Inc. | Virtual assistant activation |
US9899019B2 (en) | 2015-03-18 | 2018-02-20 | Apple Inc. | Systems and methods for structured stem and suffix language models |
US9842105B2 (en) | 2015-04-16 | 2017-12-12 | Apple Inc. | Parsimonious continuous-space phrase representations for natural language processing |
US10083688B2 (en) | 2015-05-27 | 2018-09-25 | Apple Inc. | Device voice control for selecting a displayed affordance |
US10127220B2 (en) | 2015-06-04 | 2018-11-13 | Apple Inc. | Language identification from short strings |
US10101822B2 (en) | 2015-06-05 | 2018-10-16 | Apple Inc. | Language input correction |
US10255907B2 (en) | 2015-06-07 | 2019-04-09 | Apple Inc. | Automatic accent detection using acoustic models |
US10186254B2 (en) | 2015-06-07 | 2019-01-22 | Apple Inc. | Context-based endpoint detection |
US11025565B2 (en) | 2015-06-07 | 2021-06-01 | Apple Inc. | Personalized prediction of responses for instant messaging |
US10671428B2 (en) | 2015-09-08 | 2020-06-02 | Apple Inc. | Distributed personal assistant |
US10747498B2 (en) | 2015-09-08 | 2020-08-18 | Apple Inc. | Zero latency digital assistant |
US9697820B2 (en) | 2015-09-24 | 2017-07-04 | Apple Inc. | Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks |
US11010550B2 (en) | 2015-09-29 | 2021-05-18 | Apple Inc. | Unified language modeling framework for word prediction, auto-completion and auto-correction |
US10366158B2 (en) | 2015-09-29 | 2019-07-30 | Apple Inc. | Efficient word encoding for recurrent neural network language models |
US11587559B2 (en) | 2015-09-30 | 2023-02-21 | Apple Inc. | Intelligent device identification |
US10691473B2 (en) | 2015-11-06 | 2020-06-23 | Apple Inc. | Intelligent automated assistant in a messaging environment |
US10049668B2 (en) | 2015-12-02 | 2018-08-14 | Apple Inc. | Applying neural network language models to weighted finite state transducers for automatic speech recognition |
US10223066B2 (en) | 2015-12-23 | 2019-03-05 | Apple Inc. | Proactive assistance based on dialog communication between devices |
WO2017129270A1 (en) | 2016-01-29 | 2017-08-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for improving a transition from a concealed audio signal portion to a succeeding audio signal portion of an audio signal |
US10446143B2 (en) | 2016-03-14 | 2019-10-15 | Apple Inc. | Identification of voice inputs providing credentials |
US9934775B2 (en) | 2016-05-26 | 2018-04-03 | Apple Inc. | Unit-selection text-to-speech synthesis based on predicted concatenation parameters |
US9972304B2 (en) | 2016-06-03 | 2018-05-15 | Apple Inc. | Privacy preserving distributed evaluation framework for embedded personalized systems |
US10249300B2 (en) | 2016-06-06 | 2019-04-02 | Apple Inc. | Intelligent list reading |
US10049663B2 (en) | 2016-06-08 | 2018-08-14 | Apple, Inc. | Intelligent automated assistant for media exploration |
DK179588B1 (en) | 2016-06-09 | 2019-02-22 | Apple Inc. | Intelligent automated assistant in a home environment |
US10509862B2 (en) | 2016-06-10 | 2019-12-17 | Apple Inc. | Dynamic phrase expansion of language input |
US10192552B2 (en) | 2016-06-10 | 2019-01-29 | Apple Inc. | Digital assistant providing whispered speech |
US10586535B2 (en) | 2016-06-10 | 2020-03-10 | Apple Inc. | Intelligent digital assistant in a multi-tasking environment |
US10490187B2 (en) | 2016-06-10 | 2019-11-26 | Apple Inc. | Digital assistant providing automated status report |
US10067938B2 (en) | 2016-06-10 | 2018-09-04 | Apple Inc. | Multilingual word prediction |
DK179343B1 (en) | 2016-06-11 | 2018-05-14 | Apple Inc | Intelligent task discovery |
DK179049B1 (en) | 2016-06-11 | 2017-09-18 | Apple Inc | Data driven natural language event detection and classification |
DK179415B1 (en) | 2016-06-11 | 2018-06-14 | Apple Inc | Intelligent device arbitration and control |
DK201670540A1 (en) | 2016-06-11 | 2018-01-08 | Apple Inc | Application integration with a digital assistant |
US10593346B2 (en) | 2016-12-22 | 2020-03-17 | Apple Inc. | Rank-reduced token representation for automatic speech recognition |
DK179745B1 (en) | 2017-05-12 | 2019-05-01 | Apple Inc. | SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT |
DK201770431A1 (en) | 2017-05-15 | 2018-12-20 | Apple Inc. | Optimizing dialogue policy decisions for digital assistants using implicit feedback |
US11450339B2 (en) * | 2017-10-06 | 2022-09-20 | Sony Europe B.V. | Audio file envelope based on RMS power in sequences of sub-windows |
US10594530B2 (en) * | 2018-05-29 | 2020-03-17 | Qualcomm Incorporated | Techniques for successive peak reduction crest factor reduction |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4692941A (en) | 1984-04-10 | 1987-09-08 | First Byte | Real-time text-to-speech conversion system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4398059A (en) * | 1981-03-05 | 1983-08-09 | Texas Instruments Incorporated | Speech producing system |
US4833718A (en) * | 1986-11-18 | 1989-05-23 | First Byte | Compression of stored waveforms for artificial speech |
US4852168A (en) * | 1986-11-18 | 1989-07-25 | Sprague Richard P | Compression of stored waveforms for artificial speech |
-
1988
- 1988-09-02 FR FR8811517A patent/FR2636163B1/en not_active Expired - Lifetime
-
1989
- 1989-09-01 US US07/487,942 patent/US5327498A/en not_active Expired - Lifetime
- 1989-09-01 CA CA000610127A patent/CA1324670C/en not_active Expired - Lifetime
- 1989-09-01 ES ES89402394T patent/ES2065406T3/en not_active Expired - Lifetime
- 1989-09-01 DE DE68919637T patent/DE68919637T2/en not_active Expired - Lifetime
- 1989-09-01 EP EP89402394A patent/EP0363233B1/en not_active Expired - Lifetime
- 1989-09-01 WO PCT/FR1989/000438 patent/WO1990003027A1/en unknown
- 1989-09-01 JP JP50962189A patent/JP3294604B2/en not_active Expired - Fee Related
-
1990
- 1990-05-01 DK DK199001073A patent/DK175374B1/en not_active IP Right Cessation
-
1994
- 1994-04-04 US US08/224,652 patent/US5524172A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4692941A (en) | 1984-04-10 | 1987-09-08 | First Byte | Real-time text-to-speech conversion system |
Non-Patent Citations (7)
Title |
---|
CHARPENTIER ET AL.: "Diphone synthesis using an overlap-add technique for speech waveforms concatenation", ICASSP 1986, IEEE-IECEJ-ASJ INTERNATIONAL CONFERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1986, pages 2 015 - 2 018 |
ICASSP 82 - IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Paris, 3-5 mai 1982, vol. 3, pages 1597-1600, IEEE, New York, US; J.L. COURBON et al.: "Sparte: a text-to-speech machine using synthesis by diphones" * |
ICASSP 86, (IEEE-IECEJ-ASJ INTERNATIONAL) CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Tokyo, 7-11 avril 1986, vol. 3, pages 1705-1708, IEEE, New York, US; J. MAKHOUL et al.: "Time-scale modification in medium to low rate speech coding" * |
ICASSP 86, (IEEE-IECEJ-ASJ INTERNATIONAL) CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Tokyo, 7-11 avril 1986, vol. 3, pages 2015-2018, IEEE, New York, US; F.J. CHARPENTIER et al.: "Diphone synthesis using an overlap-add technique for speech waveforms concatenation" * |
ICASSP 87 - IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Dallas, 6-9 avril 1987, vol. 3, pages 1426-1429, IEEE, New York, US; K. LUKASZEWICZ et al.: "Microphonemic method of speech synthesis" * |
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING ,vol. ASSP-27, no. 2, avril 1979, pages 121-133, IEEE, New York, US; D. MALAH: "Time-domain algorithms for harmonic bandwidth reduction and time scaling of speech signals" * |
LUCASZEWIC ET AL.: "Micro-phonemic method of speech synthesis", ICASSP 1987, IEEE, 1987, pages 1426 - 1429 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5479564A (en) * | 1991-08-09 | 1995-12-26 | U.S. Philips Corporation | Method and apparatus for manipulating pitch and/or duration of a signal |
US5611002A (en) * | 1991-08-09 | 1997-03-11 | U.S. Philips Corporation | Method and apparatus for manipulating an input signal to form an output signal having a different length |
FR2683367A1 (en) * | 1991-11-06 | 1993-05-07 | Korea Telecommunication | METHODS OF ENCODING SPEECH SEGMENTS AND HEIGHT CONTROL FOR SPEECH SYNTHESIS SYSTEMS. |
ES2037623A2 (en) * | 1991-11-06 | 1993-06-16 | Korea Telecommunication | Speech segment coding and pitch control methods for speech synthesis systems |
GR920100488A (en) * | 1991-11-06 | 1993-07-30 | Korea Telecommunication | Speech segment coding and pitch control methods for speech synthesis systems. |
BE1005622A3 (en) * | 1991-11-06 | 1993-11-23 | Korea Telecomm Authority | Segments coding methods of speech and adjustment not for systems summary of the word. |
EP0702352A1 (en) * | 1994-09-13 | 1996-03-20 | AT&T Corp. | Systems and methods for performing phonemic synthesis |
US5633983A (en) * | 1994-09-13 | 1997-05-27 | Lucent Technologies Inc. | Systems and methods for performing phonemic synthesis |
WO1998000835A1 (en) * | 1996-07-03 | 1998-01-08 | Telia Ab (Publ) | A method for synthesising voiceless consonants |
US6112178A (en) * | 1996-07-03 | 2000-08-29 | Telia Ab | Method for synthesizing voiceless consonants |
WO1999033050A2 (en) * | 1997-12-19 | 1999-07-01 | Koninklijke Philips Electronics N.V. | Removing periodicity from a lengthened audio signal |
WO1999033050A3 (en) * | 1997-12-19 | 1999-09-10 | Koninkl Philips Electronics Nv | Removing periodicity from a lengthened audio signal |
US6298322B1 (en) | 1999-05-06 | 2001-10-02 | Eric Lindemann | Encoding and synthesis of tonal audio signals using dominant sinusoids and a vector-quantized residual tonal signal |
US7529672B2 (en) | 2002-09-17 | 2009-05-05 | Koninklijke Philips Electronics N.V. | Speech synthesis using concatenation of speech waveforms |
US7912708B2 (en) | 2002-09-17 | 2011-03-22 | Koninklijke Philips Electronics N.V. | Method for controlling duration in speech synthesis |
US8326613B2 (en) | 2002-09-17 | 2012-12-04 | Koninklijke Philips Electronics N.V. | Method of synthesizing of an unvoiced speech signal |
EP1970894A1 (en) | 2007-03-12 | 2008-09-17 | France Télécom | Method and device for modifying an audio signal |
Also Published As
Publication number | Publication date |
---|---|
DE68919637T2 (en) | 1995-07-20 |
FR2636163A1 (en) | 1990-03-09 |
JPH03501896A (en) | 1991-04-25 |
US5327498A (en) | 1994-07-05 |
DK107390D0 (en) | 1990-05-01 |
FR2636163B1 (en) | 1991-07-05 |
CA1324670C (en) | 1993-11-23 |
DE68919637D1 (en) | 1995-01-12 |
WO1990003027A1 (en) | 1990-03-22 |
ES2065406T3 (en) | 1995-02-16 |
US5524172A (en) | 1996-06-04 |
DK175374B1 (en) | 2004-09-20 |
JP3294604B2 (en) | 2002-06-24 |
DK107390A (en) | 1990-05-30 |
EP0363233B1 (en) | 1994-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0363233B1 (en) | Method and apparatus for speech synthesis by wave form overlapping and adding | |
US12020687B2 (en) | Method and system for a parametric speech synthesis | |
McLoughlin | Applied speech and audio processing: with Matlab examples | |
FR2553555A1 (en) | SPEECH CODING METHOD AND DEVICE FOR IMPLEMENTING IT | |
Owren et al. | Measuring emotion-related vocal acoustics | |
EP1593116B1 (en) | Method for differentiated digital voice and music processing, noise filtering, creation of special effects and device for carrying out said method | |
JPH0677200B2 (en) | Digital processor for speech synthesis of digitized text | |
BE1010336A3 (en) | Synthesis method of its. | |
Xie et al. | Noisy-to-noisy voice conversion framework with denoising model | |
US20060178873A1 (en) | Method of synthesis for a steady sound signal | |
EP0595950B1 (en) | Real-time speech recognition device and method | |
CN1111811C (en) | Pronunciation Synthesis Method of Computer Speech Signal | |
JP2001034284A (en) | Voice synthesizing method and voice synthesizer and recording medium recorded with text voice converting program | |
EP1846918B1 (en) | Method of estimating a voice conversion function | |
Glinski | Diphone speech synthesis based on a pitch-adaptive short-time Fourier transform | |
JP4872690B2 (en) | Speech synthesis method, speech synthesis program, speech synthesizer | |
Kumari et al. | 20Conversion of English Text-to-Speech (TTS) Using Indian Speech Signal | |
JPH0258640B2 (en) | ||
Kawa et al. | Development of a text-to-speech system for Japanese based on waveform splicing | |
JPH11109992A (en) | Phoneme database creating method, voice synthesis method, phoneme database, voice element piece database preparing device and voice synthesizer | |
CN1257271A (en) | Continuous sound processor for Chinese phonetic systhesis | |
Rahman | Pitch shifting of voices in real-time | |
Naveena et al. | Extraction of Prosodic Features to Automatically Recognize Tamil Dialects | |
JPH028320B2 (en) | ||
Strong et al. | Formant estimation from linear prediction spectra and their second derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE ES GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19900813 |
|
17Q | First examination report despatched |
Effective date: 19920526 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRANCE TELECOM |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE ES GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 68919637 Country of ref document: DE Date of ref document: 19950112 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950109 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2065406 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080924 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080913 Year of fee payment: 20 Ref country code: NL Payment date: 20080827 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080827 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20081002 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080829 Year of fee payment: 20 Ref country code: SE Payment date: 20080826 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20090831 |
|
BE20 | Be: patent expired |
Owner name: S.A. *FRANCE TELECOM Effective date: 20090901 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20090901 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20090831 Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20090901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20090902 |