EP0325702B1 - Microstrip antenna - Google Patents
Microstrip antenna Download PDFInfo
- Publication number
- EP0325702B1 EP0325702B1 EP88117440A EP88117440A EP0325702B1 EP 0325702 B1 EP0325702 B1 EP 0325702B1 EP 88117440 A EP88117440 A EP 88117440A EP 88117440 A EP88117440 A EP 88117440A EP 0325702 B1 EP0325702 B1 EP 0325702B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- base plate
- substrate
- radiation elements
- depressions
- electrically conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 19
- 230000005855 radiation Effects 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 3
- 239000006261 foam material Substances 0.000 claims description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims 2
- 239000011151 fibre-reinforced plastic Substances 0.000 claims 2
- 238000005259 measurement Methods 0.000 claims 1
- 239000004809 Teflon Substances 0.000 description 7
- 229920006362 Teflon® Polymers 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- -1 Teflon) Chemical compound 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/10—Resonant slot antennas
- H01Q13/18—Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
Definitions
- the invention relates to two microstrip antennas, which are intended in particular for aerospace applications.
- Microstrip antennas have advantageous properties - such as a flat structure, inexpensive and precise manufacture of the radiator geometry using lithographic processes, possible implementation of the food network for group antennas on the same substrate - which make this antenna shape appear attractive for group antennas.
- the small distance between the radiator and the conductive base plate in the conventional design has a negative effect on the radiator efficiency and the permissible dimensional and material tolerances.
- An increase in the distance by using a thicker substrate material has the disadvantage of an increased weight.
- the proportion of the power carried in surface waves increases with increasing thickness of the substrate material, which in turn reduces the efficiency and worsens the radiation pattern.
- a thick, low density substrate or a multilayer, thick substrate is used using air or vacuum or a low density material such as e.g. Foam or honeycomb material is used, so the surface wave proportion is lower.
- a low density material such as e.g. Foam or honeycomb material
- Foam or honeycomb material is used, so the surface wave proportion is lower.
- the feed-in of the electrical power is problematic due to the large distance between the radiator level and the base plate and leads to further undesired radiation.
- the exact maintenance of the distance between the radiator level and the base plate requires a support structure, in particular when the substrate is assembled using air or vacuum.
- active antennas in particular for aerospace antennas, good thermal conductivity from the transmitter / receiver modules arranged on the base plate to the antenna front is also required. This is not the case with substrates of low density, especially not if the substrate contains a vacuum area.
- the object of the invention is - based on the generic arrangements - to further develop them in such a way that the antenna arrangements are suitable for space travel applications and stability and low weight are ensured.
- the devices according to the invention have a high efficiency, a high bandwidth and a high tolerance insensitivity.
- the feed line system remains largely radiation-free due to the higher capacitive coupling to the base plate.
- the surface wave excitation is not reinforced.
- the weight of the antenna remains low. Adequate thermal conductivity perpendicular to the antenna surface is given, since the antenna - except under the radiator elements - can be made very thin.
- the greater the distance between the radiator and the base plate compared to the substrate thickness is only important under the radiators. This increase in distance can be achieved by deforming the base plate (tub structure) or the substrate (mesa structure). The resulting space between the substrate and base plate is filled with a foam material for mechanical stiffening.
- the invention makes it possible to meet the opposing requirements for high efficiency and wide bandwidth of the radiator elements on the one hand - namely a large distance between the radiator and the base plate with a low dielectric constant - and for freedom from radiation (low stripline losses) and easy coupling of the feed lines to the power supply on the other hand - namely low substrate thickness medium to high dielectric constant - to combine on a substrate.
- the weight remains low and heat conduction from the base plate to the radiator level is guaranteed. Due to the elevations or depressions, the antenna is light and yet mechanically stable.
- the impedance is preferably adjusted where the distance between the top line and the base plate is changed (ie at e).
- the fact that the matching lines and the feed line network are arranged in a preferred embodiment on the top of the substrate has the advantage that the production can be carried out in one operation. Because no transitions are required, the accuracy and the reproducibility of the production of the feed lines can be as great as in the production of the radiators (c).
- the top of the substrate is coated with thermal paint in order to improve the radiation of heat or to minimize heat absorption by the sun or albedo.
- the surface is highly electrically conductive or can be made highly conductive by a (metal) coating.
- Carbon fiber reinforced plastic is well suited because this material has a very low coefficient of thermal expansion.
- the base plate can also consist of a plastic (for example a fluorocarbon such as Teflon), which is coated with a highly conductive, resistant and well-adhering layer.
- a plastic for example a fluorocarbon such as Teflon
- Teflon a fluorocarbon
- the metals chromium (Cr), copper (Cu), titanium (Ti), palladium (Pd) and gold (Au) are suitable.
- reinforced or unreinforced plastics in particular thermoplastics, are suitable as material for the substrate b.
- These materials have sufficiently low dielectric losses. Examples include all materials that are used for the production of high-quality radomes and printed circuit boards for microwave technology. From an electrical point of view, reinforced and unreinforced materials based on fluorocarbons such as PTFE, FEP or PFA and on the basis of polyethylene are particularly suitable.
- a particularly suitable material for the substrate is polyethylene fiber reinforced polyethylene. With this material very low thermal expansion coefficients can be realized. In addition to its function as a dielectric, this material can also perform supporting functions.
- the substrate b consists of a 1 mm thick plate made of polyethylene fiber reinforced polyethylene and the basic structure made of carbon fiber reinforced epoxy resin.
- the elevations or depressions can be produced by thermomechanical forming of plates.
- a 1.5 mm thick sheet of glass microfiber reinforced PTFE available under the trade name RT / Duroid 5780, RT / Duroid is a registered trademark of Rogers Corporation, Arizona, USA
- RT / Duroid is a registered trademark of Rogers Corporation, Arizona, USA
- shape of the substrate b or of the basic structure can be produced by mechanical processing (for example by milling).
- the optically structured foils can be applied before or after the deformation of the Teflon substrate.
- a dip coating with photoresist can also be used, with the dip coating being used to lift off the remaining Flat in acetone.
- the radiator elements can also be coupled in that the feed line is not guided on the substrate, but in each case in the substrate to below the respective radiator element and the relative dielectric constant of the substrate material between the feed line and the radiator is locally increased.
- Both figures each show a section of a group antenna with the base plates a, the electrically insulating substrate b and radiator elements c. Also drawn are the feed lines d and widening transition regions e which electrically connect the feed lines d to the radiator elements c.
- the elevations or depressions can be, for example, between 0.5 and 10 mm high (deep).
- Figure 1 shows the embodiment with a mesa-shaped increase in the substrate b.
- Figure 2 shows the version with a trough-shaped depression of the base plate a.
Landscapes
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
Die Erfindung betrifft zwei Mikrostreifenleiterantennen, die insbesondere für Luft- und Raumfahrtanwendungen vorgesehen sind.The invention relates to two microstrip antennas, which are intended in particular for aerospace applications.
Mikrostreifenleiterantennen besitzen vorteilhafte Eigenschaften - wie flacher Aufbau, kostengünstige und genaue Herstellung der Strahlergeometrie mit lithografischen Verfahren, mögliche Realisierung des Speisennetzwerkes für Gruppenantennen auf dem gleichen Substrat -, die diese Antennenform für Gruppenantennen attraktiv erscheinen lassen.
Andererseits wirkt sich der in der konventionellen Bauform geringe Abstand zwischen Strahler und leitender Grundplatte nachteilig auf den Strahlerwirkungsgrad und die zulässigen Abmessungs- und Stoffkonstantentoleranzen aus.Microstrip antennas have advantageous properties - such as a flat structure, inexpensive and precise manufacture of the radiator geometry using lithographic processes, possible implementation of the food network for group antennas on the same substrate - which make this antenna shape appear attractive for group antennas.
On the other hand, the small distance between the radiator and the conductive base plate in the conventional design has a negative effect on the radiator efficiency and the permissible dimensional and material tolerances.
Eine Vergrösserung des Abstandes durch Verwendung eines dickeren Substratmaterials hat den Nachteil eines vergrösserten Gewichts. Der Anteil der in Oberflächenwellen geführten Leistung wird mit zunehmender Dicke des Substratmaterials grösser, was wiederum den Wirkungsgrad verringert und das Strahlungsdiagramm verschlechtert.An increase in the distance by using a thicker substrate material has the disadvantage of an increased weight. The proportion of the power carried in surface waves increases with increasing thickness of the substrate material, which in turn reduces the efficiency and worsens the radiation pattern.
Wird ein dickes Substrat geringer Dichte oder ein mehrschichtiges, dickes Substrat unter Verwendung von Luft bzw. Vakuum oder einem Material geringer Dichte, wie z.B. Schaum oder Wabenmaterial, benutzt, so wird der Oberflächenwellenanteil geringer. Gleichzeitig tritt jedoch eine verstärkte unerwünschte Abstrahlung durch die Speiseleitungen auf. Die Einspeisung der elektrischen Leistung ist durch den grossen Abstand zwischen Strahlerebene und Grundplatte problematisch und führt zu weiterer unerwünschter Abstrahlung. Die genaue Einhaltung des Abstandes zwischen Strahlerebene und Grundplatte erfordert insbesondere bei zusammengesetztem Substrat unter Verwendung von Luft beziehungsweise Vakuum eine Stützkonstruktion. Für aktive Antennen, insbesondere für Raumfahrtantennen, wird zudem eine gute Wärmeleitfähigkeit von den auf der Grundplatte angeordneten Sende/Empfangsmodulen zur Antennenvorderseite benötigt. Diese ist bei Substraten geringer Dichte nicht gegeben, insbesondere dann nicht, wenn das Substrat einen Vakuumbereich enthält.If a thick, low density substrate or a multilayer, thick substrate is used using air or vacuum or a low density material such as e.g. Foam or honeycomb material is used, so the surface wave proportion is lower. At the same time, however, there is an increased unwanted radiation through the feed lines. The feed-in of the electrical power is problematic due to the large distance between the radiator level and the base plate and leads to further undesired radiation. The exact maintenance of the distance between the radiator level and the base plate requires a support structure, in particular when the substrate is assembled using air or vacuum. For active antennas, in particular for aerospace antennas, good thermal conductivity from the transmitter / receiver modules arranged on the base plate to the antenna front is also required. This is not the case with substrates of low density, especially not if the substrate contains a vacuum area.
Aus der DE-OS 28 16 362 ist eine Mikrostreifenleiterantenne bekannt mit
- einer elektrisch leitfähigen Grundplatte,
- einem elektrisch isolierenden Substrat,
- einer Gruppe von Strahlerelementen
- und Speiseleitungen,
Durch diese Vertiefungen werden zur Erzielung von Resonanzefffekten eine Vielzahl kleiner Hohlraumresonatoren gebildet. Diese Vorrichtung bildet den Oberbegriff des nebengeordneten Anspruchs 2.From DE-OS 28 16 362 a microstrip antenna is known with
- an electrically conductive base plate,
- an electrically insulating substrate,
- a group of radiator elements
- and feed lines,
A large number of small cavity resonators are formed through these depressions in order to achieve resonance effects. This device forms the preamble of the independent claim 2.
Der Problemkreis: Wirkungsgrad - Gewicht - Wärmeableitung - Eignung für Weltraumanwendungen ist nicht angesprochen.The problem area: efficiency - weight - heat dissipation - suitability for space applications is not addressed.
Aus der GB 2 046 530 A ist eine Mikrostreifenleiterantenne bekannt mit
- einer elektrisch leitfähigen Grundplatte,
- einem elektrisch isolierenden Substrat aus Kunststoff,
- einer Gruppe von Strahlerelementen aus Kupfer,
- und Speiseleitungen,
Diese Vorrichtung bildet den Oberbegriff des Anspruchs 1. Zur Erreichung einer hohen mechanischen Stabilität bei geringem Gewicht und zur Eignung für den Betrieb unter Weltraumbedingungen sind keine Angaben gemacht. GB 2 046 530 A discloses a microstrip antenna
- an electrically conductive base plate,
- an electrically insulating substrate made of plastic,
- a group of copper radiator elements,
- and feed lines,
This device forms the preamble of claim 1. No information has been given on achieving high mechanical stability with low weight and on suitability for operation under space conditions.
Aufgabe der Erfindung ist es - ausgehend von den gattungsgemäßen Anordnungen - diese so weiterzubilden, daß die Antennenanordnungen für Raumfahrtanwendungen geeignet sind und dabei Stabilität und geringes Gewicht gewährleistet ist.The object of the invention is - based on the generic arrangements - to further develop them in such a way that the antenna arrangements are suitable for space travel applications and stability and low weight are ensured.
Diese Aufgabe wird erfindungsgemäß gelöst von den Vorrichtungen der nebengeordneten Ansprüche 1 und 2.According to the invention, this object is achieved by the devices of the independent claims 1 and 2.
Die erfindungsgemäßen Vorrichtungen haben einen hohen Wirkungsgrad, eine hohe Bandbreite sowie eine hohe Toleranzunempfindlichkeit. Das Speiseleitungssystem bleibt dabei wegen der höheren kapazitiven Kopplung mit der Grundplatte weitgehend abstrahlungsfrei. Die Oberflächenwellenanregung wird nicht verstärkt. Das Gewicht der Antenne bleibt gering. Eine ausreichende Wärmeleitfähigkeit senkrecht zur Antennenfläche ist gegeben, da die Antenne - außer unter den Strahlerelementen - sehr dünn ausgelegt sein kann.The devices according to the invention have a high efficiency, a high bandwidth and a high tolerance insensitivity. The feed line system remains largely radiation-free due to the higher capacitive coupling to the base plate. The surface wave excitation is not reinforced. The weight of the antenna remains low. Adequate thermal conductivity perpendicular to the antenna surface is given, since the antenna - except under the radiator elements - can be made very thin.
Wichtig ist der grössere Abstand zwischen Strahler und Grundplatte gegenüber der Substratdicke nur unter den Strahlern. Diese Abstandsvergrösserung kann durch Verformen der Grundplatte (Wannen-struktur) oder des Substrats (Mesa-Struktur) erreicht werden. Der entstehende Zwischenraum zwischen Substrat und Grundplatte ist mit einem Schaummaterial zur mechanischen Versteifung gefüllt.The greater the distance between the radiator and the base plate compared to the substrate thickness is only important under the radiators. This increase in distance can be achieved by deforming the base plate (tub structure) or the substrate (mesa structure). The resulting space between the substrate and base plate is filled with a foam material for mechanical stiffening.
Die Erfindung erlaubt es, die gegenläufigen Forderungen für hohen Wirkungsgrad und grosse Bandbreite der Strahlerelemente einerseits - nämlich grosser Abstand zwischen Strahler und Grundplatte bei kleiner Dielektrizitätszahl - sowie für Abstrahlungsfreiheit (geringe Streifenleiterverluste) und leichte Ankoppelbarkeit der Speiseleitungen an die Leistungszufühtung andererseits - nämlich geringe Substratdicke bei mittlerer bis hoher Dielektrizitätszahl - auf einem Substrat zu vereinigen. Gleichzeitig bleibt das Gewicht gering und eine Wärmeleitung von der Grundplatte zur Strahlerebene ist gewährleistet. Die Antenne ist durch die Erhebungen oder Vertiefungen leicht und doch mechanisch stabil.The invention makes it possible to meet the opposing requirements for high efficiency and wide bandwidth of the radiator elements on the one hand - namely a large distance between the radiator and the base plate with a low dielectric constant - and for freedom from radiation (low stripline losses) and easy coupling of the feed lines to the power supply on the other hand - namely low substrate thickness medium to high dielectric constant - to combine on a substrate. At the same time, the weight remains low and heat conduction from the base plate to the radiator level is guaranteed. Due to the elevations or depressions, the antenna is light and yet mechanically stable.
Die Anpassung des Wellenwiderstands erfolgt bevorzugt dort, wo der Abstand zwischen der oberseitigen Leitung und der Grundplatte geändert wird (also bei e). Daß die Anpassungsleitungen und das Speiseleitungsnetzwerk in einer bevorzugten Ausführung auf der Substratoberseite angeordnet sind, hat den Vorteil, daß die Herstellung in einem Arbeitsgang erfolgen kann. Dadurch, daß keine Übergänge erforderlich sind, können die Genauigkeit und die Reproduzierbarkeit der Herstellung der Zuleitungen so groß sein, wie bei der Herstellung der Strahler (c).
In einer Ausführung ist die Substratoberseite mit Thermalfarbe beschichtet, um die Abstrahlung der Wärme zu verbessern oder die Wärmeaufnahme durch Sonne oder Albedo zu minimieren.The impedance is preferably adjusted where the distance between the top line and the base plate is changed (ie at e). The fact that the matching lines and the feed line network are arranged in a preferred embodiment on the top of the substrate has the advantage that the production can be carried out in one operation. Because no transitions are required, the accuracy and the reproducibility of the production of the feed lines can be as great as in the production of the radiators (c).
In one embodiment, the top of the substrate is coated with thermal paint in order to improve the radiation of heat or to minimize heat absorption by the sun or albedo.
Hinsichtlich der Werkstoffe für die Grundplatte bestehen im Prinzip keine Einschränkungen, sofern die Oberfläche elektrisch gut leitfähig ist oder durch eine (Metall-) Beschichtung gut leitfähig gemacht werden kann. Carbonfaserverstärkter Kunststoff ist gut geeignet, da dieses Material sehr geringe thermische Ausdehnungskoeffizienten aufweist. Die Grundplatte kann auch aus einem Kunststoff (z.B. einem Fluorkohlenwasserstoff wie Teflon) bestehen, der mit einer hochleitenden, widerstandsfähigen und gut haftenden Schicht belegt ist. In Frage kommen z.B. die Metalle Chrom (Cr), Kupfer (Cu), Titan (Ti), Palladium (Pd) und Gold (Au).With regard to the materials for the base plate, there are in principle no restrictions, provided the surface is highly electrically conductive or can be made highly conductive by a (metal) coating. Carbon fiber reinforced plastic is well suited because this material has a very low coefficient of thermal expansion. The base plate can also consist of a plastic (for example a fluorocarbon such as Teflon), which is coated with a highly conductive, resistant and well-adhering layer. For example, the metals chromium (Cr), copper (Cu), titanium (Ti), palladium (Pd) and gold (Au) are suitable.
Wegen seiner guten Haftung, der hohen Leitfähigkeit und der einfachen Verfahren der galvanischen Verstärkung ist Kupfer als Leitschicht besonders gut geeignet. Zur Erhöhung der Korrosionsbeständigkeit kann es mit Gold beschichtet sein. Die Herstellungsprozesse sind an sich bekannt:
- Teflon mechanisch und naßchemisch reinigen
- Teflon im Vakuumplasma sputterätzen
- Kupfer ca. 300 nm dick aufsputtern
- Kupfer galvanisch verstärken
- Gold aufdampfen
- Clean Teflon mechanically and wet-chemically
- Sputter etch Teflon in vacuum plasma
- Sputter copper approx. 300 nm thick
- Galvanically reinforce copper
- Evaporate gold
Als Material für das Substrat b eignen sich neben mehrschichtigen Dielektrika verstärkte oder unverstärkte Kunststoffe, insbesondere Thermoplaste. Diese Werkstoffe haben hinreichend geringe dielektrische Verluste. Beispiele dafür sind alle Werkstoffe, die für die Herstellung von hochwertigen Radomen, sowie von Leiterplatinen für die Mikrowellentechnik eingesetzt werden. Aus elektrischer Sicht besonders geeignet sind verstärkte und unverstärkte Werkstoffe auf der Basis von Fluorkohlenstoffen wie PTFE, FEP oder PFA, sowie auf der Basis von Polyethylen. Ein besonders geeigneter Werkstoff für das Substrat ist polyethylenfaserverstärktes Polyethylen. Bei diesem Werkstoff können sehr geringe thermische Ausdehnungskoeffizienten realisiert werden. Dieser Werkstoff kann zudem über die Funktion als Dielektrikum hinaus noch tragende Funktionen erfüllen. In einem Ausführungsbeispiel wurde eine Bauweise realisiert, bei der das Substrat b aus eine 1 mm dicken Platte aus polyethylenfaserverstärktem Polyethylen und die Grundstruktur aus carbonfaserverstärktem Epoxidharz besteht.In addition to multilayer dielectrics, reinforced or unreinforced plastics, in particular thermoplastics, are suitable as material for the substrate b. These materials have sufficiently low dielectric losses. Examples include all materials that are used for the production of high-quality radomes and printed circuit boards for microwave technology. From an electrical point of view, reinforced and unreinforced materials based on fluorocarbons such as PTFE, FEP or PFA and on the basis of polyethylene are particularly suitable. A particularly suitable material for the substrate is polyethylene fiber reinforced polyethylene. With this material very low thermal expansion coefficients can be realized. In addition to its function as a dielectric, this material can also perform supporting functions. In one embodiment, a construction was realized in which the substrate b consists of a 1 mm thick plate made of polyethylene fiber reinforced polyethylene and the basic structure made of carbon fiber reinforced epoxy resin.
Die Herstellung der Erhebungen oder Vertiefungen kann durch thermomechanisches Umformen von Platten erfolgen. In einem Ausführungsbeispiel wird eine 1,5 mm dicke Platte aus glasmikrofaserverstärktem PTFE (unter der Handelsbezeichnung RT/Duroid 5780 erhältlich, RT/Duroid ist ein eingetragenes Warenzeichen der Rogers Corporation, Arizona, USA) bei 350°C zwischen konturierten Metallstempeln tiefgezogen. In einer anderen Ausbildungsform kann die Form des Substrats b oder der Grundstruktur durch mechanische Bearbeitung (z.B. durch Fräsen) hergestellt werden.The elevations or depressions can be produced by thermomechanical forming of plates. In one embodiment, a 1.5 mm thick sheet of glass microfiber reinforced PTFE (available under the trade name RT / Duroid 5780, RT / Duroid is a registered trademark of Rogers Corporation, Arizona, USA) is deep-drawn at 350 ° C. between contoured metal stamps. In another embodiment, the shape of the substrate b or of the basic structure can be produced by mechanical processing (for example by milling).
Die Beschichtung des Substrats kann mit den Verfahren erfolgen, die weiter oben zur Beschichtung der Grundplatte genannt waren. Die Strukturierung der Metallschichten kann durch Ätzverfahren oder Lift-off-Verfahren erfolgen. Als Ätzresist oder Lift-off-Schicht können photoempfindliche Lacke und Folien eingesetzt werden, aber auch (mechanisch) strukturierte Polymer- und Metallfolien.
Geeignet ist folgendes Verfahren:
- Eine lichtempfindliche Folie wird auf ein Teflon-Substrat der Mikrostripantenne aufgewalzt.
- Metallbeschichtung wieder wie weiter oben beschrieben oder durch Aufdampfen oder Aufsputtern.
- Nach dem letzten Beschichtungsschritt wird die Folie mitsamt der unerwünschten Beschichtung abgezogen (Negativverfahren).
The following procedure is suitable:
- A photosensitive film is rolled onto a Teflon substrate of the microstrip antenna.
- Metal coating again as described above or by vapor deposition or sputtering.
- After the last coating step, the film together with the unwanted coating peeled off (negative process).
Die optisch strukturierten Folien können vor oder nach Verformung des Teflon-Substrats aufgebracht werden. Es kann auch auf eine Tauchbadlackierung mit Photolack übergegangen werden, wobei derTauchlack zum Lift-off der freibleibenden Flachen in Azeton abgelöst wird.The optically structured foils can be applied before or after the deformation of the Teflon substrate. A dip coating with photoresist can also be used, with the dip coating being used to lift off the remaining Flat in acetone.
Die Ankoppelung der Strahlerelemente kann auch dadurch erfolgen, daß die Zuleitung nicht auf dem Substat, sondern jeweils im Substrat bis unter das jeweilige Strahlerelement geführt ist und die relative Dielektrizitätskonstante des Substratmaterials zwischen Zuleitung und Strahler lokal erhöht wird.The radiator elements can also be coupled in that the feed line is not guided on the substrate, but in each case in the substrate to below the respective radiator element and the relative dielectric constant of the substrate material between the feed line and the radiator is locally increased.
Die Erfindung wird anhand zweier Figuren näher erläutert.The invention is explained in more detail with reference to two figures.
Beide Figuren zeigen je einen Ausschnitt aus einer Gruppenantenne mit den Grundplatten a, dem elektrisch isolierenden Substrat b und Strahlerelementen c. Gezeichnet sind weiter die Speiseleitungen d und sich verbreiternde Übergangsbereiche e, die die Speiseleitungen d mit den Strahlerelementen c elektrisch verbinden. Die Erhöhungen oder Vertiefungen können beispielsweise zwischen 0,5 und 10 mm hoch (tief) sein.
Figur 1 zeigt die Ausführung mit mesa-förmiger Erhöhung des Substrats b.
Figur 2 zeigt die Ausführung mit wannenförmiger Vertiefung der Grundplatte a.Both figures each show a section of a group antenna with the base plates a, the electrically insulating substrate b and radiator elements c. Also drawn are the feed lines d and widening transition regions e which electrically connect the feed lines d to the radiator elements c. The elevations or depressions can be, for example, between 0.5 and 10 mm high (deep).
Figure 1 shows the embodiment with a mesa-shaped increase in the substrate b.
Figure 2 shows the version with a trough-shaped depression of the base plate a.
Claims (2)
- Microstrip antenna, having:- an electrically conductive base plate (a);- an electrically insulating substrate (b) of plastics material;- a group of radiation elements (c) of copper; and- feed lines (d),wherein the radiation elements (c) are disposed on raised areas of dielectric material, the lateral dimensions of which are somewhat larger than those of the radiation elements (c), characterised in that the raised areas are formed below the radiation elements (c) out of the insulating substrate (b), whereby a space between the substrate (b) and the base plate (a) is formed under each raised area, in that the electrically conductive base plate (a) comprises carbon-fibre reinforced plastics material, in that the space under the raised areas is filled with a foam material; and in that the radiation elements (c) are coated with gold.
- Microstrip antenna having- an electrically conductive base plate (a);- an electrically insulating substrate (b);- a group of radiation elements (c); and- feed lines (d),wherein the base plate (a) has depressions below the radiation elements (c) mounted on the top of the substrate (b), the lateral measurements of which depressions are somewhat larger than those of the radiation elements (c), and the depressions below the radiation elements (c) are formed in the base plate (a), whereby a space between the substrate (b) and the base plate (a) is formed in each depression, characterised in that the electrically conductive base plate (a) comprises carbon-fibre reinforced plastics material; and in that the space in the depressions is filled with a foam material; and in that the radiation elements (c) comprise copper and are coated with gold.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873738513 DE3738513A1 (en) | 1987-11-13 | 1987-11-13 | MICROSTRIP LADDER AERIAL |
DE3738513 | 1987-11-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0325702A1 EP0325702A1 (en) | 1989-08-02 |
EP0325702B1 true EP0325702B1 (en) | 1993-09-08 |
Family
ID=6340391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88117440A Expired - Lifetime EP0325702B1 (en) | 1987-11-13 | 1988-10-19 | Microstrip antenna |
Country Status (4)
Country | Link |
---|---|
US (1) | US5061938A (en) |
EP (1) | EP0325702B1 (en) |
JP (1) | JP2774116B2 (en) |
DE (2) | DE3738513A1 (en) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4914445A (en) * | 1988-12-23 | 1990-04-03 | Shoemaker Kevin O | Microstrip antennas and multiple radiator array antennas |
US5200756A (en) * | 1991-05-03 | 1993-04-06 | Novatel Communications Ltd. | Three dimensional microstrip patch antenna |
US7429262B2 (en) | 1992-01-07 | 2008-09-30 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
DE4240104A1 (en) * | 1992-11-28 | 1994-06-01 | Battelle Institut E V | Microwave heating and drying device - has flat patch antenna arrangement with dimensions selected according to radiating medium |
US5316361A (en) * | 1993-01-25 | 1994-05-31 | Plasta Fiber Industries Corp. | Expandable visor |
FR2701168B1 (en) * | 1993-02-04 | 1995-04-07 | Dassault Electronique | Microstrip antenna device improved in particular for microwave receiver. |
EP0621653B1 (en) * | 1993-04-23 | 1999-12-29 | Murata Manufacturing Co., Ltd. | Surface-mountable antenna unit |
US5442366A (en) * | 1993-07-13 | 1995-08-15 | Ball Corporation | Raised patch antenna |
FR2711845B1 (en) * | 1993-10-28 | 1995-11-24 | France Telecom | Planar antenna and method for producing such an antenna. |
US5468561A (en) * | 1993-11-05 | 1995-11-21 | Texas Instruments Incorporated | Etching and patterning an amorphous copolymer made from tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole (TFE AF) |
JP3185513B2 (en) * | 1994-02-07 | 2001-07-11 | 株式会社村田製作所 | Surface mount antenna and method of mounting the same |
US5786792A (en) * | 1994-06-13 | 1998-07-28 | Northrop Grumman Corporation | Antenna array panel structure |
US5559521A (en) * | 1994-12-08 | 1996-09-24 | Lucent Technologies Inc. | Antennas with means for blocking current in ground planes |
US5767808A (en) * | 1995-01-13 | 1998-06-16 | Minnesota Mining And Manufacturing Company | Microstrip patch antennas using very thin conductors |
US5633646A (en) * | 1995-12-11 | 1997-05-27 | Cal Corporation | Mini-cap radiating element |
DE19603803C2 (en) * | 1996-02-02 | 2001-05-17 | Niels Koch | Quad antenna, on an insulating material and process for its manufacture |
US5694136A (en) * | 1996-03-13 | 1997-12-02 | Trimble Navigation | Antenna with R-card ground plane |
DE19614068A1 (en) * | 1996-04-09 | 1997-10-16 | Fuba Automotive Gmbh | Flat antenna |
US6151480A (en) * | 1997-06-27 | 2000-11-21 | Adc Telecommunications, Inc. | System and method for distributing RF signals over power lines within a substantially closed environment |
US5986615A (en) * | 1997-09-19 | 1999-11-16 | Trimble Navigation Limited | Antenna with ground plane having cutouts |
US6643989B1 (en) * | 1999-02-23 | 2003-11-11 | Renke Bienert | Electric flush-mounted installation unit with an antenna |
US6879290B1 (en) * | 2000-12-26 | 2005-04-12 | France Telecom | Compact printed “patch” antenna |
FI113589B (en) * | 2001-01-25 | 2004-05-14 | Pj Microwave Oy | Mikrovågsantennarrangemang |
TW512558B (en) * | 2002-01-16 | 2002-12-01 | Accton Technology Corp | Surface-mountable dual-band monopole antenna for WLAN application |
DE10356395A1 (en) * | 2003-12-03 | 2005-09-15 | Eads Deutschland Gmbh | Exterior structure-compliant antenna in a support structure of a vehicle |
US7704249B2 (en) * | 2004-05-07 | 2010-04-27 | Arthrocare Corporation | Apparatus and methods for electrosurgical ablation and resection of target tissue |
WO2006012584A1 (en) * | 2004-07-23 | 2006-02-02 | Meadwestvaco Corporation | Microstrip patch antenna apparatus and method |
DE102005050204A1 (en) * | 2005-10-20 | 2007-04-26 | Eads Deutschland Gmbh | Integrated aircraft antenna manufacturing process uses primary structure antenna preform from fibre containing dry prepreg comprising layers with several flexible conducting antenna elements |
US8462061B2 (en) * | 2008-03-26 | 2013-06-11 | Dockon Ag | Printed compound loop antenna |
GB0805393D0 (en) * | 2008-03-26 | 2008-04-30 | Dockon Ltd | Improvements in and relating to antennas |
US8164528B2 (en) * | 2008-03-26 | 2012-04-24 | Dockon Ag | Self-contained counterpoise compound loop antenna |
CN105789902B (en) | 2010-02-11 | 2021-05-07 | 多康股份公司 | Composite loop antenna |
US8164532B1 (en) | 2011-01-18 | 2012-04-24 | Dockon Ag | Circular polarized compound loop antenna |
WO2013006943A1 (en) | 2011-07-11 | 2013-01-17 | Nortel Networks Limited | Amplifier linearization using non-standard feedback |
WO2013006941A1 (en) * | 2011-07-13 | 2013-01-17 | Nortel Networks Limited | Broadband doherty amplifier using broadband transformer |
US8654022B2 (en) | 2011-09-02 | 2014-02-18 | Dockon Ag | Multi-layered multi-band antenna |
EP2774216B1 (en) | 2011-11-04 | 2021-05-05 | Dockon AG | Capacitively coupled compound loop antenna |
FR3011685B1 (en) * | 2013-10-04 | 2016-03-11 | Thales Comm & Security S A S | LARGE BAND COMPACT WIDE LOOP ANTENNA |
RU2583334C2 (en) * | 2014-09-16 | 2016-05-10 | Акционерное общество "Научно-исследовательский институт электромеханики" (АО "НИИЭМ") | Method of creating microstrip antennae of metre range and device therefor |
GB201615108D0 (en) * | 2016-09-06 | 2016-10-19 | Antenova Ltd | De-tuning resistant antenna device |
CN107364566B (en) * | 2017-06-28 | 2020-01-03 | 湖北航天技术研究院总体设计所 | Heat-proof antenna opening cover combined structure of outdoor detachable antenna |
EP4451467A1 (en) * | 2023-04-18 | 2024-10-23 | GM Cruise Holdings LLC | Systems and methods for radar with broadband antennas |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2711313A1 (en) * | 1976-03-12 | 1977-10-06 | Ball Corp | LIGHT RF ANTENNA |
US4131894A (en) * | 1977-04-15 | 1978-12-26 | Ball Corporation | High efficiency microstrip antenna structure |
GB2046530B (en) * | 1979-03-12 | 1983-04-20 | Secr Defence | Microstrip antenna structure |
US4401988A (en) * | 1981-08-28 | 1983-08-30 | The United States Of America As Represented By The Secretary Of The Navy | Coupled multilayer microstrip antenna |
US4886535A (en) * | 1982-05-14 | 1989-12-12 | Owens-Corning Fiberglas Corporation | Feeder for glass fibers and method of producing |
US4477813A (en) * | 1982-08-11 | 1984-10-16 | Ball Corporation | Microstrip antenna system having nonconductively coupled feedline |
US4521781A (en) * | 1983-04-12 | 1985-06-04 | The United States Of America As Represented By The Secretary Of The Army | Phase scanned microstrip array antenna |
JPS59207703A (en) * | 1983-05-11 | 1984-11-24 | Nippon Telegr & Teleph Corp <Ntt> | Microstrip antenna |
JPS6183312U (en) * | 1984-11-05 | 1986-06-02 | ||
US4660048A (en) * | 1984-12-18 | 1987-04-21 | Texas Instruments Incorporated | Microstrip patch antenna system |
JPS6297409A (en) * | 1985-10-23 | 1987-05-06 | Matsushita Electric Works Ltd | Plane antenna |
JPS62118609A (en) * | 1985-11-18 | 1987-05-30 | Matsushita Electric Works Ltd | Manufacture of plane antenna |
JPS63254806A (en) * | 1987-04-10 | 1988-10-21 | Toshiba Corp | Microstrip antenna |
-
1987
- 1987-11-13 DE DE19873738513 patent/DE3738513A1/en active Granted
-
1988
- 1988-10-19 EP EP88117440A patent/EP0325702B1/en not_active Expired - Lifetime
- 1988-10-19 DE DE88117440T patent/DE3883960D1/en not_active Expired - Fee Related
- 1988-11-14 JP JP63287501A patent/JP2774116B2/en not_active Expired - Fee Related
- 1988-11-14 US US07/271,036 patent/US5061938A/en not_active Expired - Lifetime
Non-Patent Citations (2)
Title |
---|
IEE PROCEEDINGS SECTION A - I, Band 132, Nr.7, Teil H, Dezember 1985, Seiten 455-460, Stevenage, Herts, GB; J.S.DAHELE et al.: "Theory and experiment on microstrip antennas with airgaps." * |
IEEE TRANS. ON ANTENNAS AND PROPAGATION,Band AP-29, Nr.1, Januar 1981, Seiten 2-24, New York, US; K.R.CARVER et al.: "Microstrip Antenna Technology." * |
Also Published As
Publication number | Publication date |
---|---|
US5061938A (en) | 1991-10-29 |
DE3738513A1 (en) | 1989-06-01 |
DE3883960D1 (en) | 1993-10-14 |
JPH01251805A (en) | 1989-10-06 |
EP0325702A1 (en) | 1989-08-02 |
JP2774116B2 (en) | 1998-07-09 |
DE3738513C2 (en) | 1991-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0325702B1 (en) | Microstrip antenna | |
US5268068A (en) | High aspect ratio molybdenum composite mask method | |
DE69429027T2 (en) | Transparent flat heating element, process for its production and transparent conductive layer | |
DE3927181C2 (en) | Coil chip and manufacturing process for a highly miniaturized coil chip | |
DE2810054C2 (en) | Electronic circuit arrangement and method for its manufacture | |
EP0127689B1 (en) | Process for manufacturing printed circuits with metallic conductor patterns embedded in the isolating substrate | |
EP1843383A2 (en) | Patterns of conductive objects on a substrate and method of producing thereof | |
DE69127724T2 (en) | A capacitor and its manufacturing process | |
DE69030867T2 (en) | Process for producing an anisotropically conductive film | |
DE69223321T2 (en) | LABEL AGAINST THEFT | |
DE19645854A1 (en) | High structure density circuit board production | |
DE3200301A1 (en) | RELAXATION THROUGH ELECTROMAGNETIC RADIATION FOR OBJECTS THAT ARE MADE OF POLYSULPHONES | |
DE69121143T2 (en) | Copper foil for the inner layer circuit of a multilayer printed circuit board, process for its production and multilayer printed circuit board containing it | |
DE3782732T2 (en) | METHOD FOR PRODUCING MULTI-LAYER SEMICONDUCTOR BOARDS. | |
DE1925760A1 (en) | Process for making patterned metal thin films | |
DE60213057T2 (en) | Mounting arrangement for high-frequency semiconductor device and associated manufacturing method | |
EP1518275B1 (en) | Method for producing a component comprising a conductor structure that is suitable for use at high frequencies and corresponding component | |
EP0257737A2 (en) | Printed circuit precursor | |
DE69426026T2 (en) | METHOD FOR PRODUCING A CONDUCTIVE CIRCUIT ON THE SURFACE OF A MOLDED BODY | |
DE4432725C1 (en) | Forming three-dimensional components on surface of semiconductor chips etc. | |
DE69026131T2 (en) | Insulated metallic substrates and methods of making these substrates | |
DE2804602C2 (en) | Method for applying an electrically insulating layer to a substrate for an integrated circuit | |
WO2000059824A1 (en) | Method for producing self-supporting micro-structures, consisting of thin, flat sections or membranes, and use of micro-structures produced by said method as a resistance grid in a device for measuring weak gas flows | |
EP0354225B1 (en) | Process for adapting the frequency band of an oscillating circuit made from a metal-plastic-metal sandwich foil useful as an identification label | |
DE69333142T2 (en) | PRINTED SWITCHGEAR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19900321 |
|
17Q | First examination report despatched |
Effective date: 19920721 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930903 |
|
REF | Corresponds to: |
Ref document number: 3883960 Country of ref document: DE Date of ref document: 19931014 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940701 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
EAL | Se: european patent in force in sweden |
Ref document number: 88117440.3 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020925 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20020930 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20021002 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20021009 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20031020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040501 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20031019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20040501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051019 |