EP0362797A2 - Method for the energy-saving operation of risk detectors in a risk detection arrangement - Google Patents
Method for the energy-saving operation of risk detectors in a risk detection arrangement Download PDFInfo
- Publication number
- EP0362797A2 EP0362797A2 EP89118338A EP89118338A EP0362797A2 EP 0362797 A2 EP0362797 A2 EP 0362797A2 EP 89118338 A EP89118338 A EP 89118338A EP 89118338 A EP89118338 A EP 89118338A EP 0362797 A2 EP0362797 A2 EP 0362797A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- detector
- time
- voltage
- microcomputer
- switched
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000001514 detection method Methods 0.000 title claims description 18
- 229920000535 Tan II Polymers 0.000 claims description 2
- 230000002459 sustained effect Effects 0.000 claims 1
- 230000011664 signaling Effects 0.000 abstract description 4
- 125000004122 cyclic group Chemical group 0.000 abstract 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B26/00—Alarm systems in which substations are interrogated in succession by a central station
- G08B26/005—Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade
Definitions
- the invention relates to a method for the energy-saving operation of hazard detectors in a hazard detection system, which operates in the pulse detection system according to the principle of chain synchronization, with a control center with several two-wire primary reporting lines, to which a plurality of detectors are connected in a chain, which are routinely operated from the control center cyclically controlled and queried for their respective analog detector measured value, each detector having a voltage measuring device that monitors the line voltage applied, a downstream logic logic with an associated sensor, a downstream control device, an energy store and a switching transistor, the logic logic being formed by a microcomputer.
- Such a hazard alarm system is known from DE-PS 25 33 382.
- the individual detectors are connected in a chain to the detection line.
- the measured values of the individual detectors are queried cyclically from the control center and sent to the central evaluation device in order to obtain differentiated fault or alarm messages from the analog values to be linked.
- all detectors are disconnected from the detection line by a voltage change and then switched on again in a predetermined order in such a way that each detector, after a time delay corresponding to its measured value, is additionally connected to the subsequent detector by means of a switching transistor arranged in one of the wires of the detection line turns on.
- the respective detector address is derived from the number of previous increases in the line current and the analog measured value from the length of the relevant switching delays.
- the detectors are operated from their energy stores during this time. After the query, the energy stores are recharged during the so-called rest period with increased line voltage.
- Control commands can also be transmitted from the control center to the individual detectors, which are received by the individual detectors, as is already known from DE-PS 25 33 354.
- the data received and reported by the individual detectors can also be transmitted in the form of pulse telegrams within certain time windows.
- the object of the invention is to provide, while avoiding the disadvantages described above, a method for the energy-saving operation of hazard detectors in a hazard alarm system, which allows a relatively simple and reliable switching on and off of a microcomputer.
- This object is achieved with a method described at the outset in that the microcomputer is switched to an energy-saving idle state and switched on again as a function of certain switching criteria that are specific to the hazard alarm system, with a required start-up time being guaranteed for the microcomputer.
- the special feature of the method according to the invention is that no additional and complex criteria have to be created specifically. Rather, switching criteria are used for switching the microcomputer on and off in the respective detector, which are specific to a hazard detection system and already exist, i.e. which are used and designed in a special way for this.
- the cyclical interrogation in turn gives each detector a certain voltage (an activation voltage) which switches the microcomputer on, but only after one the specified start-up time activates the detector.
- the data exchange with the control center then takes place, ie the detector receives and sends (reports) signals.
- the microcomputer is then switched off by switching to the next detector.
- the connection voltage is expediently formed by the interrogation voltage.
- the method according to the invention modifies the known chain modulation in such a way that each detector initially remains inactive for a predetermined start-up time after application of the interrogation voltage, then processes its data traffic with the control center in a specific reception time and response time and then switches through to the next detector.
- the microcomputer of each detector can start up with the specified start-up time. When switching to the next detector, the microcomputer is switched off again. The microcomputer is thus switched on for an optimally short time and consequently less energy is consumed on average.
- the start-up time for the microcomputer is obtained in a special way without having to provide a separate start-up time for each detector. All that is required is a first start-up time for the microcomputer of the first detector. After this start-up time, the first detector switches directly to the second detector. In the subsequent reception and transmission time of the first detector, the data communication between the first detector and the control center takes place. This reception and response time is also the start-up time for the microcomputer of the second detector. This process continues until the last detector. This procedure considerably reduces the time required and thus extends the available rest period in which the energy storage devices of the detectors are charged. This allows an increase in the sampling rate and / or an increased energy supply.
- a plurality of detectors M1 to Mn are connected to a central station Z here, for example, only on one reporting primary line ML.
- the line current IL flows on the signal line ML and the line voltage UL is present, which can be switched to different values (FIG. 1).
- the detector M shown in FIG. 2 has, in addition to the switching transistor T switched on in the one wire of the detection line ML, the logic logic VL, which is the heart of the detector and is formed by a microcomputer.
- the logic logic serves the actual sensor part.
- the logic logic VL is acted upon by the voltage measuring device MU, which monitors the line voltage UL and transmits switching signals to the logic logic VL in accordance with the line voltage applied.
- This logic logic causes signals to a control device ST and also signals for switching DS of the switching transistor T so that the following detector is connected to the line voltage.
- Fig. 3 shows how the individual detectors are switched on in sequence.
- the line voltage UL is plotted against the time t for the detectors M1 to M3.
- the rest voltage UR is present on the detection line ML.
- An interrogation cycle then begins with the disconnection of the line from the line voltage UL, i.e. the starting voltage US, which is preferably zero, is applied for the starting time ts. After the start time ts has elapsed, the actual query of the entire detection line begins for the time t1a.
- the interrogation voltage UA is preferably below the value of the quiescent voltage UR. It is shown for the detector M2 that it receives the interrogation voltage UA only after the DS of the first detector M1 has been switched through. The same applies to detector M3.
- the data transmission to the detector generally takes place by modulating the line voltage UL in the control center, while data transmission to the control center is carried out by modulating the line current IL in the detector.
- FIG 4 shows the profile of the line voltage UL over time t at the input of the detectors M1, M2 and M3.
- the open circuit voltage UR is applied for the rest time tr.
- the application of the interrogation voltage UA which is also the switch-on voltage UAN for the microcomputer, acts on the first detector, which is activated after the start-up time tan and thus receives reception signals E1 from the control center for the reception time te and then response signals A1 in time Ta can report to the headquarters.
- the detector M1 then switches to detector M2 through (DS).
- the detector M2 is in turn activated within the start-up time tan and then starts with the data traffic to the head office.
- the third detector is then switched through. If the primary signal line ML is queried, the open circuit voltage UR is applied to the signal line. With the respective switching through DS to the next detector, the microcomputer of the detector concerned is switched off again, so that the microcomputer only requires energy for an optimally short time.
- FIG. 5 shows a further embodiment of the method according to the invention on a voltage diagram for three detectors. Only a single start-up time is required for all detectors on a line, which advantageously reduces the polling time per detector. As a result, the number of detectors that can be connected can be increased and / or the query can be accelerated. In any case, the respective microcomputer is only switched on for a short time. When the interrogation voltage UA is applied, the microcomputer of the first detector starts up. During this time, the detector receives received signals E0 from the control center and could then report an answer A0 to the control center. Neither is possible, however, because the microcomputer is still starting up and is therefore not functional.
- the functionality is only awakened during the response time ta0, so that the first detector can receive and process the receive signal E1 intended for it only after this start-up time tan1.
- detector M1 When signals E1 are received from the control center, detector M1 immediately switches through to detector M2 (DS).
- the start-up time tan2 runs for the second detector M2, which then switches through to the third detector M3 (DS) as soon as it receives the data E2 from the control center.
- each detector switches through to the next detector immediately upon receipt of the first signals from the control center . This process is repeated in the same way for the other detectors on the line, until after the last detector has been processed, the line is again connected to the open circuit voltage.
- the received signals can be carried out in part with the voltage level that corresponds to the quiescent voltage, which advantageously shortens the time required for the energy supply and thus increases the number of detectors that can be connected and / or speeds up the query.
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Alarm Systems (AREA)
- Emergency Alarm Devices (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage, die im Pulsmeldesystem nach dem Prinzip der Kettensynchronisation arbeitet, mit einer Zentrale mit mehreren zweiadrigen Meldeprimärleitungen, an die kettenförmig eine Vielzahl von Meldern angeschlossen ist, die regelmäßig von der Zentrale aus zyklisch angesteuert und auf ihren jeweiligen analogen Meldermeßwert abgefragt werden, wobei jeder Melder eine Spannungsmeßeinrichtung, die die angelegte Linienspannung überwacht, eine nachgeschaltete Verknüpfungslogik mit zugeordnetem Sensor, eine nachgeschaltete Steuereinrichtung, einen Energiespeicher und einen Durchschaltetransistor aufweist, wobei die Verknüpfungslogik von einem Mikrorechner gebildet ist.The invention relates to a method for the energy-saving operation of hazard detectors in a hazard detection system, which operates in the pulse detection system according to the principle of chain synchronization, with a control center with several two-wire primary reporting lines, to which a plurality of detectors are connected in a chain, which are routinely operated from the control center cyclically controlled and queried for their respective analog detector measured value, each detector having a voltage measuring device that monitors the line voltage applied, a downstream logic logic with an associated sensor, a downstream control device, an energy store and a switching transistor, the logic logic being formed by a microcomputer.
Eine derartige Gefahrenmeldeanlage ist aus der DE-PS 25 33 382 bekannt. Bei dieser Gefahrenmeldeanlage, insbesondere Brandmeldeanlage, zur Übertragung von analogen Meldermeßwerten sind die einzelnen Melder kettenförmig an der Meldelinie angeschlossen. Dabei werden die Meßwerte der einzelnen Melder zyklisch von der Zentrale aus abgefragt und zur zentralen Auswerteeinrichtung gegeben, um dort daraus differenzierte Störungs- bzw. Alarmmeldungen aus den zu verknüpfenden Analogwerten zu gewinnen. Zu Beginn eines jeden Abfragezyklus werden alle Melder durch eine Spannungsänderung von der Meldelinie abgetrennt und dann in vorgegebener Reihenfolge in der Weise wieder angeschaltet, daß jeder Melder nach einer seinem Meßwert entsprechenden Zeitverzögerung mittels eines in einer der Adern der Meldelinie angeordneten Durchschaltetransistors den jeweils nachfolgenden Melder zusätzlich anschaltet.Such a hazard alarm system is known from DE-PS 25 33 382. In this hazard alarm system, in particular fire alarm system, for the transmission of analog detector measured values, the individual detectors are connected in a chain to the detection line. The measured values of the individual detectors are queried cyclically from the control center and sent to the central evaluation device in order to obtain differentiated fault or alarm messages from the analog values to be linked. At the beginning of each interrogation cycle, all detectors are disconnected from the detection line by a voltage change and then switched on again in a predetermined order in such a way that each detector, after a time delay corresponding to its measured value, is additionally connected to the subsequent detector by means of a switching transistor arranged in one of the wires of the detection line turns on.
In der zentralen Auswerteeinrichtung wird die jeweilige Melderadresse aus der Anzahl der vorhergehenden Erhöhungen des Linienstroms und der analoge Meßwert aus der Länge der betreffenden Schaltverzögerungen abgeleitet. Die Melder werden während dieser Zeit aus ihren Energiespeichern betrieben. Die Energiespeicher werden nach der Abfrage in der sogenannten Ruhezeit mit erhöhter Linienspannung wieder aufgeladen.In the central evaluation device, the respective detector address is derived from the number of previous increases in the line current and the analog measured value from the length of the relevant switching delays. The detectors are operated from their energy stores during this time. After the query, the energy stores are recharged during the so-called rest period with increased line voltage.
In zunehmendem Maße benötigen Gefahrenmelder eine hochwertige Sensorik und Übertragungstechnik. Anstatt einer Kollektivadresse wird eine Einzeladressierung verlangt, wie dies bei der oben geschilderten Gefahrenmeldeanlage der Fall ist. Es können auch von der Zentrale aus Steuerbefehle an die einzelnen Melder übertragen werden, die von den einzelnen Meldern empfangen werden, wie bereits aus der DE-PS 25 33 354 bekannt ist. Es können die Daten, die von den einzelnen Meldern empfangen und gemeldet werden, auch in Form von Pulstelegrammen innerhalb bestimmter Zeitfenster übermittelt werden.Hazard detectors are increasingly requiring high-quality sensors and transmission technology. Instead of a collective address, individual addressing is required, as is the case with the hazard alarm system described above. Control commands can also be transmitted from the control center to the individual detectors, which are received by the individual detectors, as is already known from DE-PS 25 33 354. The data received and reported by the individual detectors can also be transmitted in the form of pulse telegrams within certain time windows.
Wegen der hohen Kosten des Leitungsnetzes werden immer mehr Melder an einer Meldeprimärleitung betrieben. Alle diese Einflüsse vergrößern den Energiebedarf der einzelnen Melder und erst recht den Energiebedarf der mit mehreren Meldern bestückten Meldeprimärleitung. Besonders problematisch wird es, wenn die Funktionsanforderungen den Einsatz von schnellen Mikrorechnern mit ihrem erheblichen Energiebedarf auch in den Meldern erforderlich machen und wenn über dieselbe Leitung auch noch die notwendige Energie zugeführt wird, wie bisher üblich.Due to the high cost of the line network, more and more detectors are operated on a primary signal line. All of these influences increase the energy requirements of the individual detectors, and even more so the energy requirements of the primary line with several detectors. It becomes particularly problematic if the functional requirements also require the use of fast microcomputers with their considerable energy requirements in the detectors and if the necessary energy is also supplied via the same line, as was previously the case.
Es ist beispielsweise bekannt, stromsparende Schaltkreistechniken, z.B. CMOS zu verwenden und spezielle Sensoren, z.B. den Meßteil eines optischen Streulicht-Rauchmelders gepulst zu betreiben. Ferner ist bekannt, um den Spannungsabfall auf der Meldelinie genügend klein zu halten, diese mit dickem Draht und kurz auszuführen, was natürlich die Kosten erhöht und/oder dem Wunsch zuwiderläuft, eine Vielzahl von Meldern auf einer Leitung zu betreiben. Ebenfalls bekannt ist die Möglichkeit, die nötige Energie ganz oder teilweise getrennt, z.B. über eine eigene Leitung zuzuführen, was ebenfalls die Komplexität und die Kosten einer Gefahrenmeldeanlage erhöht.It is known, for example, to use power-saving circuit technologies, for example CMOS, and to operate special sensors, for example the pulsed portion of an optical scattered-light smoke detector. It is also known, in order to keep the voltage drop on the detection line sufficiently small, to carry it out with thick wire and short, which of course increases the costs and / or runs counter to the desire to operate a large number of detectors on one line. Also known is the possibility of supplying the necessary energy in whole or in part separately, for example via a separate line, which is also complex and the cost of a hazard alarm system increases.
Es ist ganz allgemein schon vorgeschlagen worden, Mikrorechner abzuschalten, wenn sie nicht benötigt werden, um deren Energieverbrauch zu reduzieren. Das hat aber in der Regel den Nachteil, daß einerseits geeignete Kriterien für das Aus- und Einschalten nicht verfügbar bzw. nur mit großem, zusätzlichen Aufwand herstellbar sind und andererseits das Einschalten eines Mikrorechners relativ lange dauert, weil z.B. der Taktgenerator mehrere Millisekunden lang anschwingen muß, bevor er funktionsfähig ist.It has generally been proposed to shutdown microcomputers when they are not needed to reduce their energy consumption. However, this usually has the disadvantage that, on the one hand, suitable criteria for switching off and on are not available or can only be produced with great additional effort, and, on the other hand, switching on a microcomputer takes a relatively long time, because e.g. the clock generator must oscillate for several milliseconds before it is functional.
Aufgabe der Erfindung ist es, unter Vermeidung der oben geschilderten Nachteile ein Verfahren zum energiesparenden Betreiben von Gefahrenmeldern einer Gefahrenmeldeanlage anzugeben, welches ein verhältnismäßig einfaches und zuverlässiges An- und Abschalten eines Mikrorechners gestattet.The object of the invention is to provide, while avoiding the disadvantages described above, a method for the energy-saving operation of hazard detectors in a hazard alarm system, which allows a relatively simple and reliable switching on and off of a microcomputer.
Diese Aufgabe wird mit einem eingangs beschriebenen Verfahren dadurch gelöst, daß der Mikrorechner in Abhängigkeit von bestimmten Schaltkriterien, die spezifisch für die Gefahrenmeldeanlage sind, in einen stromsparenden Ruhezustand geschaltet und wieder eingeschaltet wird, wobei eine erforderliche Anlaufzeit für den Mikrorechner gewährleistet ist.This object is achieved with a method described at the outset in that the microcomputer is switched to an energy-saving idle state and switched on again as a function of certain switching criteria that are specific to the hazard alarm system, with a required start-up time being guaranteed for the microcomputer.
Das besondere bei dem erfindungsgemäßen Verfahren besteht darin, daß keine zusätzlichen und aufwendigen Kriterien eigens geschaffen werden müssen. Vielmehr werden für das An- und Abschalten des Mikrorechners im jeweiligen Melder Schaltkriterien herangezogen, die für eine Gefahrenmeldeanlage spezifisch sind und bereits vorhanden sind, d.h. die in besonderer Weise hierfür genutzt und ausgestaltet werden.The special feature of the method according to the invention is that no additional and complex criteria have to be created specifically. Rather, switching criteria are used for switching the microcomputer on and off in the respective detector, which are specific to a hazard detection system and already exist, i.e. which are used and designed in a special way for this.
So erhält in einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens mit der zyklischen Abfrage der Reihe nach jeder Melder eine bestimmte Spannung (eine Anschaltspannung), die den Mikrorechner einschaltet, aber erst nach einer vorgegebenen Anlaufzeit den Melder aktiviert. Danach erfolgt der Datenverkehr mit der Zentrale, d.h. der Melder empfängt und sendet (meldet) Signale. Anschließend wird mit dem Durchschalten zum nächsten Melder der Mikrorechner abgeschaltet. Zweckmäßigerweise wird die Anschaltspannung von der Abfragespannung gebildet.Thus, in an advantageous embodiment of the method according to the invention, the cyclical interrogation in turn gives each detector a certain voltage (an activation voltage) which switches the microcomputer on, but only after one the specified start-up time activates the detector. The data exchange with the control center then takes place, ie the detector receives and sends (reports) signals. The microcomputer is then switched off by switching to the next detector. The connection voltage is expediently formed by the interrogation voltage.
Das erfindungsgemäße Verfahren modifiziert die bekannte Kettenmodulation derart, daß jeder Melder nach dem Anlegen der Abfragespannung zunächst während einer vorgegebenen Anlaufzeit inaktiv bleibt, dann seinen Datenverkehr in einer bestimmten Empfangszeit und Antwortzeit mit der Zentrale abwickelt und anschließend zum nächsten Melder durchschaltet. Mit der vorgegebenen Anlaufzeit kann der Mikrorechner eines jeweiligen Melders anlaufen. Mit dem Durchschalten zum nächsten Melder wird der Mikrorechner wieder abgeschaltet. Damit ist für eine optimal kurze Zeit der Mikrorechner eingeschaltet und demzufolge wird im Mittel weniger Energie verbraucht.The method according to the invention modifies the known chain modulation in such a way that each detector initially remains inactive for a predetermined start-up time after application of the interrogation voltage, then processes its data traffic with the control center in a specific reception time and response time and then switches through to the next detector. The microcomputer of each detector can start up with the specified start-up time. When switching to the next detector, the microcomputer is switched off again. The microcomputer is thus switched on for an optimally short time and consequently less energy is consumed on average.
In einer vorteilhaften Ausgestaltung der Erfindung wird die Anlaufzeit für den Mikrorechner in einer besonderen Weise gewonnen, ohne dabei für jeden Melder eine eigene Anlaufzeit vorsehen zu müssen. Es wird lediglich eine erste Anlaufzeit für den Mikrorechner des ersten Melders benötigt. Nach dieser Anlaufzeit schaltet der erste Melder unmittelbar zum zweiten Melder durch. In der anschließenden Empfangs- und Sendezeit des ersten Melders erfolgt der Datenverkehr des ersten Melders mit der Zentrale. Diese Empfangs- und Antwortzeit ist aber zugleich die Anlaufzeit für den Mikrorechner des zweiten Melders. Dieser Vorgang setzt sich bis zum letzten Melder fort. Dieses Verfahren verringert den Zeitbedarf erheblich und verlängert damit die verfügbare Ruhezeit, in der die Energiespeicher der Melder aufgeladen werden. Damit ist eine Erhöhung der Abtastrate und/oder eine erhöhte Energiezufuhr möglich.In an advantageous embodiment of the invention, the start-up time for the microcomputer is obtained in a special way without having to provide a separate start-up time for each detector. All that is required is a first start-up time for the microcomputer of the first detector. After this start-up time, the first detector switches directly to the second detector. In the subsequent reception and transmission time of the first detector, the data communication between the first detector and the control center takes place. This reception and response time is also the start-up time for the microcomputer of the second detector. This process continues until the last detector. This procedure considerably reduces the time required and thus extends the available rest period in which the energy storage devices of the detectors are charged. This allows an increase in the sampling rate and / or an increased energy supply.
Im folgenden wird das erfindungsgemäße Verfahren anhand der Zeichnung näher erläutert. Dabei wird zum besseren Verständnis zuerst das bekannte Pulsmeldesystem und danach an Ausführungsbeispielen die Erfindung beschrieben. Dabei zeigen
- Fig. 1 eine schematische Darstellung einer Gefahrenmeldeanlage,
- Fig. 2 schematisch einen Melder in der Melderprimärleitung,
- Fig. 3 Linienspannungsdiagramme für drei Melder.
- Fig. 4 ein Ausführungsbeispiel für das erfindungsgemäße Verfahren an einem Spannungsdiagramm und
- Fig. 5 ein weiteres Ausführungsbeispiel an einem Spannungsdiagramm.
- 1 is a schematic representation of a hazard detection system,
- 2 schematically shows a detector in the primary detector line,
- Fig. 3 line voltage diagrams for three detectors.
- Fig. 4 shows an embodiment of the method according to the invention on a voltage diagram and
- Fig. 5 shows another embodiment of a voltage diagram.
Bekanntermaßen sind an eine Zentrale Z beispielsweise hier nur an einer Meldeprimärleitung ML eine Vielzahl von Meldern M1 bis Mn angeschlossen. Auf der Meldeleitung ML fließt der Linienstrom IL und es liegt die Linienspannung UL an, die auf verschiedene Werte umschaltbar ist (Fig.1).As is known, a plurality of detectors M1 to Mn are connected to a central station Z here, for example, only on one reporting primary line ML. The line current IL flows on the signal line ML and the line voltage UL is present, which can be switched to different values (FIG. 1).
Der in Fig.2 gezeigte Melder M weist neben den in der einen Ader der Meldelinie ML eingeschalteten Durchschaltetransistor T die Verknüpfungslogik VL auf, die das Herzstück des Melders darstellt und von einem Mikrorechner gebildet ist. Die Verknüpfungslogik bedient das eigentliche Sensorteil. Die Verknüpfungslogik VL ist von der Spannungsmeßeinrichtung MU beaufschlagt, welche die Linienspannung UL überwacht und entsprechend der angelegten Linienspannung Schaltsignale an die Verknüpfungslogik VL gibt. Diese Verknüpfungslogik veranlaßt Signale an eine Steuereinrichtung ST und auch Signale zum Durchschalten DS des Durchschaltetransistors T, damit der nachfolgende Melder an die Linienspannung angeschlossen wird.The detector M shown in FIG. 2 has, in addition to the switching transistor T switched on in the one wire of the detection line ML, the logic logic VL, which is the heart of the detector and is formed by a microcomputer. The logic logic serves the actual sensor part. The logic logic VL is acted upon by the voltage measuring device MU, which monitors the line voltage UL and transmits switching signals to the logic logic VL in accordance with the line voltage applied. This logic logic causes signals to a control device ST and also signals for switching DS of the switching transistor T so that the following detector is connected to the line voltage.
Es ist noch durch einen Kondensator C im Melder der Energiespeicher angedeutet, der im Ruhezustand beim Anliegen einer Ruhespannung UR aufgeladen wird und im abgetrennten Zustand den Melder bei Bedarf mit Energie versorgt.It is also indicated by a capacitor C in the detector of the energy store, which is charged in the idle state when an open circuit voltage UR is applied and supplies the detector with energy when required in the disconnected state.
In Fig.3 ist veranschaulicht, wie die einzelnen Melder der Reihe nach angeschaltet werden. Dabei ist die Linienspannung UL über der Zeit t aufgetragen für die Melder M1 bis M3. Während der Ruhezeit tr liegt auf der Meldelinie ML die Ruhespannung UR an. Ein Abfragezyklus beginnt dann mit dem Abtrennen der Linie von der Linienspannung UL, d.h. es wird für die Startzeit ts die Startspannung US, die bevorzugt gleich Null ist, angelegt. Nach Ablauf der Startzeit ts beginnt die eigentliche Abfrage der gesamten Meldelinie für die Zeit t1a. Die Abfragespannung UA liegt hierfür bevorzugt unter dem Wert der Ruhespannung UR. Für den Melder M2 ist gezeigt, daß er erst nach dem Durchschalten DS des ersten Melders M1 die Abfragespannung UA erhält. Gleiches gilt für den Melder M3.Fig. 3 shows how the individual detectors are switched on in sequence. The line voltage UL is plotted against the time t for the detectors M1 to M3. During the rest period tr, the rest voltage UR is present on the detection line ML. An interrogation cycle then begins with the disconnection of the line from the line voltage UL, i.e. the starting voltage US, which is preferably zero, is applied for the starting time ts. After the start time ts has elapsed, the actual query of the entire detection line begins for the time t1a. For this purpose, the interrogation voltage UA is preferably below the value of the quiescent voltage UR. It is shown for the detector M2 that it receives the interrogation voltage UA only after the DS of the first detector M1 has been switched through. The same applies to detector M3.
Die Datenübertragung zum Melder geschieht im allgemeinen durch Modulation der Linienspannung UL in der Zentrale, während eine Datenübertragung zur Zentrale durch die Modulation des Linienstroms IL im Melder vorgenommen wird.The data transmission to the detector generally takes place by modulating the line voltage UL in the control center, while data transmission to the control center is carried out by modulating the line current IL in the detector.
In Fig. 4 ist der Verlauf der Linienspannung UL über der Zeit t am Eingang der Melder M1,M2 und M3 dargestellt. Die Ruhespannung UR liegt für die Ruhezeit tr an. Für die Startzeit ts wird die Linienspannung UL auf die Startspannung US = 0 gesetzt. Danach wird mit dem Anlegen der Abfragespannung UA, die zugleich die Anschaltespannung UAN für den Mikrorechner ist, der erste Melder beaufschlagt, der nach der Anlaufzeit tan aktiviert ist und somit Empfangssignale E1 von der Zentrale für die Empfangszeit te empfangen und anschließend Antwortsignale A1 in der Zeit ta zur Zentrale melden kann. Danach schaltet der Melder M1 zum Melder M2 durch (DS). Der Melder M2 wird seinerseits innerhalb der Anlaufzeit tan aktiviert und beginnt dann mit dem Datenverkehr zur Zentrale. Anschließend erfolgt die Durchschaltung zum dritten Melder. Ist die Meldeprimärleitung ML abgefragt, so wird an die Meldelinie die Ruhespannung UR gelegt. Mit dem jeweiligen Durchschalten DS zum nächsten Melder wird der Mikrorechner des betreffenden Melders wieder abgeschaltet, damit ist nur für eine optimal kurze Zeit ein Energiebedarf seitens des Mikrorechners erforderlich.4 shows the profile of the line voltage UL over time t at the input of the detectors M1, M2 and M3. The open circuit voltage UR is applied for the rest time tr. The line voltage UL is set to the start voltage US = 0 for the start time ts. Thereafter, the application of the interrogation voltage UA, which is also the switch-on voltage UAN for the microcomputer, acts on the first detector, which is activated after the start-up time tan and thus receives reception signals E1 from the control center for the reception time te and then response signals A1 in time Ta can report to the headquarters. The detector M1 then switches to detector M2 through (DS). The detector M2 is in turn activated within the start-up time tan and then starts with the data traffic to the head office. The third detector is then switched through. If the primary signal line ML is queried, the open circuit voltage UR is applied to the signal line. With the respective switching through DS to the next detector, the microcomputer of the detector concerned is switched off again, so that the microcomputer only requires energy for an optimally short time.
In Fig. 5 ist an einem Spannungsdiagramm für drei Melder eine weitere Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Dabei wird lediglich eine einzige Anlaufzeit für alle Melder einer Linie benötigt, wodurch in vorteilhafter Weise die Abfragezeit pro Melder reduziert wird. Dadurch kann die Zahl der anschließbaren Melder erhöht und/oder die Abfrage beschleunigt werden. In jedem Fall wird auch hier der jeweilige Mikrorechner nur für kurze Zeit eingeschaltet. Mit dem Anliegen der Abfragespannung UA beginnt der Mikrorechner des ersten Melders anzulaufen. In dieser Zeit empfängt der Melder Empfangssignale E0 von der Zentrale und könnte anschließend eine Antwort A0 an die Zentrale melden. Beides ist aber nicht möglich, weil der Mikrorechner noch beim Anlaufen und damit nicht funktionsfähig ist. Die Funktionsfähigkeit wird erst während der Antwortzeit ta0 erweckt, so daß der erste Melder das für ihn bestimmte Empfangssignal E1 erst nach dieser Anlaufzeit tan1 empfangen und bearbeiten kann. Mit dem Empfang der Signale E1 von der Zentrale schaltet der Melder M1 sogleich zum Melder M2 durch (DS). Während des Datenverkehrs des ersten Melders M1 in der Zeit te1 plus ta1 läuft die Anlaufzeit tan2 für den zweiten Melder M2, der dann zum dritten Melder M3 durchschaltet (DS), sobald er von der Zentrale die Daten E2 empfängt.5 shows a further embodiment of the method according to the invention on a voltage diagram for three detectors. Only a single start-up time is required for all detectors on a line, which advantageously reduces the polling time per detector. As a result, the number of detectors that can be connected can be increased and / or the query can be accelerated. In any case, the respective microcomputer is only switched on for a short time. When the interrogation voltage UA is applied, the microcomputer of the first detector starts up. During this time, the detector receives received signals E0 from the control center and could then report an answer A0 to the control center. Neither is possible, however, because the microcomputer is still starting up and is therefore not functional. The functionality is only awakened during the response time ta0, so that the first detector can receive and process the receive signal E1 intended for it only after this start-up time tan1. When signals E1 are received from the control center, detector M1 immediately switches through to detector M2 (DS). During the data traffic of the first detector M1 in the time te1 plus ta1, the start-up time tan2 runs for the second detector M2, which then switches through to the third detector M3 (DS) as soon as it receives the data E2 from the control center.
Es wird pro Meldelinie nur eine erste Anlaufzeit tan0, bestehend aus te0 und ta0, in der Daten auf die Meldelinie gegeben werden, die jedoch keine Wirkung haben, zur Aktivierung des ersten Melders gegeben, der jedoch danach sogleich mit dem Empfang der Signale von der Zentrale zum nächsten Melder durchschaltet. Die Empfangs- und Sendezeit für den Datenverkehr des ersten Melders bildet zugleich die Anlaufzeit für den Mikrorechner des zweiten Melders, usw. Jeder Melder schaltet dabei im Gegensatz zum bisherigen Verfahren in der Pulsmeldetechnik sogleich mit dem Empfang der ersten Signale seitens der Zentrale zum nächsten Melder durch. Dieser Vorgang wiederholt sich gleichartig bei den weiteren Meldern der Linie, bis nach der Bearbeitung des letzten Melders die Linie wieder an Ruhespannung gelegt wird.There is only a first start-up time tan0, consisting of te0 and ta0, for each detection line, in which data is given to the detection line, which, however, have no effect, for activating the first detector, which, however, immediately receives signals from the control center to the next detector switches through. The reception and transmission time for the data traffic of the first detector also forms the start-up time for the microcomputer of the second detector, etc. In contrast to the previous method in pulse detection technology, each detector switches through to the next detector immediately upon receipt of the first signals from the control center . This process is repeated in the same way for the other detectors on the line, until after the last detector has been processed, the line is again connected to the open circuit voltage.
In Weiterführung der Erfindung können die Empfangssignale teilweise mit dem Spannungspegel, der der Ruhespannung entspricht, ausgeführt werden, wodurch die zur Energieversorgung benötigte Zeit in vorteilhafter Weise verkürzt und damit die Zahl der anschließbaren Melder erhöht und/oder die Abfrage beschleunigt wird.In a further development of the invention, the received signals can be carried out in part with the voltage level that corresponds to the quiescent voltage, which advantageously shortens the time required for the energy supply and thus increases the number of detectors that can be connected and / or speeds up the query.
Claims (5)
dadurch gekennzeichnet, daß der Mikrorechner in Abhängigkeit von bestimmten Schaltkriterien (UAN, DS), die spezifisch für die Gefahrenmeldeanlage sind, in einen stromsparenden Ruhezustand geschaltet und wiedereingeschaltet wird, wobei eine erforderliche Anlaufzeit (tan) für den Mikrorechner gewährleistet ist.1.Procedure for the energy-saving operation of danger detectors in a danger detection system which operates on the principle of chain synchronization according to the pulse detection system, with a control center (Z) with a plurality of two-wire primary reporting lines (ML) to which a plurality of detectors (Mn) are connected in a chain, which are periodically controlled cyclically from the control center (Z) and queried for their respective analog detector measured value, each detector (Mn) having a voltage measuring device (MU) that monitors the line voltage applied (UL) and a sustained logic logic (VL) Assigned sensor part (S), a downstream control device (St), an energy store (C) and a switching transistor (T), the logic logic (VL) being essentially formed by a microcomputer that can be switched on and off,
characterized in that, depending on certain switching criteria (UAN, DS) that are specific to the hazard detection system, the microcomputer is switched to an energy-saving idle state and switched on again, a required start-up time (tan) being guaranteed for the microcomputer.
dadurch gekennzeichnet, daß mit der zyklischen Abfrage der Reihe nach jeder Melder (Mn) eine bestimmte Spannung (Anschaltspannung UAN) erhält, die den Mikrorechner einschaltet, aber erst nach einer vorgegebenen Anlaufzeit (tan) den betreffenden Melder aktiviert, daß nach Ablauf der Anlaufzeit (tan) der Datenverkehr mit der Zentrale (Z) erfolgt, wobei für den Empfang (E1,E2,...) jeweils eine bestimmte Empfangszeit (te) und für das Antworten (Melden) (A1,A2,...) jeweils eine bestimmte Antwortzeit (ta) vorgesehen ist, und daß anschließend mit dem Durchschalten (DS) zum nächsten Melder der Mikrorechner abgeschaltet wird.2. The method according to claim 1,
characterized in that with the cyclical interrogation one after the other each detector (Mn) receives a certain voltage (switch-on voltage UAN) which switches on the microcomputer, but only activates the detector in question after a predetermined start-up time (tan), that after the start-up time ( tan) the data traffic with the control center (Z) takes place, with a specific reception time (te) for reception (E1, E2, ...) and a response time (report) (A1, A2, ...) certain response time (ta) is provided, and that the microcomputer is then switched off by switching through (DS) to the next detector.
dadurch gekennzeichnet, daß bei der zyklischen Abfrage mit dem Anlegen der Abfragespannung (UA) der Mikrorechner des jeweiligen Melders eingeschaltet wird, daß eine erste Empfangs- und Antwortzeit (te0 und ta0) vorgesehen ist, die die Anlaufzeit (tan1) für den ersten Melder (M1) bildet, daß nach dieser Anlaufzeit (tan1) der erste Melder (M1) in der Empfangszeit (te1) Daten (E1) von der Zentrale (Z) empfängt und in der Antwortzeit (ta1) Daten (A1) an die Zentrale meldet, und mit dem Empfang der Empfangsdaten zum zweiten Melder (M2) durchschaltet (DS), wodurch der Mikrorechner des zweiten Melders eingeschaltet wird, daß die Empfangs- und Antwortzeit (te1 und ta1) des ersten Melders (M1) zugleich die Anlaufzeit (tan2) für den Mikrorechner des zweiten Melders (M2) ist, und daß dieser Vorgang sich bis zum letzten Melder einer Melderlinie (ML) wiederholt.3. The method according to claim 1,
characterized in that during the cyclical interrogation when the interrogation voltage (UA) is applied, the microcomputer of the respective detector is switched on, that a first reception and response time (te0 and ta0) is provided, which is the start-up time (tan1) for the first detector ( M1) means that after this start-up time (tan1) the first detector (M1) receives data (E1) from the control center (Z) in the reception time (te1) and reports data (A1) to the control center in the response time (ta1), and with the receipt of the received data to the second detector (M2) switches through (DS), whereby the microcomputer of the second detector is switched on, that the reception and response time (te1 and ta1) of the first detector (M1) also the start-up time (tan2) for is the microcomputer of the second detector (M2) and that this process is repeated until the last detector of a detector line (ML).
dadurch gekennzeichnet, daß die Anschaltspannung (UAN) gleich der Abfragespannung (UA) ist.4. The method according to claim 2 or 3,
characterized in that the switch-on voltage (UAN) is equal to the interrogation voltage (UA).
dadurch gekennzeichnet, daß die Empfangssignale (E0, E1,...) teilweise den Spannungspegel, der der Ruhespannung entspricht, aufweisen.5. The method according to claim 2 or 3,
characterized in that the received signals (E0, E1, ...) partially have the voltage level which corresponds to the quiescent voltage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3834043 | 1988-10-06 | ||
DE3834043 | 1988-10-06 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0362797A2 true EP0362797A2 (en) | 1990-04-11 |
EP0362797A3 EP0362797A3 (en) | 1991-01-16 |
EP0362797B1 EP0362797B1 (en) | 1994-12-28 |
EP0362797B2 EP0362797B2 (en) | 2000-05-17 |
Family
ID=6364534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89118338A Expired - Lifetime EP0362797B2 (en) | 1988-10-06 | 1989-10-03 | Method for the energy-saving operation of risk detectors in a risk detection arrangement |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0362797B2 (en) |
AT (1) | ATE116464T1 (en) |
DE (1) | DE58908831D1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030298A1 (en) * | 1990-09-25 | 1992-03-26 | Siemens Ag | DANGER REPORTING SYSTEM |
WO2011054458A1 (en) * | 2009-10-26 | 2011-05-12 | Phoenix Contact Gbmh & Co. Kg | Safety communication system for signaling system states |
EP2515553A3 (en) * | 2011-04-21 | 2014-04-30 | Phoenix Contact GmbH & Co. KG | Safety communication system for signalling system conditions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2131991A (en) * | 1982-11-12 | 1984-06-27 | Robert Philp | Telemetry and like signalling systems |
EP0125485A1 (en) * | 1983-04-12 | 1984-11-21 | Siemens Aktiengesellschaft | Signal suppression circuit for optical smoke detectors |
EP0279697A2 (en) * | 1987-02-20 | 1988-08-24 | Nec Corporation | Portable radio apparatus having battery saving channel scanning function |
-
1989
- 1989-10-03 AT AT89118338T patent/ATE116464T1/en not_active IP Right Cessation
- 1989-10-03 DE DE58908831T patent/DE58908831D1/en not_active Expired - Fee Related
- 1989-10-03 EP EP89118338A patent/EP0362797B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2131991A (en) * | 1982-11-12 | 1984-06-27 | Robert Philp | Telemetry and like signalling systems |
EP0125485A1 (en) * | 1983-04-12 | 1984-11-21 | Siemens Aktiengesellschaft | Signal suppression circuit for optical smoke detectors |
EP0279697A2 (en) * | 1987-02-20 | 1988-08-24 | Nec Corporation | Portable radio apparatus having battery saving channel scanning function |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4030298A1 (en) * | 1990-09-25 | 1992-03-26 | Siemens Ag | DANGER REPORTING SYSTEM |
WO2011054458A1 (en) * | 2009-10-26 | 2011-05-12 | Phoenix Contact Gbmh & Co. Kg | Safety communication system for signaling system states |
EP2515553A3 (en) * | 2011-04-21 | 2014-04-30 | Phoenix Contact GmbH & Co. KG | Safety communication system for signalling system conditions |
Also Published As
Publication number | Publication date |
---|---|
ATE116464T1 (en) | 1995-01-15 |
EP0362797A3 (en) | 1991-01-16 |
EP0362797B1 (en) | 1994-12-28 |
EP0362797B2 (en) | 2000-05-17 |
DE58908831D1 (en) | 1995-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68924615T2 (en) | Monitoring system for radio communication apparatus. | |
EP1206765B1 (en) | Method and device for automatically allocating detector addresses in an alarm system | |
EP2478671B1 (en) | Method and device for waking up consumers in a bus system and corresponding consumers | |
EP0489346B1 (en) | Method for the automatic ranging of detector addresses by an alarm system | |
DE10333932A1 (en) | Synchronization of data processing units | |
DE2533354A1 (en) | PROCEDURE AND DEVICE FOR TRANSFERRING CONTROL COMMANDS IN A FIRE PROTECTION SYSTEM | |
DE2533330A1 (en) | PROCEDURE AND EQUIPMENT FOR TRANSMISSION OF MEASURED VALUES IN A FIRE DETECTION SYSTEM | |
EP0362797B1 (en) | Method for the energy-saving operation of risk detectors in a risk detection arrangement | |
DE19705365A1 (en) | Time multiplexed transmission of signals from sensors | |
EP0993637B1 (en) | Serial data- and control-bus supplying voltage | |
DE10342625A1 (en) | sensor | |
DE3128796C2 (en) | ||
EP0362798B1 (en) | Method for the energy-saving operation of risk detectors in a risk detection arrangement | |
DE3150313C2 (en) | Arrangement for determining and reporting the position of a number of switches and for monitoring the connection line | |
DE4017533A1 (en) | Control-supervisory signal transmission system - employs shared data line for bidirectional traffic between controller and controlled devices or device state monitors | |
DE3424294A1 (en) | Interrogation device for identification of the position of switches | |
DE3614692C2 (en) | ||
DE102009050692B4 (en) | Security communication system for signaling system states | |
DE3225032C2 (en) | Method and device for the optional automatic query of the detector identification or the detector measured value in a hazard alarm system | |
EP0212106B1 (en) | Measured value transmission method | |
DE4020809C2 (en) | Method for exchanging information via a serial bus | |
DE2308736C2 (en) | Device for transmitting data telegrams via a first radio channel and voice information via a second radio channel | |
DE2536161A1 (en) | Telemetry control system for master satellite stations - has outstation with own timing generator to control response sequence (NL150277) | |
EP2515553B1 (en) | Security communication system for signalling system conditions | |
EP0054643B1 (en) | Remote monitoring installation with at least one arrangement for the transmission of messages according to a time division multiplex-frequency division multiplex procedure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901205 |
|
17Q | First examination report despatched |
Effective date: 19931105 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 116464 Country of ref document: AT Date of ref document: 19950115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 58908831 Country of ref document: DE Date of ref document: 19950209 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950303 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: PREUSSAG AG Effective date: 19950926 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: PREUSSAG AG |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19971013 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981003 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20000517 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
NLR2 | Nl: decision of opposition | ||
ITF | It: translation for a ep patent filed | ||
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
NLR3 | Nl: receipt of modified translations in the netherlands language after an opposition procedure | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20021004 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20021010 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021016 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20021021 Year of fee payment: 14 Ref country code: BE Payment date: 20021021 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021023 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20021216 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20030115 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031003 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031031 |
|
BERE | Be: lapsed |
Owner name: *SIEMENS A.G. Effective date: 20031031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031003 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051003 |