EP0320589A2 - Position-measuring device with several detectors - Google Patents
Position-measuring device with several detectors Download PDFInfo
- Publication number
- EP0320589A2 EP0320589A2 EP88116713A EP88116713A EP0320589A2 EP 0320589 A2 EP0320589 A2 EP 0320589A2 EP 88116713 A EP88116713 A EP 88116713A EP 88116713 A EP88116713 A EP 88116713A EP 0320589 A2 EP0320589 A2 EP 0320589A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- scanning
- measuring device
- periodic
- signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/21—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
Definitions
- the invention relates to a position measuring device with a plurality of scanning points according to the preamble of claim 1.
- Such a position measuring device is used in particular in machine tools for measuring the relative position of a tool with respect to a workpiece to be machined, and in coordinate measuring machines for determining the position and / or dimensions of test objects.
- Position measuring devices are absolute or incremental length or angle measuring devices in which the division of a graduation carrier is scanned by a scanning unit to generate periodic scanning signals, from which measured values for the relative position of the two mutually displaceable objects, for example the tool and the workpiece, are measured in an evaluation device or the two associated machine parts of the processing machine.
- the graduation of the graduation carrier can, however, have partial graduation inaccuracies.
- graduation marks of the graduation may also be missing at the joints between the sections.
- eccentricities can also occur between the angular division and the axis of rotation of the two objects to be measured.
- these aforementioned interferences can have negative effects on the required measuring accuracy.
- a length measuring device in which the division of a graduation carrier is scanned by two scanning units spaced apart in the measuring direction.
- the periodic scanning signals obtained from the two scanning units are superimposed in an analog form on top of each other, so that there is a higher measuring accuracy, since the two scanning units scan a total of a larger area of the division of the graduation carrier than with only one scanning unit provided; possible inaccuracies of division have practically no influence on the measuring accuracy by this measure.
- US Pat. No. 4,580,047 describes an angle measuring device with two scanning units at two diametrically opposite scanning points for eliminating eccentricity errors and for monitoring the phase position of the periodic scanning signals.
- DE-OS 18 11 961 also discloses an angle measuring device with two scanning units at two diametrically opposite scanning points, the periodic scanning signals of which are additively superimposed on one another in analog form, so that in addition to the ineffectiveness of possible pitch inaccuracies of the graduated disk, eccentricity errors in the mounting of the graduated disk are also eliminated.
- the first periodic scanning signal of the first scanning unit at the first scanning point leads 90 ° in phase and the second scanning signal of the second scanning unit at the second scanning point is 90 ° behind, so that the two periodic scanning signals have a mutual phase difference of 180 °, which leads to an extinction of their sum signal, so that no measured value can be formed.
- the invention is based on the object of specifying a position measuring device of the type mentioned, in which at least one resultant signal can be obtained from the periodic scanning signals of a plurality of scanning units at a plurality of scanning points, said signal having no phase shift with regard to its required phase position when interference occurs.
- the advantages achieved by the invention are that, in particular in the case of an angle measuring device, the resulting signal no longer has an eccentricity-related phase shift; this means that the interacting scanning units at the different scanning points do not have to be precisely adjusted in their mutual position and secondly the graduated disk with the angular division no longer has to be exactly centered with respect to the axis of rotation of the two objects to be measured.
- the elimination of the control device results in a simpler position measuring device.
- the resulting signal already causes the lattice constants (period length) of the division of the division carrier to be divided. Overall, disturbing influences no longer have any influence on the measuring accuracy.
- a first angle measuring device is shown schematically, in which a graduated disk TTa with an angular pitch WTa is attached to a shaft Wa, which is connected to a rotatable object, not shown, for example a spindle of a machine table of a processing machine.
- Two diametrically opposed scanning units AE1a, AE2a are connected to a stationary object (not shown), for example the bed of the processing machine, and sense the angular division WTa of the indexing disk TTa to generate two periodic scanning signals S1a, S2a, S3a, S4a each time the indexing disk TTa rotates with respect to the two scanning units AE1a, AE2a.
- the two periodic scanning signals S1a, S2a of the first scanning unit AE1a and the two periodic scanning signals S3a, S4a of the second scanning unit AE2a each have a mutual phase shift of 90 °, which is used in a known manner to discriminate the direction of rotation of the indexing disk TTa.
- the first two scanning signals S1a, S3a of the two scanning units AE1a, AE2a thus have the phase angle 0 ° and the two second scanning signals S2a, S4a of the two scanning units AE1a, AE2a have the phase angle 90 °.
- the center point Ma of the indexing plate TTa or the angular pitch WTa may have an eccentricity e with respect to the axis of rotation Da of the shaft Wa.
- This eccentricity e can be caused by imperfect centering of the center point Ma of the indexing plate TTa or the angular pitch WTa with respect to the axis of rotation Da of the shaft Wa or by bearing errors the wave Wa or by accelerations due to shocks or vibrations of the processing machine which are currently removing the indexing disk TTa from its central position.
- This eccentricity e causes a phase shift 2 ⁇ , which can be understood in such a way that the two periodic scanning signals S1a, S2a of the first scanning unit AE1a lead, for example, by the phase shift + ⁇ and the two periodic scanning signals S3a, S4a of the second scanning unit AE2a by the phase shift -base after, in each case based on the required phase positions 0 °, 90 ° in the absence of eccentricity e.
- ⁇ 2 ⁇ x / P the argument of the four periodic scanning signals S1a, S2a, S3a, S4a, x the measuring angle, P the period length (lattice constant) of the angular division WTa of the index plate TTa and A1, A2, A3, A4 the maximum amplitudes of the four periodic scanning signals S1a, S2a, S3a, S4a.
- the index a is eliminated and the maximum amplitudes A1, A2, A3, A4 are standardized to the value 1.
- These two resulting signals RS1a, RS2a have the required mutual phase shift of 90 ° to discriminate the direction of rotation of the indexing disc TTa and twice the spatial frequency compared to the four periodic scanning signals S1a, S2a, S3a, S4a, so that there is a double division of the period length P (grid constants ) of the angular division WTa of the index plate TTa.
- the first resulting signal RS1a with the Phase angle 0 ° and the second resulting signal RS2a with phase angle 90 ° each have a quadrupled amplitude compared to the amplitudes of the four periodic scanning signals S1a, S2a, S3a, S4a and are available for all known interpolation methods. Correct measured values for the relative position of the two objects are then obtained from the two resulting signals RS1a, RS2a in a known manner and can be displayed in digital form; Interfering influences have no influence on these measured values.
- first sampling signal S1 and the third sampling signal S3 a first adder AD1 a, for the extraction of the signal S6, the first sampling signal S1 and the third sampling signal S3 a first subtractor ST1a for performing the above calculation steps for obtaining the signal S5 S7 supplies the second scanning signal S2 and the fourth scanning signal S4 to a second adder AD2a and to obtain the signal S8 the second scanning signal S2 and the fourth scanning signal S4 to a second subtractor ST2a.
- the four signals S5, S6, S7, S8 are converted in four squarers Q1a-Q4a into the signals S52, S62, S72, S82, from which the first resulting signal RS1a is formed in a first summer SU1a becomes. Furthermore, to obtain the signal S12, the signal S5 and the signal S7 are a third adder AD3a, to obtain the signal S13 the signal S5 and the signal S7 are a third subtractor ST3a, to obtain the signal S14, the signal S6 and the signal S8 fourth subtractor ST4a and, to obtain the signal S15, the signal S6 and the signal S8 are fed to a fourth adder AD4a.
- the four signals S12, S13, S14, S15 are converted in four squarers Q5a-Q8a into the signals S122, S132, S142, S152, from which the second resulting signal RS2a is obtained in a second summer SU2a.
- the signal S52 is weighted with the factor -1, the signal S62 with the factor +1, the signal S72 with the factor +1 and the signal S82 with the factor -1;
- the signal S122 is weighted with the factor + 1/2, the signal S132 with the factor -1/2, the signal S142 with the factor -1/2 and the signal S152 with the factor + 1/2.
- FIG. 2 shows a second angle measuring device which is identical to the first angle measuring device according to FIG. 1;
- the similar elements of this second angle measuring device therefore have the same reference numerals as the elements of the first angle measuring device, but the indices a have been replaced by the indices b.
- the first sampling signal S1 and the third sampling signal S3 are a first adder AD1b for performing the above arithmetic steps for obtaining the signal S5, the first sampling signal S1 for obtaining the signal S6 and the first subtractor ST1b for obtaining the signal S3, for obtaining the signal S7 the second sampling signal S2 and the fourth sampling signal S4 are fed to a second adder AD2b, and to obtain the signal S8 the second sampling signal S2 and the fourth sampling signal S4 are fed to a second subtractor ST2b.
- the signal S5 is converted into the signal S52 in a first squarer Q1b and fed to the first input of a first summer SU1b with the weighting factor -1; likewise the signal S8 is converted into the signal S82 in a second squarer Q2b and fed to the second input of the first summer SU1b with the weighting factor -1. Furthermore, the signal S5 and the signal S7 are fed to a third adder AD3b to obtain the signal S12 and the signal S6 and the signal S8 to a fourth adder AD4b to obtain the signal S15.
- the signal S12 is converted into the signal S122 in a third squarer Q3b and fed to the first input of a second summer SU2b with the weighting factor +1/2;
- the signal S15 is converted into the signal S152 in a fourth squarer Q4b and fed to the second input of the second summer SU2b with the weighting factor +1/2.
- These two resulting signals RS1b, RS2b have the required mutual phase shift of 90 ° to discriminate the direction of rotation of the index plate TTb and twice the spatial frequency compared to four periodic scanning signals S1b, S2b, S3b, S4b, so that there is a double division of the period length P (lattice constants) of the angular division WTb of the indexing plate TTb.
- the first resulting signal RS2b with the phase angle 0 ° and the second resulting signal RS2b with the phase angle 90 ° each have a double amplitude compared to the amplitudes of the four periodic scanning signals S1b, S2b S3b, S4b and are available for all known interpolation methods. Correct measured values for the relative position of the two objects are obtained in a known manner from the two resulting signals RS1b, RS2b, which can be displayed in digital form; Interfering influences have no influence on these measured values.
- FIG. 3 shows a third angle measuring device which is identical to the angle measuring devices according to FIGS. 1 and 2; the similar elements of this third angle measuring device have the same reference numerals as the elements of the first and second angle measuring device, but the indices have been replaced by c.
- index c was not given for this reshaping or the reshaping that followed.
- the second sampling signal S2c and the fourth sampling signal S4c are used for the first multiplier M1
- the first scanning signal S1c and the third scanning signal S3c are fed to the second multiplier M2 and the signal S2cXS4c and the signal S1cXS3c to the subtractor ST5 to obtain the signal S1cXS3c.
- the first sampling signal S1c and the second sampling signal S2c become the third multiplier M3 for carrying out the above calculation steps for obtaining the signal S1cXS2c, the third sampling signal S3c and the fourth Ab for obtaining the signal S3cXS4c key signal S4c to the fourth multiplier M4 and to obtain the signal RS 1c the signal S1cX S2c and the signal S3cXS4c fed to the adder AD 5.
- periodic resulting signals RS 1c and RS 2c are obtained which are independent of the phase shift ⁇ . They also have the required mutual phase shift of 90 °.
- an arrangement with controllers as described for FIG. 2 is also conceivable.
- the evaluation circuit AWc shown in FIG. 3 is already known per se from DD-PS 97 336. However, the four signals which are present at the evaluation circuit in this prior art have different frequencies and were generated by a scanning unit with two scanning points. The known circuit is used only to increase the resolution.
- a second pair of diametrically opposed scanning units AE3, AE4 can be provided for eliminating the so-called 2 ⁇ error.
- the two resulting signals RS1, RS2 of the two scanning units AE1, AE2 of the first pair can be in the same way two resulting signals RS3, RS4 of the two scanning units AE3, AE4 of the second pair are obtained.
- the two first resulting signals RS1, RS3 of the two pairs can be combined in a known manner to form a first sum signal and the two second resulting signals RS2, RS4 of the two pairs can be combined to form a second sum signal if their phase shifts + ⁇ , - ⁇ relative to their associated phase positions 0 °, 90 ° due to interference do not exceed a tolerable level.
- a particularly favorable solution results if one obtains two further resulting signals with a fourfold spatial frequency from the four resulting signals RS1, RS2, RS3, RS4 with the computing steps according to the invention, so that there is a fourfold division of the period length P (lattice constant) of the angular division WT Partial disc TT results.
- the invention can in particular also be used successfully in a length measuring device with a plurality of scanning points, the graduation carrier of which consists of abutting sections and the periodic scanning signals of which have phase shifts with respect to their required phase positions as a result of inadequate mutual adjustment of the individual sections of the graduation carrier.
- the invention can also be used with absolute length or angle measuring devices if the incremental graduation is scanned with the highest resolution at several scanning points.
- a digital arithmetic circuit can also be used.
- the invention can be successfully used both in photoelectric and in magnetic, inductive, capacitive and resistive position measuring devices.
- the invention can be used particularly advantageously for scanning an incremental graduation with a very small lattice constant and for interferometric lattice scanning as described, for example, in DE-PS 25 11 350.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
Die Erfindung betrifft eine Positionsmeßeinrichtung mit mehreren Abtaststellen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a position measuring device with a plurality of scanning points according to the preamble of
Eine derartige Positionsmeßeinrichtung wird insbesondere bei Bearbeitungsmaschinen zur Messung der Relativlage eines Werkzeugs bezüglich eines zu bearbeitenden Werkstücks sowie bei Koordinatenmeßmaschinen zur Ermittlung von Lage und/oder Abmessungen von Prüfobjekten eingesetzt.Such a position measuring device is used in particular in machine tools for measuring the relative position of a tool with respect to a workpiece to be machined, and in coordinate measuring machines for determining the position and / or dimensions of test objects.
Unter Positionsmeßeinrichtungen versteht man absolute oder inkrementale Längen- oder Winkelmeßeinrichtungen, bei denen die Teilung eines Teilungsträgers von einer Abtasteinheit zur Erzeugung von periodischen Abtastsignalen abgetastet wird, aus denen in einer Auswerteeinrichtung Meßwerte für die Relativlage der beiden zueinander verschiebbaren Objekte, beispielsweise des Werkzeugs und des Werkstücks bzw. der beiden zugehörigen Maschinenteile der Bearbeitungsmaschine, gewonnen werden.Position measuring devices are absolute or incremental length or angle measuring devices in which the division of a graduation carrier is scanned by a scanning unit to generate periodic scanning signals, from which measured values for the relative position of the two mutually displaceable objects, for example the tool and the workpiece, are measured in an evaluation device or the two associated machine parts of the processing machine.
Bei einer Längen- oder Winkelmeßeinrichtung kann die Teilung des Teilungsträgers aber partielle Teilungsungenauigkeiten aufweisen. Bei einer Längenmeßeinrichtung mit großer Meßlänge, bei der der Teilungsträger aus mehreren aneinanderstoßenden Teilstücken besteht, können an den Stoßstellen zwischen den Teilstücken auch Teilstriche der Teilung fehlen. Bei Winkelmeßeinrichtungen können zudem Exzentrizitäten zwischen der Winkelteilung und der Drehachse der beiden zu messenden Objekte auftreten. Diese vorgenannten Störeinflüsse können aber negative Auswirkungen auf die geforderte Meßgenauigkeit haben. Bei derartigen Positionsmeßeinrichtungen können aber diese negativen Störeinflüsse auf die Meßgenauigkeit dadurch weitgehend vermieden werden, daß die Teilung des Teilungsträgers von mehreren Abtasteinheiten beispielsweise an zwei oder vier Abtaststellen abgetastet und die von den Abtasteinheiten erzeugten periodischen Abtastsignale gleicher Phasenlage einander analog überlagert werden. Durch diese analoge Überlagerung der periodischen Abtastsignale können partielle Teilungsungenauigkeiten ausgemittelt werden. Überfährt eine Abtasteinheit eine Stoßstelle zwischen zwei Teilstücken eines gestoßenen Teilungsträgers, so liefert bei fehlenden Teilungsstrichen an dieser Stoßstelle die andere Abtasteinheit ein ausreichendes periodisches Abtastsignal zur Gewinnung genauer Meßwerte für die Relativlage der beiden Objekte. Mit zwei Abtasteinheiten können bei einer Winkelmeßeinrichtung Exzentrizitätsfehler und mit zwei weiteren Abtasteinheiten der sogenannte 2φ-Fehler der Teilscheibe eliminiert werden.In the case of a length or angle measuring device, the graduation of the graduation carrier can, however, have partial graduation inaccuracies. In a length measuring device with a large measuring length, in which the graduation carrier consists of several abutting sections, graduation marks of the graduation may also be missing at the joints between the sections. In the case of angle measuring devices, eccentricities can also occur between the angular division and the axis of rotation of the two objects to be measured. However, these aforementioned interferences can have negative effects on the required measuring accuracy. With such position measuring devices, however, these negative interference influences on the measuring accuracy can largely be avoided by scanning the division of the graduation carrier from several scanning units, for example at two or four scanning points, and superimposing the periodic scanning signals of the same phase position generated by the scanning units in an analogous manner. Partial inaccuracies in division can be averaged out by this analog superimposition of the periodic scanning signals. If a scanning unit runs over a joint between two sections of an abutted graduation carrier, if there are no division marks at this joint, the other scanning unit supplies a sufficient periodic scanning signal for obtaining precise measured values for the relative position of the two objects. Eccentricity errors can be eliminated with two scanning units with an angle measuring device and the so-called 2φ error of the indexing disk can be eliminated with two further scanning units.
Aus der DE-PS 29 52 106 ist eine Längenmeßeinrichtung bekannt, bei der die Teilung eines Teilungsträgers von zwei in Meßrichtung beabstandeten Abtasteinheiten abgetastet wird. Die von den beiden Abtasteinheiten gewonnenen periodischen Abtastsignale werden in analoger Form einander additiv überlagert, so daß sich eine höhere Meßgenauigkeit ergibt, da durch die beiden Abtasteinheiten ein insgesamt größerer Bereich der Teilung des Teilungsträgers als bei nur einer vorgesehenen Abtasteinheit abgetastet wird; eventuelle Teilungsungenauigkeiten haben durch diese Maßnahme praktisch keinen Einfluß auf die Meßgenauigkeit.From DE-PS 29 52 106 a length measuring device is known in which the division of a graduation carrier is scanned by two scanning units spaced apart in the measuring direction. The periodic scanning signals obtained from the two scanning units are superimposed in an analog form on top of each other, so that there is a higher measuring accuracy, since the two scanning units scan a total of a larger area of the division of the graduation carrier than with only one scanning unit provided; possible inaccuracies of division have practically no influence on the measuring accuracy by this measure.
Die US-PS 4,580,047 beschreibt eine Winkelmeßeinrichtung mit zwei Abtasteinheiten an zwei diametral gegenüberliegenden Abtaststellen zur Eliminierung von Exzentrizitätsfehlern und zur Überwachung der Phasenlage der periodischen Abtastsignale.US Pat. No. 4,580,047 describes an angle measuring device with two scanning units at two diametrically opposite scanning points for eliminating eccentricity errors and for monitoring the phase position of the periodic scanning signals.
Die DE-OS 18 11 961 offenbart ebenfalls eine Winkelmeßeinrichtung mit zwei Abtasteinheiten an zwei diametral gegenüberliegenden Abtaststellen, deren periodische Abtastsignale einander in analoger Form additiv überlagert werden, so daß neben der Unwirksammachung von eventuellen Teilungsungenauigkeiten der Teilscheibe auch Exzentrizitätsfehler der Lagerung der Teilscheibe eliminiert werden.DE-OS 18 11 961 also discloses an angle measuring device with two scanning units at two diametrically opposite scanning points, the periodic scanning signals of which are additively superimposed on one another in analog form, so that in addition to the ineffectiveness of possible pitch inaccuracies of the graduated disk, eccentricity errors in the mounting of the graduated disk are also eliminated.
Die z.B. bei der Doppelabtastung der Winkelteilung einer Winkelmeßeinrichtung mittels der beiden Abtasteinheiten an den beiden Abtaststellen gewonne nen zwei periodischen Abtastsignale gleicher Phasenlage weisen im theoretischen Fall einer nicht vorhandenen Exzentrizität keine gegenseitige Phasenverschiebung auf. Die praktisch immer vorhandene Exzentrizität bewirkt jedoch eine gegenseitige Phasenverschiebung der beiden periodischen Abtastsignale, die bis zu einem gewissen Grad ohne nachteilige Auswirkung auf die Meßgenauigkeit zugelassen werden kann; die noch zulässige Exzentrizität sollte daher ein Zehntel der Gitterkonstanten (Periodenlänge) der Winkelteilung nicht überschreiten. Bei Überschreitung dieses Grenzwertes besteht die Gefahr, daß das analoge Summensignal der beiden periodischen Abtastsignale zu klein wird. Beträgt die Exzentrizität ein Viertel der Gitterkonstanten der Winkelteilung, so eilen das erste periodische Abtastsignal der ersten Abtasteinheit an der ersten Abtaststelle um 90° in der Phase vor und das zweite Abtastsignal der zweiten Abtasteinheit an der zweiten Abtaststelle um 90° in der Phase nach, so daß die beiden periodischen Abtastsignale einen gegenseitigen Phasenunterschied um 180° aufweisen, der zu einer Auslöschung ihres Summensignals führt, so daß kein Meßwert gebildet werden kann.This is obtained, for example, when double-scanning the angular division of an angle measuring device by means of the two scanning units at the two scanning points NEN two periodic scanning signals of the same phase position have no mutual phase shift in the theoretical case of a non-eccentricity. However, the practically always existing eccentricity causes a mutual phase shift of the two periodic scanning signals, which can be permitted to a certain extent without adversely affecting the measuring accuracy; the still permissible eccentricity should therefore not exceed one tenth of the lattice constant (period length) of the angular division. If this limit value is exceeded, there is a risk that the analog sum signal of the two periodic scanning signals will become too small. If the eccentricity is a quarter of the lattice constant of the angular division, the first periodic scanning signal of the first scanning unit at the first scanning point leads 90 ° in phase and the second scanning signal of the second scanning unit at the second scanning point is 90 ° behind, so that the two periodic scanning signals have a mutual phase difference of 180 °, which leads to an extinction of their sum signal, so that no measured value can be formed.
Die Gefahr der Überschreitung dieses Grenzwertes besteht insbesondere bei großen Beschleunigungen durch Stöße oder Vibrationen der Bearbeitungsmaschine bei einer Werkstückbearbeitung. In diesem Fall ist die Doppelabtastung, die im Normalbetrieb zur Erhöhung der Meßgenauigkeit dient, von Nachteil, da die beiden periodischen Abtastsignale bei ihrer Summenbildung sich gegenseitig ganz oder zumindest teilweise aufheben können, so daß fehlerhafte Meßergebnisse die Folge sind.There is a risk of this limit being exceeded, particularly in the case of large accelerations due to shocks or vibrations of the processing machine during workpiece machining. In this case, double sampling, which serves to increase the measuring accuracy in normal operation, is disadvantageous, since the two periodic scanning signals mutually, or at least, mutually form one another can partially cancel, so that incorrect measurement results are the result.
In der nicht vorveröffentlichten deutschen Patentanmeldung P 37 26 260.2 ist eine Positionsmeßeinrichtung mit mehreren Abtasteinheiten an mehreren Abtaststellen beschrieben, bei der die durch eine vorliegende Exzentrizität bedingten gegenseitigen Phasenverschiebungen der gewonnenen periodischen Abtastsignale überprüft werden. Ergibt diese Überprüfung der gegenseitigen Phasenverschiebungen der periodischen Abtastsignale der verschiedenen Abtasteinheiten an den zugehörigen Abtaststellen eine unzulässige Überschreitung eines vorgegebenen Toleranzbereiches, so werden die periodischen Abtastsignale der verschiedenen Abtasteinheiten mittels einer Steuereinrichtung ungleich gewichtet; dabei werden die Amplitude des einen periodischen Abtastsignals vergrößert und die Amplitude des anderen periodischen Abtastsignals verringert, so daß eine teilweise oder sogar ganze Aufhebung bei ihrer Summenbildung vermieden wird. Diese Positionsmeßeinrichtung ist aber wegen der Steuereinrichtung zur Gewichtung der periodischen Abtastsignale relativ aufwendig aufgebaut.In the unpublished German patent application P 37 26 260.2, a position measuring device with several scanning units at several scanning points is described, in which the mutual phase shifts of the periodic scanning signals obtained due to an existing eccentricity are checked. If this check of the mutual phase shifts of the periodic scanning signals of the various scanning units at the associated scanning points results in an impermissible exceeding of a predetermined tolerance range, then the periodic scanning signals of the various scanning units are weighted unequally by means of a control device; the amplitude of the one periodic scanning signal is increased and the amplitude of the other periodic scanning signal is reduced, so that a partial or even total cancellation of their summation is avoided. This position measuring device is, however, of relatively complex construction because of the control device for weighting the periodic scanning signals.
Der Erfindung liegt die Aufgabe zugrunde, eine Positionsmeßeinrichtung der genannten Gattung anzugeben, bei der aus den periodischen Abtastsignalen mehrerer Abtasteinheiten an mehreren Abtaststellen wenigstens ein resultierendes Signal gewonnen werden kann, das keine Phasenverschiebung bezüglich seiner geforderten Phasenlage bei auftretenden Störeinflüssen aufweist.The invention is based on the object of specifying a position measuring device of the type mentioned, in which at least one resultant signal can be obtained from the periodic scanning signals of a plurality of scanning units at a plurality of scanning points, said signal having no phase shift with regard to its required phase position when interference occurs.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.This object is achieved according to the invention by the characterizing features of
Die mit der Erfindung erzielten Vorteile bestehen darin, daß insbesondere bei einer Winkelmeßeinrichtung das resultierende Signal keine exzentrizitätsbedingte Phasenverschiebung mehr aufweist; dadurch müssen einmal die zusammenwirkenden Abtasteinheiten an den verschiedenen Abtaststellen in ihrer gegenseitigen Lage nicht genau justiert und zum anderen die Teilscheibe mit der Winkelteilung nicht mehr exakt bezüglich der Drehachse der beiden zu messenden Objekte zentriert werden. Durch den Fortfall der Steuereinrichtung ergibt sich eine einfacher aufgebaute Positionsmeßeinrichtung. Zudem wird durch das resultierende Signal bereits eine Unterteilung der Gitterkonstanten (Periodenlänge) der Teilung des Teilungsträgers bewirkt. Insgesamt haben auftretende Störeinflüsse keinen Einfluß mehr auf die Meßgenauigkeit.The advantages achieved by the invention are that, in particular in the case of an angle measuring device, the resulting signal no longer has an eccentricity-related phase shift; this means that the interacting scanning units at the different scanning points do not have to be precisely adjusted in their mutual position and secondly the graduated disk with the angular division no longer has to be exactly centered with respect to the axis of rotation of the two objects to be measured. The elimination of the control device results in a simpler position measuring device. In addition, the resulting signal already causes the lattice constants (period length) of the division of the division carrier to be divided. Overall, disturbing influences no longer have any influence on the measuring accuracy.
Vorteilhafte Ausbildungen der Erfindung entnimmt man den Unteransprüchen.Advantageous developments of the invention can be found in the subclaims.
Ausführungsbeispiele der Erfindung werden anhand der Zeichnung näher erläutert.Embodiments of the invention are explained in more detail with reference to the drawing.
Es zeigen
Figur 1 eine erste Winkelmeßeinrichtung mit zwei Abtasteinheiten und einer Auswerteeinrichtung undFigur 2 eine zweite Winkelmeßeinrichtung mit zwei Abtasteinheiten und einer Auswerteeinrichtung und- Figur 3 eine dritte Winkelmeßeinrichtung.
- Figure 1 shows a first angle measuring device with two scanning units and an evaluation device and
- Figure 2 shows a second angle measuring device with two scanning units and an evaluation device and
- Figure 3 shows a third angle measuring device.
In Figur 1 ist eine erste Winkelmeßeinrichtung schematisch dargestellt, bei der eine Teilscheibe TTa mit einer Winkelteilung WTa an einer Welle Wa befestigt ist, die mit einem nicht gezeigten drehbaren Objekt, beispielsweise einer Spindel eines Maschinentisches einer Bearbeitungsmaschine, verbunden ist. Zwei einander diametral gegenüberliegende Abtasteinheiten AE1a, AE2a sind mit einem nicht gezeigten stationären Objekt, beispielsweise dem Bett der Bearbeitungsmaschine, verbunden und tasten die Winkelteilung WTa der Teilscheibe TTa zur Erzeugung jeweils zweier periodischer Abtastsignale S1a, S2a, S3a, S4a bei einer Drehung der Teilscheibe TTa bezüglich der beiden Abtasteinheiten AE1a, AE2a ab. Die beiden periodischen Abtastsignale S1a, S2a der ersten Abtasteinheit AE1a und die beiden periodischen Abtastsignale S3a, S4a der zweiten Abtasteinheit AE2a weisen jeweils einen gegenseitigen Phasenversatz um 90° auf, der in bekannter Weise zur Diskriminierung der Drehrichtung der Teilscheibe TTa dient. Die beiden ersten Abtastsignale S1a, S3a der beiden Abtasteinheiten AE1a, AE2a besitzen somit die Phasenlage 0° und die beiden zweiten Abtastsignale S2a, S4a der beiden Abtasteinheiten AE1a, AE2a die Phasenlage 90°.In Figure 1, a first angle measuring device is shown schematically, in which a graduated disk TTa with an angular pitch WTa is attached to a shaft Wa, which is connected to a rotatable object, not shown, for example a spindle of a machine table of a processing machine. Two diametrically opposed scanning units AE1a, AE2a are connected to a stationary object (not shown), for example the bed of the processing machine, and sense the angular division WTa of the indexing disk TTa to generate two periodic scanning signals S1a, S2a, S3a, S4a each time the indexing disk TTa rotates with respect to the two scanning units AE1a, AE2a. The two periodic scanning signals S1a, S2a of the first scanning unit AE1a and the two periodic scanning signals S3a, S4a of the second scanning unit AE2a each have a mutual phase shift of 90 °, which is used in a known manner to discriminate the direction of rotation of the indexing disk TTa. The first two scanning signals S1a, S3a of the two scanning units AE1a, AE2a thus have the phase angle 0 ° and the two second scanning signals S2a, S4a of the two scanning units AE1a, AE2a have the phase angle 90 °.
Der Mittelpunkt Ma der Teilscheibe TTa bzw. die Winkelteilung WTa mögen gegenüber der Drehachse Da der Welle Wa eine Exzentrizität e aufweisen. Diese Exzentrizität e kann durch eine unvollkommene Zentrierung des Mittelpunktes Ma der Teilscheibe TTa bzw. der Winkelteilung WTa bezüglich der Drehachse Da der Welle Wa oder durch Lagerfehler der Welle Wa oder durch Beschleunigungen infolge von Erschütterungen oder Vibrationen der Bearbeitungsmaschine, die die Teilscheibe TTa momentan aus ihrer Mittenlage entfernen, bewirkt sein. Durch diese Exzentrizität e wird eine Phasenverschiebung 2β wirksam, die man so verstehen kann, daß die beiden periodischen Abtastsignale S1a, S2a der ersten Abtasteinheit AE1a beispielsweise um die Phasenverschiebung +β voreilen und die beiden periodischen Abtastsignale S3a, S4a der zweiten Abtasteinheit AE2a um die Phasenverschiebung -β nacheilen, bezogen jeweils auf die geforderten Phasenlagen 0°, 90° bei nicht vorhandener Exzentrizität e.The center point Ma of the indexing plate TTa or the angular pitch WTa may have an eccentricity e with respect to the axis of rotation Da of the shaft Wa. This eccentricity e can be caused by imperfect centering of the center point Ma of the indexing plate TTa or the angular pitch WTa with respect to the axis of rotation Da of the shaft Wa or by bearing errors the wave Wa or by accelerations due to shocks or vibrations of the processing machine which are currently removing the indexing disk TTa from its central position. This eccentricity e causes a phase shift 2β, which can be understood in such a way that the two periodic scanning signals S1a, S2a of the first scanning unit AE1a lead, for example, by the phase shift + β and the two periodic scanning signals S3a, S4a of the second scanning unit AE2a by the phase shift -base after, in each case based on the required phase positions 0 °, 90 ° in the absence of eccentricity e.
Man erhält somit bei nicht vorhandener Exzentrizität e die vier periodischen Abtastsignale
S1a = A1sinα
S2a = A2cosα
S3a = A3sinα
S4a = A4cosα
und bei vorhandener Exzentrizität e die vier periodischen Abtastsignale
S1a = A1sin(α+β)
S2a = A2cos(α+β)
S3a = A3sin(α-β)
S4a = A4cos(α-β)
mit β=e/P
In the absence of eccentricity e, the four periodic scanning signals are thus obtained
S1a = A1sinα
S2a = A2cosα
S3a = A3sinα
S4a = A4cosα
and if eccentricity e is present, the four periodic scanning signals
S1a = A1sin (α + β)
S2a = A2cos (α + β)
S3a = A3sin (α-β)
S4a = A4cos (α-β)
with β = e / P
Es bedeuten α = 2πx/P das Argument der vier periodischen Abtastsignale S1a, S2a, S3a, S4a, x den Meßwinkel, P die Periodenlänge (Gitterkonstante) der Winkelteilung WTa der Teilscheibe TTa und A1, A2, A3, A4 die maximalen Amplituden der vier periodischen Abtastsignale S1a, S2a, S3a, S4a. Aus Gründen der Übersichtlichkeit der nachfolgenden Rechnungen mögen der Index a entfallen und die maximalen Amplituden A1, A2, A3, A4 auf den Wert 1 normiert sein.It means α = 2πx / P the argument of the four periodic scanning signals S1a, S2a, S3a, S4a, x the measuring angle, P the period length (lattice constant) of the angular division WTa of the index plate TTa and A1, A2, A3, A4 the maximum amplitudes of the four periodic scanning signals S1a, S2a, S3a, S4a. For reasons of clarity in the following calculations the index a is eliminated and the maximum amplitudes A1, A2, A3, A4 are standardized to the
Es ergibt sich somit:
S1 = sin(α+β) = sin α cosβ + cosα sinβ
S2 = cos(α+β) = cosαcosβ - sinα sinβ
S3 = sin(α-β) = sinαcosβ - cosαsinβ
S4 = cos(α-β) = cosαcosβ + sinαsinβ
The result is:
S1 = sin (α + β) = sin α cosβ + cosα sinβ
S2 = cos (α + β) = cosαcosβ - sinα sinβ
S3 = sin (α-β) = sinαcosβ - cosαsinβ
S4 = cos (α-β) = cosαcosβ + sinαsinβ
Durch Addition und Subtraktion sowie durch Quadrierung kann man aus den vier periodischen Abtastgignalen S1 - S4 folgende Signale bilden:
S5 = S1 + S3 = 2sinαcosβ
S6 = S1 - S3 = 2cosαsinβ
S7 = S2 + S4 = 2cosαcosβ
S8 = S2 - S4 = 2sinαsinβ
S9 = S5² + S8² = 4sin²α
S10 = S6² + S7² = 4cos²α
S11 = S10- S9 = 4 cos2α
S12=S5 + S7 =2 (sinα+cosα)cosβ
= 2√2sin (α+π/4)cosβ
S13= S5 - S7 = 2 (sinα-cosα)cosβ
= 2√2sin(α-π/4)cosβ
S14= S6 - S8 = 2 (cosα-sinα) sinβ
=-2√2sin(α-π/4)sinβ
S15= S6 + S8 = 2 (cosα+sinα)sinβ
= 2√2sin(α+π/4)sinβ
S16= S12² + S15²= 8sin²(α+π/4)
S17= S13² + S14² = 8sin²(α-π/4)
= 8cos²(α+π/4)
S18= (S16-S17)/2 = 4sin²(α+π/4)-4cos²(α+π/4)
= -4 cos2(α+π/4) = -4cos(2α+π/2)
S18= 4sin2α
The following signals can be formed from the four periodic scanning signals S1-S4 by adding and subtracting as well as by squaring:
S5 = S1 + S3 = 2sinαcosβ
S6 = S1 - S3 = 2cosαsinβ
S7 = S2 + S4 = 2cosαcosβ
S8 = S2 - S4 = 2sinαsinβ
S9 = S5² + S8² = 4sin²α
S10 = S6² + S7² = 4cos²α
S11 = S10-S9 = 4 cos2α
S12 = S5 + S7 = 2 (sinα + cosα) cosβ
= 2√2sin (α + π / 4) cosβ
S13 = S5 - S7 = 2 (sinα-cosα) cosβ
= 2√2sin (α-π / 4) cosβ
S14 = S6 - S8 = 2 (cosα-sinα) sinβ
= -2√2sin (α-π / 4) sinβ
S15 = S6 + S8 = 2 (cosα + sinα) sinβ
= 2√2sin (α + π / 4) sinβ
S16 = S12² + S15² = 8sin² (α + π / 4)
S17 = S13² + S14² = 8sin² (α-π / 4)
= 8cos² (α + π / 4)
S18 = (S16-S17) / 2 = 4sin² (α + π / 4) -4cos² (α + π / 4)
= -4 cos2 (α + π / 4) = -4cos (2α + π / 2)
S18 = 4sin2α
Wie beim Stand der Technik ergeben sich durch Addition des ersten periodischen Abtastsignals S1 = sin(α+β) der ersten Abtasteinheit AE1a und des ersten periodischen Abtastsignals S3 = sin(α-β) der zweiten Abtasteinheit AE2a das erste Summensignal S5 = 2sinαcosβ und durch Addition des zweiten periodischen Abtastsignals S2 = cos(α+β) der ersten Abtasteinheit AE1a und des zweiten periodischen Abtastsignals S4 = cos(α-β) der zweiten Abtasteinheit AE2a das zweite Summensignal S7 = 2cosαcosβ; diese beiden Summensignale S5 und S7 hängen von der durch die Exzentrizität e bedingten Phasenverschiebung β ab und werden bei β = 90° zu Null, da sich die beiden periodischen Abtastsignale S1 und S3 bzw. S2 und S4 gegenseitig auslöschen, so daß aus den beiden Summensignalen S5 = S7 = 0 keine Meßwerte für die Relativlage der beiden Objekte gebildet werden können, wodurch sich Meßfehler ergeben.As in the prior art, adding the first periodic scanning signal S1 = sin (α + β) of the first scanning unit AE1a and the first periodic scanning signal S3 = sin (α-β) of the second scanning unit AE2a results in the first sum signal S5 = 2sinαcosβ and Addition of the second periodic scanning signal S2 = cos (α + β) of the first scanning unit AE1a and the second periodic scanning signal S4 = cos (α-β) of the second scanning unit AE2a the second sum signal S7 = 2cosαcosβ; these two sum signals S5 and S7 depend on the phase shift β caused by the eccentricity e and become zero at β = 90 °, since the two periodic scanning signals S1 and S3 or S2 and S4 cancel each other out, so that from the two sum signals S5 = S7 = 0 no measured values can be formed for the relative position of the two objects, which results in measurement errors.
Dagegen ergeben sich nach der Erfindung ein erstes periodisches resultierendes Signal RS1a = S18 = 4sin2α und ein zweites periodisches resultierendes Signal RS2a = S11 = 4cos2α, die nicht mehr von der durch die Exzentrizität e bedingten Phasenverschiebung β abhängen. Diese beiden resultierenden Signale RS1a, RS2a weisen den geforderten gegenseitigen Phasenversatz von 90° zur Diskriminierung der Drehrichtung der Teilscheibe TTa sowie die doppelte Ortsfrequenz gegenüber den vier periodischen Abtastsignalen S1a, S2a, S3a, S4a auf, so daß sich eine Zweifachunterteilung der Periodenlänge P (Gitterkonstanten) der Winkelteilung WTa der Teilscheibe TTa ergibt. Das erste resultierende Signal RS1a mit der Phasenlage 0° und das zweite resultierende Signal RS2a mit der Phasenlage 90° weisen jeweils eine vervierfachte Amplitude gegenüber den Amplituden der vier periodischen Abtastsignale S1a, S2a, S3a, S4a auf und stehen für alle bekannten Interpolationsverfahren zur Verfügung. Aus den beiden resultierenden Signalen RS1a, RS2a werden sodann in bekannter Weise korrekte Meßwerte für die Relativlage der beiden Objekte gewonnen, die in digitaler Form angezeigt werden können; auftretende Störeinflüsse haben keinen Einfluß auf diese Meßwerte.In contrast, according to the invention, a first periodic resultant signal RS1a = S18 = 4sin2α and a second periodic resultant signal RS2a = S11 = 4cos2α result which no longer depend on the phase shift β caused by the eccentricity e. These two resulting signals RS1a, RS2a have the required mutual phase shift of 90 ° to discriminate the direction of rotation of the indexing disc TTa and twice the spatial frequency compared to the four periodic scanning signals S1a, S2a, S3a, S4a, so that there is a double division of the period length P (grid constants ) of the angular division WTa of the index plate TTa. The first resulting signal RS1a with the Phase angle 0 ° and the second resulting signal RS2a with phase angle 90 ° each have a quadrupled amplitude compared to the amplitudes of the four periodic scanning signals S1a, S2a, S3a, S4a and are available for all known interpolation methods. Correct measured values for the relative position of the two objects are then obtained from the two resulting signals RS1a, RS2a in a known manner and can be displayed in digital form; Interfering influences have no influence on these measured values.
Zur rechnerischen Ermittlung der beiden resultierenden Signale RS1a = S18, RS2a = S11 aus den vier periodischen Abtastsignalen S1a = S1, S2a = S2, S3a = S3, S4a = S4 ist in einer ersten Auswerteeinrichtung AWa eine erste analoge Rechenschaltung vorgesehen. Es werden zur Durchführung der obigen Rechenschritte zur Gewinnung des Signals S5 das erste Abtastsignal S1 und das dritte Abtastsignal S3 einem ersten Addierer AD1 a, zur Gewinnung des Signals S6 das erste Abtastsignal S1 und das dritte Abtastsignal S3 einem ersten Subtrahierer ST1a, zur Gewinnung des Signals S7 das zweite Abtastsignal S2 und das vierte Abtastsignal S4 einem zweiten Addierer AD2a sowie zur Gewinnung des Signals S8 das zweite Abtastsignal S2 und das vierte Abtastsignal S4 einem zweiten Subtrahierer ST2a zugeführt.A first analog computing circuit is provided in a first evaluation device AWa for arithmetically determining the two resulting signals RS1a = S18, RS2a = S11 from the four periodic scanning signals S1a = S1, S2a = S2, S3a = S3, S4a = S4. There are the first sampling signal S1 and the third sampling signal S3 a first adder AD1 a, for the extraction of the signal S6, the first sampling signal S1 and the third sampling signal S3 a first subtractor ST1a for performing the above calculation steps for obtaining the signal S5 S7 supplies the second scanning signal S2 and the fourth scanning signal S4 to a second adder AD2a and to obtain the signal S8 the second scanning signal S2 and the fourth scanning signal S4 to a second subtractor ST2a.
Die vier Signale S5, S6, S7, S8 werden in vier Quadrierern Q1a - Q4a in die Signale S5², S6², S7², S8² umgewandelt, aus denen in einem ersten Summierer SU1a das erste resultierende Signal RS1a gebildet wird. Des weiteren werden zur Gewinnung des Signals S12 das Signal S5 und das Signal S7 einem dritten Addierer AD3a, zur Gewinnung des Signals S13 das Signal S5 und das Signal S7 einem dritten Subtrahierer ST3a, zur Gewinnung des Signals S14 das Signal S6 und das Signal S8 einem vierten Subtrahierer ST4a sowie zur Gewinnung des Signals S15 das Signal S6 und das Signal S8 einem vierten Addierer AD4a zugeleitet. Die vier Signale S12, S13, S14, S15 werden in vier Quadrierern Q5a - Q8a in die Signale S12², S13² , S14², S15² umgewandelt, aus denen in einem zweiten Summierer SU2a das zweite resultierende Signal RS2a gewonnen wird. An den Eingängen des ersten Summierers SU1a werden das Signal S5² mit dem Faktor -1, das Signal S6² mit dem Faktor +1, das Signal S7² mit dem Faktor +1 und das Signal S8² mit dem Faktor -1 gewichtet; an den Eingängen des zweiten Summierers SU2a erfolgt die Gewichtung des Signals S12² mit dem Faktor + 1/2, des Signals S13² mit dem Faktor -1/2, des Signals S14² mit dem Faktor -1/2 und des Signals S15² mit dem Faktor + 1/2.The four signals S5, S6, S7, S8 are converted in four squarers Q1a-Q4a into the signals S5², S6², S7², S8², from which the first resulting signal RS1a is formed in a first summer SU1a becomes. Furthermore, to obtain the signal S12, the signal S5 and the signal S7 are a third adder AD3a, to obtain the signal S13 the signal S5 and the signal S7 are a third subtractor ST3a, to obtain the signal S14, the signal S6 and the signal S8 fourth subtractor ST4a and, to obtain the signal S15, the signal S6 and the signal S8 are fed to a fourth adder AD4a. The four signals S12, S13, S14, S15 are converted in four squarers Q5a-Q8a into the signals S12², S13², S14², S15², from which the second resulting signal RS2a is obtained in a second summer SU2a. At the inputs of the first summer SU1a, the signal S5² is weighted with the factor -1, the signal S6² with the factor +1, the signal S7² with the factor +1 and the signal S8² with the factor -1; At the inputs of the second summer SU2a, the signal S12² is weighted with the factor + 1/2, the signal S13² with the factor -1/2, the signal S14² with the factor -1/2 and the signal S15² with the factor + 1/2.
Die erste analoge Rechenschaltung der ersten Auswerteeinrichtung AWa benötigt acht Quadrierer Q1a - Q8a. Werden die Amplituden A1 - A4 der vier periodischen Abtastsignale S1a - S4a auf einem konstanten Wert A = 1 durch eine Regelung gehalten, so lassen sich nach der Erfindung ein erstes resultierendes Signal RS1b und ein zweites resultierendes Signal RS2b mit nur vier Quadrierern nach folgender Rechenvorschrift gewinnen:
RS1b = S11′ = 2-(S5²+S8²) = 2-S9 = 2-4sin²α
RS1b = 2cos2α
RS2b = S18′ = (S12²+S15²)/2-2 = S16/2-2
= 4sin²(α+π/4)-2 = -2cos2(α+π/4)
= -2cos(2α+π/2)
RS2b = 2sin2α
The first analog arithmetic circuit of the first evaluation device AWa requires eight squarers Q1a - Q8a. If the amplitudes A1-A4 of the four periodic scanning signals S1a-S4a are kept at a constant value A = 1 by a control, then a first resulting signal RS1b and a second resulting signal RS2b with only four squarers can be obtained according to the invention using the following calculation rule :
RS1b = S11 ′ = 2- (S5² + S8²) = 2-S9 = 2-4sin²α
RS1b = 2cos2α
RS2b = S18 ′ = (S12² + S15²) / 2-2 = S16 / 2-2
= 4sin² (α + π / 4) -2 = -2cos2 (α + π / 4)
= -2cos (2α + π / 2)
RS2b = 2sin2α
In Figur 2 ist eine zweite Winkelmeßeinrichtung dargestellt, die mit der ersten Winkelmeßeinrichtung nach Figur 1 identisch ist; die gleichartigen Elemente dieser zweiten Winkelmeßeinrichtung weisen daher die gleichen Bezugszeichen wie die Elemente der ersten Winkelmeßeinrichtung auf, jedoch sind die Indizes a durch die Indizes b ersetzt worden.FIG. 2 shows a second angle measuring device which is identical to the first angle measuring device according to FIG. 1; The similar elements of this second angle measuring device therefore have the same reference numerals as the elements of the first angle measuring device, but the indices a have been replaced by the indices b.
Zur rechnerischen Ermittlung der beiden periodischen resultierenden Signale RS1b = S18′, RS2b = S11′ aus den vier periodischen Abtastsignalen S1b = S1, S2b = S2, S3b = S3, S4b = S4 ist in einer zweiten Auswerteeinrichtung AWb eine zweite analoge Rechenschaltung vorgesehen. Es werden zur Durchführung der obigen Rechenschritte zur Gewinnung des Signals S5 das erste Abtastsignal S1 und das dritte Abtastsignal S3 einem ersten Addierer AD1b, zur Gewinnung des Signals S6 das erste Abtastsignal S1 und das dritte Abtastsignal S3 einem ersten Subtrahierer ST1b, zur Gewinnung des Signals S7 das zweite Abtastsignal S2 und das vierte Abtastsignal S4 einem zweiten Addierer AD2b sowie zur Gewinnung des Signals S8 das zweite Abtastsignal S2 und das vierte Abtastsignal S4 einem zweiten Subtrahierer ST2b zugeführt.A second analog arithmetic circuit is provided in a second evaluation device AWb for arithmetically determining the two periodic resulting signals RS1b = S18 ′, RS2b = S11 ′ from the four periodic scanning signals S1b = S1, S2b = S2, S3b = S3, S4b = S4. The first sampling signal S1 and the third sampling signal S3 are a first adder AD1b for performing the above arithmetic steps for obtaining the signal S5, the first sampling signal S1 for obtaining the signal S6 and the first subtractor ST1b for obtaining the signal S3, for obtaining the signal S7 the second sampling signal S2 and the fourth sampling signal S4 are fed to a second adder AD2b, and to obtain the signal S8 the second sampling signal S2 and the fourth sampling signal S4 are fed to a second subtractor ST2b.
Das Signal S5 wird in einem ersten Quadrierer Q1b in das Signal S5² umgewandelt und dem ersten Eingang eines ersten Summierers SU1b mit dem Gewichtungsfaktor -1 zugeführt; desgleichen wird das Signal S8 in einem zweiten Quadrierer Q2b in das Signal S8² umgewandelt und dem zweiten Eingang des ersten Summierers SU1b mit dem Gewichtungsfaktor -1 zugeleitet. Des weiteren werden zur Gewinnung des Signals S12 das Signal S5 und das Signal S7 einem dritten Addierer AD3b und zur Gewinnung des Signals S15 das Signal S6 und das Signal S8 einem vierten Addierer AD4b zugeleitet. Das Signal S12 wird in einem dritten Quadrierer Q3b in das Signal S12² umgewandelt und dem ersten Eingang eines zweiten Summierers SU2b mit dem Gewichtungsfaktor +1/2 zugeführt; desgleichen wird das Signal S15 in einem vierten Quadrierer Q4b in das Signal S15² umgewandelt und dem zweiten Eingang des zweiten Summierers SU2b mit dem Gewichtungsfaktor +1/2 zugeleitet. Eine konstante Referenzspannung A* = 1 wird dem dritten Eingang des ersten Summierers SU1b mit dem Gewichtungsfaktor -2 und dem dritten Eingang des zweiten Summierers SU2b mit dem Gewichtungsfaktor -2 zugeführt.The signal S5 is converted into the signal S5² in a first squarer Q1b and fed to the first input of a first summer SU1b with the weighting factor -1; likewise the signal S8 is converted into the signal S8² in a second squarer Q2b and fed to the second input of the first summer SU1b with the weighting factor -1. Furthermore, the signal S5 and the signal S7 are fed to a third adder AD3b to obtain the signal S12 and the signal S6 and the signal S8 to a fourth adder AD4b to obtain the signal S15. The signal S12 is converted into the signal S12² in a third squarer Q3b and fed to the first input of a second summer SU2b with the weighting factor +1/2; Likewise, the signal S15 is converted into the signal S15² in a fourth squarer Q4b and fed to the second input of the second summer SU2b with the weighting factor +1/2. A constant reference voltage A * = 1 is fed to the third input of the first summer SU1b with the weighting factor -2 and the third input of the second summer SU2b with the weighting factor -2.
Nach der Erfindung ergeben sich somit das erste periodische resultierende Signal RS1b = 2sin2α und das zweite periodische resultierende Signal RS2b = 2cos2α, die nicht mehr von der durch die Exzentrizität e bedingten Phasenverschiebung β abhängen. Diese beiden resultierenden Signale RS1b, RS2b weisen den geforderten gegenseitigen Phasenversatz von 90° zur Diskriminierung der Drehrichtung der Teilscheibe TTb sowie die doppelte Ortsfrequenz gegenüber den vier periodischen Abtastsignalen S1b, S2b, S3b, S4b auf, so daß sich eine Zweifachunterteilung der Periodenlänge P (Gitterkonstanten) der Winkelteilung WTb der Teilscheibe TTb ergibt. Das erste resultierende Signal RS2b mit der Phasenlage 0° und das zweite resultierende Signal RS2b mit der Phasenlage 90° weisen jeweils eine doppelte Amplitude gegenüber den Amplituden der vier periodischen Abtastsignale S1b, S2b S3b, S4b auf und stehen für alle bekannten Interpolationsverfahren zur Verfügung. Aus den beiden resultierenden Signalen RS1b, RS2b werden in bekannter Weise korrekte Meßwerte für die Relativlage der beiden Objekte gewonnen, die in digitaler Form angezeigt werden können; auftretende Störeinflüsse haben keinen Einfluß auf diese Meßwerte.According to the invention, the first periodic resultant signal RS1b = 2sin2α and the second periodic resultant signal RS2b = 2cos2α thus no longer depend on the phase shift β caused by the eccentricity e. These two resulting signals RS1b, RS2b have the required mutual phase shift of 90 ° to discriminate the direction of rotation of the index plate TTb and twice the spatial frequency compared to four periodic scanning signals S1b, S2b, S3b, S4b, so that there is a double division of the period length P (lattice constants) of the angular division WTb of the indexing plate TTb. The first resulting signal RS2b with the phase angle 0 ° and the second resulting signal RS2b with the phase angle 90 ° each have a double amplitude compared to the amplitudes of the four periodic scanning signals S1b, S2b S3b, S4b and are available for all known interpolation methods. Correct measured values for the relative position of the two objects are obtained in a known manner from the two resulting signals RS1b, RS2b, which can be displayed in digital form; Interfering influences have no influence on these measured values.
Zur Regelung der Amplituden A1 - A4 der vier periodischen Abtastsignale S1b - S4b auf den konstanten Wert A = 1 werden diese in den beiden Abtasteinheiten AE1b, AE2b mittels nicht gezeigter Amplitudendetektoren ermittelt und jeweils einem ersten Regler R1 für die erste Abtasteinheit AE1b und einem zweiten Regler R2 für die zweite Abtasteinheit AE2b zugeführt. Die beiden Regler R1, R2 vergleichen die vier Amplituden A1 - A4 der vier periodischen Abtastsignale S1b - S4b mit der Referenzspannung A* und regeln die Beleuchtungseinheiten in den beiden Abtasteinheiten AE1b, AE2b derart, daß sich A1 = A2 = A3 = A4 = A = A* = 1 ergibt.To regulate the amplitudes A1 - A4 of the four periodic scanning signals S1b - S4b to the constant value A = 1, these are determined in the two scanning units AE1b, AE2b by means of amplitude detectors, not shown, and a first controller R1 for the first scanning unit AE1b and a second controller R2 supplied for the second scanning unit AE2b. The two controllers R1, R2 compare the four amplitudes A1 - A4 of the four periodic scanning signals S1b - S4b with the reference voltage A * and control the lighting units in the two scanning units AE1b, AE2b such that A1 = A2 = A3 = A4 = A = A * = 1 results.
In Figur 3 ist eine dritte Winkelmeßeinrichtung dargestellt, die mit den Winkelmeßeinrichtungen nach den Figuren 1 und 2 identisch ist; die gleichartigen Elemente dieser dritten Winkelmeßeinrichtung weisen die gleichen Bezugszeichen wie die Elemente der ersten und zweiten Winkelmeßeinrichtung auf, jedoch sind die Indizes durch c ersetzt worden.FIG. 3 shows a third angle measuring device which is identical to the angle measuring devices according to FIGS. 1 and 2; the similar elements of this third angle measuring device have the same reference numerals as the elements of the first and second angle measuring device, but the indices have been replaced by c.
Zur rechnerischen Ermittlung der beiden periodischen resultierenden Signale S18 = 4 sin 2α und S11 = 4 cos 2α aus den vier periodischen Abtastsignalen S1c = S1, S2c = S2, S3c = S3, S4c = S4 ist in einer dritten Auswerteschaltung AWc eine dritte analoge Rechenschaltung vorgesehen.A third analog arithmetic circuit is provided in a third evaluation circuit AWc for arithmetically determining the two periodic resulting signals S18 = 4 sin 2α and S11 = 4 cos 2α from the four periodic scanning signals S1c = S1, S2c = S2, S3c = S3, S4c = S4 .
Die Gleichung S11 = 4 cos 2α kann wie folgt umgeformt werden:
S11 = S10 - S9
= (S6² + S7²) - (S5² + S8²)
= ((S1 - S3)² + (S2 + S4)²) - ((S1 + S3)² + (S2 - S4)²)
= S1² - 2S1S3 + S3² + S2² + 2S2S4 + S4² - S1² - 2S1S3 - S3² - S4² + 2S2S4 - S2²
= 4 S2S4 - 4S1S3
The equation S11 = 4 cos 2α can be transformed as follows:
S11 = S10 - S9
= (S6² + S7²) - (S5² + S8²)
= ((S1 - S3) ² + (S2 + S4) ²) - ((S1 + S3) ² + (S2 - S4) ²)
= S1² - 2S1S3 + S3² + S2² + 2S2S4 + S4² - S1² - 2S1S3 - S3² - S4² + 2S2S4 - S2²
= 4 S2S4 - 4S1S3
Bei dieser Umformung sowie bei der noch folgenden Umformung wurde aus Gründen der Übersichtlichkeit der Index c nicht angeführt.For the sake of clarity, index c was not given for this reshaping or the reshaping that followed.
Aus obiger Umformung ergibt sich, daß das periodisch resultierende Signal RS 2c = cos 2α durch eine analoge Rechenschaltung mit zwei Multiplizierern M1, M2 und einem Subtrahierer ST5 erzeugt werden kann. Es werden zur Durchführung der obigen Rechenschritte zur Gewinnung des Signals S2cXS4c das zweite Abtastsignal S2c und das vierte Abtastsignal S4c dem ersten Multiplizierer M1, zur Ge winnung des Signals S1cXS3c das erste Abtastsignal S1c und das dritte Abtastsignal S3c dem zweiten Multiplizierer M2 sowie zur Gewinnung des Signals RS 2c das Signal S2cXS4c und das Signal S1cXS3c dem Subtrahierer ST5 zugeführt.From the above transformation it follows that the periodically resulting signal RS 2c = cos 2α can be generated by an analog arithmetic circuit with two multipliers M1, M2 and a subtractor ST5. In order to carry out the above calculation steps for obtaining the signal S2cXS4c, the second sampling signal S2c and the fourth sampling signal S4c are used for the first multiplier M1 The first scanning signal S1c and the third scanning signal S3c are fed to the second multiplier M2 and the signal S2cXS4c and the signal S1cXS3c to the subtractor ST5 to obtain the signal S1cXS3c.
Die Gleichung S18 = 4 sin 2α kann wie folgt umgeformt werden:
S18 = 1/2 (S16 - S17)
= 1/2 ((S12² + S15²) - (S13² + S14²))
= 1/2 (((S5 + S7)² + (S6 - S8)²) - ((S5 - S8)² - (S6 + S8)²))
= 1/2 (S5² + 2S5S7 + S7² + S6² - 2S6S8 + S8² - S5² + 2S5S7 - S7² - S6² - 2S6S8 - S8²)
= 1/2 (4S5S7 - 4S6S8)
= 2S5S7 - 2S6S8
= 2 (S1 + S3) (S2 + S4) - 2 (S1 - S3) (S4 - S2)
= 2 (S1S2 + S1S4 + S3S2 + S3S4) - 2 (S1S4 - S1S2 - S3S4 + S2S3)
= 4 S1S2 + 4S3S4
The equation S18 = 4 sin 2α can be transformed as follows:
S18 = 1/2 (S16 - S17)
= 1/2 ((S12² + S15²) - (S13² + S14²))
= 1/2 (((S5 + S7) ² + (S6 - S8) ²) - ((S5 - S8) ² - (S6 + S8) ²))
= 1/2 (S5² + 2S5S7 + S7² + S6² - 2S6S8 + S8² - S5² + 2S5S7 - S7² - S6² - 2S6S8 - S8²)
= 1/2 (4S5S7 - 4S6S8)
= 2S5S7 - 2S6S8
= 2 (S1 + S3) (S2 + S4) - 2 (S1 - S3) (S4 - S2)
= 2 (S1S2 + S1S4 + S3S2 + S3S4) - 2 (S1S4 - S1S2 - S3S4 + S2S3)
= 4 S1S2 + 4S3S4
Daraus ergibt sich, daß das periodisch resultierende Signal RS 1c = sin 2α durch eine analoge Rechenschaltung mit zwei Multiplizierern M3, M4 und einem Addierer AD 5 erzeugt werden kann. Es werden zur Durchführung der obigen Rechenschritte zur Gewinnung des Signals S1cXS2c das erste Abtastsignal S1c und das zweite Abtastsignal S2c dem dritten Multiplizierer M3, zur Gewinnung des Signals S3cXS4c das dritte Abtastsignal S3c und das vierte Ab tastsignal S4c dem vierten Multiplizierer M4 sowie zur Gewinnung des Signals RS 1c das Signal S1cX S2c und das Signal S3cXS4c dem Addierer AD 5 zugeführt.It follows from this that the periodically resulting signal RS 1c = sin 2α can be generated by an analog arithmetic circuit with two multipliers M3, M4 and an
Auch bei diesem Ausführungsbeispiel erhält man periodische resultierende Signale RS 1c und RS 2c, die unabhängig von der Phasenverschiebung β sind. Sie weisen ebenfalls den geforderten gegenseitigen Phasenversatz von 90° auf. Zur Regelung der Amplituden der vier periodischen Abtastsignale S1c bis S4c auf einen konstanten Wert ist auch zusätzlich eine Anordnung mit Reglern wie sie zu der Figur 2 beschrieben ist denkbar.In this exemplary embodiment too, periodic resulting signals RS 1c and RS 2c are obtained which are independent of the phase shift β. They also have the required mutual phase shift of 90 °. To regulate the amplitudes of the four periodic scanning signals S1c to S4c to a constant value, an arrangement with controllers as described for FIG. 2 is also conceivable.
Die in der Figur 3 gezeigte Auswerteschaltung AWc ist an sich bereits aus der DD - PS 97 336 bekannt. Die vier Signale, die bei diesem Stand der Technik an der Auswerteschaltung anliegen, haben jedoch unterschiedliche Frequenzen und wurden von einer Abtasteinheit mit zwei Abtaststellen erzeugt. Die bekannte Schaltung dient ausschließlich zur Erhöhung der Auflösung.The evaluation circuit AWc shown in FIG. 3 is already known per se from DD-PS 97 336. However, the four signals which are present at the evaluation circuit in this prior art have different frequencies and were generated by a scanning unit with two scanning points. The known circuit is used only to increase the resolution.
Bei den erfindungsgemäßen Winkelmeßeinrichtungen kann neben dem oben beschriebenen ersten Paar von einander diametral gegenüberliegenden Abtasteinheiten AE1, AE2 zur Eliminierung von Exzentrizitätsfehlern ein zweites Paar von einander diametral gegenüberliegenden Abtasteinheiten AE3, AE4 zur Eliminierung des sogenannten 2φ -Fehlers vorgesehen sein. Neben den beiden resultierenden Signalen RS1, RS2 der beiden Abtasteinheiten AE1, AE2 des ersten Paares können auf die gleiche Weise zwei resultierende Signale RS3, RS4 der beiden Abtasteinheiten AE3, AE4 des zweiten Paares gewonnen werden. Die beiden ersten resultierenden Signale RS1, RS3 der beiden Paare können in bekannter Weise zu einem ersten Summensignal und die beiden zweiten resultierenden Signale RS2, RS4 der beiden Paare zu einem zweiten Summensignal kombiniert werden, wenn ihre Phasenverschiebungen + γ , - γ gegenüber ihren zugehörigen Phasenlagen 0°, 90° durch Störeinflüsse ein tolerierbares Maß nicht überschreiten.In the case of the angle measuring devices according to the invention, in addition to the first pair of diametrically opposed scanning units AE1, AE2 described above for eliminating eccentricity errors, a second pair of diametrically opposed scanning units AE3, AE4 can be provided for eliminating the so-called 2φ error. In addition to the two resulting signals RS1, RS2 of the two scanning units AE1, AE2 of the first pair can be in the same way two resulting signals RS3, RS4 of the two scanning units AE3, AE4 of the second pair are obtained. The two first resulting signals RS1, RS3 of the two pairs can be combined in a known manner to form a first sum signal and the two second resulting signals RS2, RS4 of the two pairs can be combined to form a second sum signal if their phase shifts + γ, - γ relative to their associated phase positions 0 °, 90 ° due to interference do not exceed a tolerable level.
Eine besonders günstige Lösung ergibt sich, wenn man aus den vier resultierenden Signalen RS1, RS2, RS3, RS4 mit den erfindungsgemäßen Rechenschritten zwei weitere resultierende Signale mit einer vierfachen Ortsfrequenz gewinnt, so daß sich eine Vierfachunterteilung der Periodenlänge P (Gitterkonstanten) der Winkelteilung WT der Teilscheibe TT ergibt.A particularly favorable solution results if one obtains two further resulting signals with a fourfold spatial frequency from the four resulting signals RS1, RS2, RS3, RS4 with the computing steps according to the invention, so that there is a fourfold division of the period length P (lattice constant) of the angular division WT Partial disc TT results.
Die Erfindung ist insbesondere auch bei einer Längenmeßeinrichtung mit mehreren Abtaststellen mit Erfolg einsetzbar, deren Teilungsträger aus aneinanderstoßenden Teilstücken besteht und deren periodische Abtastsignale Phasenverschiebungen gegenüber ihren geforderten Phasenlagen infolge einer unzureichenden gegenseitigen Justierung der einzelnen Teilstücke des Teilungsträgers aufweisen.The invention can in particular also be used successfully in a length measuring device with a plurality of scanning points, the graduation carrier of which consists of abutting sections and the periodic scanning signals of which have phase shifts with respect to their required phase positions as a result of inadequate mutual adjustment of the individual sections of the graduation carrier.
Die Erfindung ist auch bei absoluten Längen- oder Winkelmeßeinrichtungen anwendbar, wenn die inkrementale Teilung mit der höchsten Auflösung an mehreren Abtaststellen abgetastet wird.The invention can also be used with absolute length or angle measuring devices if the incremental graduation is scanned with the highest resolution at several scanning points.
Anstelle der oben beschriebenen analogen Rechenschaltung kann auch eine digitale Rechenschaltung Verwendung finden.Instead of the analog arithmetic circuit described above, a digital arithmetic circuit can also be used.
Die Erfindung ist sowohl bei lichtelektrischen als auch bei magnetischen, induktiven, kapazitiven und resistiven Positionsmeßeinrichtungen mit Erfolg einsetzbar.The invention can be successfully used both in photoelectric and in magnetic, inductive, capacitive and resistive position measuring devices.
Besonders vorteilhaft läßt sich die Erfindung zur Abtastung einer inkrementalen Teilung mit sehr kleiner Gitterkonstante sowie zur interferometrischen Gitterabtastung wie sie beispielsweise in der DE-PS 25 11 350 beschrieben ist anwenden.The invention can be used particularly advantageously for scanning an incremental graduation with a very small lattice constant and for interferometric lattice scanning as described, for example, in DE-PS 25 11 350.
Claims (8)
RS1a =[(S1+S2+S3+S4)² + (S1-S2-S3+S4)² - (S1-S2+S3-S4)² - (S1+S2-S3-S4)²]/2
und ein zweites resultierendes Signal (RS2a) durch die Verknüpfung
RS2a = (S1-S3)² + (S2+S4)² - (S1+S3)² - (S4-S2)²
erzeugbar sind.2. Measuring device according to claim 1, characterized in that from the periodic scanning signals (S1, S2, S3, S4) a first resulting signal (RS1a) by the link
RS1a = [(S1 + S2 + S3 + S4) ² + (S1-S2-S3 + S4) ² - (S1-S2 + S3-S4) ² - (S1 + S2-S3-S4) ²] / 2
and a second resulting signal (RS2a) through the link
RS2a = (S1-S3) ² + (S2 + S4) ² - (S1 + S3) ² - (S4-S2) ²
can be generated.
RS1b = [ (S1+S2+S3+S4)² + (S1-S2-S3+S4)²]/2-2
und ein zweites resultierendes Signal (RS2b) durch die Verknüpfung
RS2b = 2 - (S1+S3)² + (S4-S2)²
erzeugbar sind.3. Measuring device according to claim 1, characterized in that from the periodic scanning signals (S1, S2, S3, S4) a first resulting signal (RS1b) by the link
RS1b = [(S1 + S2 + S3 + S4) ² + (S1-S2-S3 + S4) ²] / 2-2
and a second resulting signal (RS2b) through the link
RS2b = 2 - (S1 + S3) ² + (S4-S2) ²
can be generated.
RS 1c = (S1XS2) + (S3XS4)
und ein zweites resultierendes Signal (RS 2c) durch die Verknüpfung
RS 2c = (S2XS4) - (S1XS3)
erzeugbar sind.7. Measuring device according to claim 1, characterized in that from the periodic scanning signals (S1, S2, S3, S4) a first resulting signal (RS 1c) by the link
RS 1c = (S1XS2) + (S3XS4)
and a second resulting signal (RS 2c) through the link
RS 2c = (S2XS4) - (S1XS3)
can be generated.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19873742295 DE3742295A1 (en) | 1987-12-14 | 1987-12-14 | POSITION MEASURING DEVICE WITH SEVERAL SENSING POINTS |
DE3742295 | 1987-12-14 |
Publications (4)
Publication Number | Publication Date |
---|---|
EP0320589A2 true EP0320589A2 (en) | 1989-06-21 |
EP0320589A3 EP0320589A3 (en) | 1990-09-05 |
EP0320589B1 EP0320589B1 (en) | 1994-05-11 |
EP0320589B2 EP0320589B2 (en) | 1998-04-29 |
Family
ID=6342546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88116713A Expired - Lifetime EP0320589B2 (en) | 1987-12-14 | 1988-10-08 | Position-measuring device with several detectors |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0320589B2 (en) |
DE (2) | DE3742295A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000005631A1 (en) * | 1998-07-21 | 2000-02-03 | Koninklijke Philips Electronics N.V. | Control system, driving system and control method, apparatus including the driving system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3929239A1 (en) * | 1989-09-02 | 1991-03-07 | Teldix Gmbh | Ring laser gyro achieves increased resolution |
DE10036090B4 (en) * | 2000-07-25 | 2004-01-29 | Lust Antriebstechnik Gmbh | Method for the suppression of systematic errors by incremental position sensors |
GB0508325D0 (en) | 2005-04-26 | 2005-06-01 | Renishaw Plc | Rotary encoders |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400391A (en) * | 1963-10-30 | 1968-09-03 | Zeiss Carl | Interpolation device |
DE1811961A1 (en) * | 1968-11-30 | 1970-06-11 | Heidenhain Gmbh Dr Johannes | Arrangement for setting angular positions |
GB1302762A (en) * | 1970-02-06 | 1973-01-10 | ||
US4458322A (en) * | 1981-06-19 | 1984-07-03 | Manhattan Engineering Co., Inc. | Control of page storage among three media using a single channel processor program and a page transfer bus |
FR2596223A1 (en) * | 1986-03-21 | 1987-09-25 | Renault | Device for formulating a digital position datum in incremental form from an inductive position sensor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2952106C2 (en) * | 1979-12-22 | 1982-11-04 | Dr. Johannes Heidenhain Gmbh, 8225 Traunreut | Photoelectric incremental length or angle measuring device |
JPS57169611A (en) * | 1981-04-13 | 1982-10-19 | Tokyo Optical Co Ltd | Measuring device for angular displacement |
-
1987
- 1987-12-14 DE DE19873742295 patent/DE3742295A1/en active Granted
-
1988
- 1988-10-08 EP EP88116713A patent/EP0320589B2/en not_active Expired - Lifetime
- 1988-10-08 DE DE3889530T patent/DE3889530D1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3400391A (en) * | 1963-10-30 | 1968-09-03 | Zeiss Carl | Interpolation device |
DE1811961A1 (en) * | 1968-11-30 | 1970-06-11 | Heidenhain Gmbh Dr Johannes | Arrangement for setting angular positions |
GB1302762A (en) * | 1970-02-06 | 1973-01-10 | ||
US4458322A (en) * | 1981-06-19 | 1984-07-03 | Manhattan Engineering Co., Inc. | Control of page storage among three media using a single channel processor program and a page transfer bus |
FR2596223A1 (en) * | 1986-03-21 | 1987-09-25 | Renault | Device for formulating a digital position datum in incremental form from an inductive position sensor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000005631A1 (en) * | 1998-07-21 | 2000-02-03 | Koninklijke Philips Electronics N.V. | Control system, driving system and control method, apparatus including the driving system |
Also Published As
Publication number | Publication date |
---|---|
DE3742295C2 (en) | 1992-02-27 |
EP0320589B2 (en) | 1998-04-29 |
EP0320589B1 (en) | 1994-05-11 |
DE3742295A1 (en) | 1989-06-22 |
DE3889530D1 (en) | 1994-06-16 |
EP0320589A3 (en) | 1990-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2601088C2 (en) | Position transducer | |
DE69518964T2 (en) | Displacement measuring device | |
CH628426A5 (en) | METHOD AND DEVICE FOR COMPENSATING ERROR SIGNAL PARAMETERS. | |
DE2011222A1 (en) | Devices for the automatic determination of coordinate points | |
EP2354769A1 (en) | Angle encoder and method for determining an angle between a sensor assembly and a magnetic field | |
DE10163504B4 (en) | Method for iterative error compensation of sin / cos position measuring systems for offset, amplitude and phase errors | |
EP0102472A1 (en) | Device for linear measurement and angle measurement | |
EP1322918B1 (en) | Device and method for detecting the rotational movement of an element rotatably mounted about an axis | |
DE102013110808A1 (en) | Displacement detection device | |
DE3640413C2 (en) | Measuring arrangement | |
DE10036090B4 (en) | Method for the suppression of systematic errors by incremental position sensors | |
EP0395936B1 (en) | Position-measuring device with plural probe placings | |
DE102004021058B4 (en) | Rotation angle detection device for a shaft gear device | |
DE102005009555B4 (en) | Digital transducers, procedures and program | |
DE2847779C3 (en) | Device for position detection in numerically controlled machine tools | |
EP0320589B1 (en) | Position-measuring device with several detectors | |
DE102020003468A1 (en) | OFFSET CORRECTION DEVICE AND POSITION MEASURING DEVICE | |
DE3901546A1 (en) | Position measuring device having a plurality of scanning points | |
DE3831566A1 (en) | METHOD FOR MEASURING THE OUTLINE OF OBJECTS LIMITED BY A VARIETY OF CYLINDRICAL SURFACE SECTIONS | |
DE3417016C1 (en) | Method for determining the position and speed of objects | |
DE19544948C2 (en) | Digital interpolation device with amplitude and zero position control of the input signals | |
DE19934478B4 (en) | Digital interpolation device | |
DE102014210252A1 (en) | Method for compensating a rotation angle command value | |
DE4402401C2 (en) | Angle measuring device with several scanning points | |
DE102021130832A1 (en) | DUAL CHANNEL DIFFERENTIAL SENSOR |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19881022 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT CH DE ES FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19921203 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940506 |
|
REF | Corresponds to: |
Ref document number: 3889530 Country of ref document: DE Date of ref document: 19940616 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: RENISHAW PLC Effective date: 19950209 |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PLAW | Interlocutory decision in opposition |
Free format text: ORIGINAL CODE: EPIDOS IDOP |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 19980429 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB IT |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
ITF | It: translation for a ep patent filed | ||
ET3 | Fr: translation filed ** decision concerning opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990920 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010914 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021008 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20021008 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20031010 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051008 |