[go: up one dir, main page]

EP0314981B1 - Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process - Google Patents

Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process Download PDF

Info

Publication number
EP0314981B1
EP0314981B1 EP88117417A EP88117417A EP0314981B1 EP 0314981 B1 EP0314981 B1 EP 0314981B1 EP 88117417 A EP88117417 A EP 88117417A EP 88117417 A EP88117417 A EP 88117417A EP 0314981 B1 EP0314981 B1 EP 0314981B1
Authority
EP
European Patent Office
Prior art keywords
copper
tellurium
chromium
melting
electrode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88117417A
Other languages
German (de)
French (fr)
Other versions
EP0314981A1 (en
Inventor
Thomas Moser
Joachim Dipl.-Phys. Grosse
Horst Dr. Kippenberg
Rüdiger Dr. Hess
Reiner Dr. Müller
Norbert Prölss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0314981A1 publication Critical patent/EP0314981A1/en
Application granted granted Critical
Publication of EP0314981B1 publication Critical patent/EP0314981B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Definitions

  • the invention relates to a method for producing melting materials made of copper (Cu), chromium (Cr) and at least one highly volatile component, an arc melting method being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without Macroscopic segregation of copper and chrome is caught.
  • the invention also relates to a consumable electrode for use in this method, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component predetermined total composition of all components.
  • EP-B-0115292 A method of the type mentioned at the outset is known from EP-B-0115292. Materials produced by such a method were initially intended for use as contact materials for vacuum medium-voltage circuit breakers with breaking currents above 10 kA. From EP-A-0172411 it is also known to provide such a material also as a contact material for vacuum contactors, the material for reducing the welding force adding at least one of the metals tellurium (Te), antimony (Sb), bismuth (Bi) and / or tin (Sn) and their alloys. The additives are introduced by subsequent alloying or diffusing into the contact pieces produced by the known method, which is comparatively lengthy and complex.
  • Tellurium and / or selenium and / or antimony or bismuth in particular have proven to be suitable as additional components for copper-chromium contact materials for reducing the welding force.
  • the elements mentioned are characterized by a high vapor pressure, so that additives of these elements evaporate easily when the arc is melted. Accordingly, it has been shown that the direct alloying of these additives is not possible when arc-melting copper-chromium, since the additives - especially if they are mixed in as a fine powder of the electrode - evaporate due to their high vapor pressure under the influence of the arc and lead to pore formation in the melting block .
  • Tellurium or selenium or antimony form intermetallic compounds with copper, the vapor pressure and thus evaporation tendency - as measurements have shown - are reduced compared to the pure components tellurium and selenium or antimony.
  • pore formation also occurs when the additives are not mixed as elemental tellurium or selenium or antimony, but as intermetallic compounds Cu2Te or Cu2Se or Cu3Sb in powder form. This is due to the gas loading of the finely divided Cu2Te or Cu2Se or Cu3Sb powder.
  • a fine-particle powder has so far been considered essential for homogeneous distribution.
  • tellurium has been specifically used after the arc melting and, if appropriate, after a corresponding shaping of the CuCr blanks, for example, by extrusion in a separate manufacturing step. This involves an additional process step that makes the manufacturing process more expensive.
  • the object of the invention is to improve the method of the type mentioned at the outset in such a way that an easily evaporable Component can be introduced directly into the material during the melting process.
  • suitable consumable electrodes should be specified that can be used in the context of an arc melting process.
  • a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in Sum composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting.
  • the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper Selenium or copper-antimony alloy is present as a solid part in the electrode structure.
  • the invention enables the introduction of easily evaporable additives in arc-melted copper-chromium alloys directly during the melting process and thus the production of pore-free CuCrTe or CuCrSe or CuCrSb melting blocks, provided the correspondingly constructed melting electrodes are used.
  • the introduction of tellurium in particular in the melting process all effects leading to pore formation are now avoided.
  • massive rods of a CuTe alloy, such as CuTe0.6 can be introduced into a tube electrode, which are then coated with CuCr powder.
  • 1 denotes a copper tube with the cross-sectional dimensions of, for example, 70 ⁇ 2 mm.
  • the copper pipe 1 may, for example OFHC (o Xigen f ree h igh c onductive) - or SF (s auerstof f rei) material may be used.
  • Reference numeral 2 denotes a CuCr powder mixture in low-gas quality with a predetermined particle size distribution.
  • Fig. 1 three solid rods 3 to 5 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 are embedded in the powder mixture 2 made of CuCr.
  • This material is known according to DIN 17666 under the material number 2.1546 with a tellurium content of 0.4 to 0.7 m%.
  • the number of rods can expediently be varied between one and ten, their number and the diameter and the tellurium or selenium or antimony content of the individual rod as a result determine the concentration of the finished material.
  • the profile of the individual bar is irrelevant; the rods can, for example, as round or. Square part or be designed as a tube.
  • the concentration in the CuCr powder mixture can be varied. Powder from 25 m% Cr up to pure Cr powder are possible.
  • FIG. 3 a plurality of individual sections 13 of rods or profiles with a predetermined cross section made of CuTe0.6 material are approximately uniformly embedded in the copper tube 1 with CuCr powder mixture 2. If a melting electrode constructed in this way is used, the highly evaporable component in the melting material is also largely bonded.
  • Fig. 4 there is an outer tube 41 with the cross-sectional dimensions 70 ⁇ 2 mm made of CuTe material.
  • a CuCr powder mixture 42 is introduced into the tube 41. Even with a melting electrode constructed in this way, the tellurium remains bound during the melting process and alloys into the melting material.
  • the composition of the CuCrTe or CuCrSe or CuCrSb melt material to be produced for a given rod diameter should in particular be determined by the number of rods on the one hand and by the tellurium or selenium or antimony content in the rods on the other hand: From a manufacturing point of view it is theoretically possible that rods made of copper-tellurium alloys as solid parts can have a tellurium content of up to 8.2% by mass.
  • the table below shows a number of examples specifically for the production of CuCrTe melting materials using a melting electrode according to FIG. 1 or 2, such as the number of rods, their tellurium content and the composition of the copper-chromium powder mixture the concentration of the finished melting material can be influenced.
  • a tube electrode with ⁇ 70 ⁇ 2 mm is assumed.
  • the tellurium content of the melting material is also determined by the number and diameter of the CuTe rods or the diameter and thickness of the CuTe tube.
  • two rods of CuTe0.6 with a diameter of 10 mm already have a tellurium content in the melting material of 0.1 m%.
  • the arc melting with the above-described melting electrodes takes place in the manner described in EP-B-0115292 under a protective gas atmosphere; for example, 100 mb helium or argon have proven to be suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Discharge Heating (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Schmelzwerkstoffen aus Kupfer (Cu), Chrom (Cr) und wenigstens einer leichtverdampflichen Komponente, wobei ein Lichtbogenschmelzverfahren angewandt wird, bei dem das von einer Abschmelzelektrode vorgegebener Summenzusammensetzung abschmelzende Elektrodenmaterial in einer wassergekühlten Kokille zwecks Abkühlung ohne makroskopische Entmischung von Kupfer und Chrom aufgefangen wird. Daneben bezieht sich die Erfindung auch auf eine Abschmelzelektrode zur Verwendung bei diesem Verfahren, die aus Kupfer (Cu) und Chrom (Cr) sowie Tellur (Te) und/oder Selen (Se) und/oder Antimon (Sb) als leicht verdampfliche Komponente mit vorgegebener Summenzusammensetzung aller Komponenten besteht.The invention relates to a method for producing melting materials made of copper (Cu), chromium (Cr) and at least one highly volatile component, an arc melting method being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without Macroscopic segregation of copper and chrome is caught. In addition, the invention also relates to a consumable electrode for use in this method, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component predetermined total composition of all components.

Ein Verfahren der eingangs genannten Art ist aus der EP-B-0115292 bekannt. Nach einem derartigen Verfahren hergestellte Werkstoffe waren zunächst zur Verwendung als Kontaktwerkstoffe für Vakuum-Mittelspannungsleistungsschalter mit Ausschaltströmen oberhalb 10 kA vorgesehen. Aus der EP-A-0172411 ist es darüberhinaus bekannt, einen solchen Werkstoff auch als Kontaktwerkstoff für Vakuumschütze vorzusehen, wobei der Werkstoff zur Herabsetzung der Schweißkraft Zusätze wenigstens eines der Metalle Tellur (Te), Antimon (Sb), Wismut (Bi) und/oder Zinn (Sn) sowie deren Legierungen aufweisen kann. Das Einbringen der Zusätze erfolgt dabei durch nachträgliches Einlegieren oder Eindiffundieren in die nach dem bekannten Verfahren gefertigten Kontaktstücke, was vergleichsweise langwierig und aufwendig ist.A method of the type mentioned at the outset is known from EP-B-0115292. Materials produced by such a method were initially intended for use as contact materials for vacuum medium-voltage circuit breakers with breaking currents above 10 kA. From EP-A-0172411 it is also known to provide such a material also as a contact material for vacuum contactors, the material for reducing the welding force adding at least one of the metals tellurium (Te), antimony (Sb), bismuth (Bi) and / or tin (Sn) and their alloys. The additives are introduced by subsequent alloying or diffusing into the contact pieces produced by the known method, which is comparatively lengthy and complex.

Speziell Tellur und/oder Selen und/oder Antimon oder auch Wismut haben sich als Zusatzkomponenten für Kupfer-Chrom-Kontaktwerkstoffe zur Schweißkraftsenkung als geeignet erwiesen. Die genannten Elemente zeichnen sich jedoch durch einen hohen Dampfdruck aus, so daß Zusätze dieser Elemente beim Lichtbogenschmelzen leicht verdampfen. Dementsprechend hat sich gezeigt, daß das unmittelbare Einlegieren dieser Zusätze beim Lichtbogenschmelzen von Kupfer-Chrom nicht möglich ist, da die Zusätze ― insbesondere wenn sie als feinteiliges Pulver der Elektrode zugemischt werden ― aufgrund ihres hohen Dampfdruckes unter der Lichtbogeneinwirkung verdampfen und zur Porenbildung im Schmelzblock führen. Tellur oder Selen oder Antimon bilden mit Kupfer intermetallische Verbindungen, deren Dampfdruck und damit Verdampfungsneigung ― wie Messungen gezeigt haben ― gegenüber den reinen Komponenten Tellur und Selen oder Antimon herabgesetzt ist. Es tritt jedoch auch dann Porenbildung auf, wenn die Zusätze nicht als elementares Tellur oder Selen oder Antimon, sondern als intermetallische Verbindungen Cu₂Te oder Cu₂Se oder Cu₃Sb in Pulverform zugemischt werden. Dies ist auf die Gasbeladung der feinteiligen Cu₂Te- bzw. Cu₂Se- bzw. Cu₃Sb-Pulver zurückzuführen. Ein feinteiliges Pulver wird bisher aber für eine homogene Verteilung als zwingend notwendig erachtet.Tellurium and / or selenium and / or antimony or bismuth in particular have proven to be suitable as additional components for copper-chromium contact materials for reducing the welding force. However, the elements mentioned are characterized by a high vapor pressure, so that additives of these elements evaporate easily when the arc is melted. Accordingly, it has been shown that the direct alloying of these additives is not possible when arc-melting copper-chromium, since the additives - especially if they are mixed in as a fine powder of the electrode - evaporate due to their high vapor pressure under the influence of the arc and lead to pore formation in the melting block . Tellurium or selenium or antimony form intermetallic compounds with copper, the vapor pressure and thus evaporation tendency - as measurements have shown - are reduced compared to the pure components tellurium and selenium or antimony. However, pore formation also occurs when the additives are not mixed as elemental tellurium or selenium or antimony, but as intermetallic compounds Cu₂Te or Cu₂Se or Cu₃Sb in powder form. This is due to the gas loading of the finely divided Cu₂Te or Cu₂Se or Cu₃Sb powder. A fine-particle powder has so far been considered essential for homogeneous distribution.

Da das unmittelbare Einlegieren von Tellur bzw. Selen bzw. Antimon oder deren intermetallischer Cu-Verbindungen beim Schmelzprozess in der beschriebenen Weise nicht möglich ist, wurde bisher entsprechend der EP-A-0172411 speziell Tellur im Anschluß an das Lichtbogenschmelzen und gegebenenfalls nach einer entsprechenden Formgebung der CuCr-Rohlinge durch beispielsweise Fließpressen in einem separatem Fertigungsschritt eingebracht. Dabei wird ein zusätzlicher Verfahrensschritt in Kauf genommen, der das Herstellungsverfahren verteuert.Since the direct alloying of tellurium or selenium or antimony or their intermetallic Cu compounds in the melting process is not possible in the manner described, according to EP-A-0172411, tellurium has been specifically used after the arc melting and, if appropriate, after a corresponding shaping of the CuCr blanks, for example, by extrusion in a separate manufacturing step. This involves an additional process step that makes the manufacturing process more expensive.

Aufgabe der Erfindung ist es demgegenüber, das Verfahren der eingangs genannten Art so zu verbessern, daß eine leichtverdampfliche Komponente direkt beim Schmelzprozeß in den Werkstoff eingebracht werden kann. Dazu sollen geeignete Abschmelzelektroden angegeben werden, die im Rahmen eines Lichtbogenschmelzverfahrens verwendet werden können.In contrast, the object of the invention is to improve the method of the type mentioned at the outset in such a way that an easily evaporable Component can be introduced directly into the material during the melting process. For this purpose, suitable consumable electrodes should be specified that can be used in the context of an arc melting process.

Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß zum Erschmelzen des Werkstoffes mit der leichtverdampflichen Komponente eine solche Abschmelzelektrode verwendet wird, die teilweise aus einer festen Legierung von Kupfer mit der leichtverdampflichen Komponente besteht, wobei die Konzentration der leichtverdampflichen Komponente in der Legierung höher ist als in der Summenzusammensetzung des Schmelzwerkstoffes, und daß beim Erschmelzen die leichtverdampfliche Komponente im Schmelzwerkstoff gebunden bleibt. Bei einer Abschmelzelektrode zur Verwendung bei diesem Verfahren, die aus Kupfer und Chrom sowie Tellur und/oder Selen und/oder Antimon besteht, ist die leichtverdampfliche Komponente zumindest zum Teil als intermetallische Verbindung im Kupfer legiert, wobei die Kupfer-Tellur- bzw. Kupfer-Selen- bzw. Kupfer-Antimon-Legierung im Elektrodenaufbau als Massivteil vorliegt.The object is achieved in that such a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in Sum composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting. In the case of a melting electrode for use in this method, which consists of copper and chromium and tellurium and / or selenium and / or antimony, the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper Selenium or copper-antimony alloy is present as a solid part in the electrode structure.

Die Erfindung ermöglicht das Einbringen von leichtverdampflichen Zusätzen in lichtbogengeschmolzene Kupfer-Chrom-Legierungen direkt beim Schmelzprozess und damit die Herstellung porenfreier CuCrTe- bzw. CuCrSe- bzw. CuCrSb-Schmelzblöcke, sofern die entsprechend aufgebauten Abschmelzelektroden verwendet werden. Für das Einbringen von insbesondere Tellur beim Schmelzprozeß werden nunmehr alle zur Porenbildung führenden Effekte vermieden. Beispielsweise können in eine Rohrelektrode massive Stangen einer CuTe-Legierung wie etwa CuTe0,6 eingebracht werden, die dann mit CuCr-Pulver umhüllt werden.The invention enables the introduction of easily evaporable additives in arc-melted copper-chromium alloys directly during the melting process and thus the production of pore-free CuCrTe or CuCrSe or CuCrSb melting blocks, provided the correspondingly constructed melting electrodes are used. For the introduction of tellurium in particular in the melting process, all effects leading to pore formation are now avoided. For example, massive rods of a CuTe alloy, such as CuTe0.6, can be introduced into a tube electrode, which are then coated with CuCr powder.

Es wurde festgestellt, daß der Dampfdruck von beispielsweise massivem CuTe0,6 wesentlich niedriger ist als der von reinem Tellur bzw. Kupfertellurid. Dadurch findet beim Umschmelzen kein Verdampfen der Te-Komponente statt, wodurch das Tellur im Schmelzwerkstoff gebunden bleibt. Auch die Gasbeladung von tellurhaltigem Pulver entfällt beim erfindungsgemäßen Herstellungsverfahren. Es wird somit erreicht, daß erstmalig porenfreie lichtbogengeschmolzene CuCrTe- oder CuCrSe- oder CuCrSb- sowie auch CuCrTeSe- oder CuCrTeSb-Werkstoffe ohne zusätzliche Fertigungsschritte hergestellt werden können.It was found that the vapor pressure of, for example, massive CuTe0.6 is significantly lower than that of pure tellurium or copper telluride. This takes place when remelting no evaporation of the Te component takes place, as a result of which the tellurium remains bound in the melting material. The gas loading of tellurium-containing powder is also eliminated in the manufacturing process according to the invention. It is thus achieved that pore-free arc-melted CuCrTe or CuCrSe or CuCrSb as well as CuCrTeSe or CuCrTeSb materials can be produced for the first time without additional manufacturing steps.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen.

  • Es zeigen Fig. 1 und 2 zwei Beispiele für eine Abschmelzelektrode erster Art im Querschnitt,
  • Fig. 3 eine andere Abschmelzelektrode im Längsschnitt und
  • Fig. 4 eine weitere Abschmelzelektrode im Querschnitt.
Further details and advantages of the invention emerge from the following description of the figures of exemplary embodiments with reference to the drawing in conjunction with the patent claims.
  • 1 and 2 show two examples of a melting electrode of the first type in cross section,
  • Fig. 3 shows another melting electrode in longitudinal section and
  • Fig. 4 shows a further consumable electrode in cross section.

Die Figuren sind etwa im Maßstab 1: 2 gezeichnet, so daß die jeweiligen Größenverhältnisse vergleichbar sind. Identische Teile haben die gleichen Bezugszeichen, wobei die Figuren teilweise zusammen beschrieben werden.The figures are drawn approximately on a scale of 1: 2, so that the respective proportions are comparable. Identical parts have the same reference numerals, the figures being partially described together.

In den Fig. 1 bis 3 kennzeichnet 1 ein Kupfer-Rohr mit den Querschnittsabmessungen von beispielsweise 70  ×  2 mm. Für das Kupferrohr 1 kann zum Beispiel OFHC (oxigen free high conductive)- bzw. SF (sauerstoffrei)-Material verwendet werden. Bezugszeichen 2 bedeutet eine CuCr-Pulvermischung in gasarmer Qualität vorgegebener Teilchengrößenverteilung.1 to 3, 1 denotes a copper tube with the cross-sectional dimensions of, for example, 70 × 2 mm. For the copper pipe 1 may, for example OFHC (o Xigen f ree h igh c onductive) - or SF (s auerstof f rei) material may be used. Reference numeral 2 denotes a CuCr powder mixture in low-gas quality with a predetermined particle size distribution.

In Fig. 1 sind in die Pulvermischung 2 aus CuCr drei Massivstangen 3 bis 5 mit Durchmesser von 10 mm aus einer Legierung aus beispielsweise CuTe0,6 eingebettet. Dieser Werkstoff ist gemäß DIN 17666 unter der Werkstoffnummer 2.1546 mit einem Tellurgehalt von 0,4 bis 0,7 m-% bekannt. Ganz entsprechend sind in Fig. 2 neun Stangen 3 bis 11 mit Durchmesser von 10 mm aus einer Legierung aus beispielsweise CuTe0,6 in der CuCr-Pulvermischung 2 eingebettet.In Fig. 1, three solid rods 3 to 5 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 are embedded in the powder mixture 2 made of CuCr. This material is known according to DIN 17666 under the material number 2.1546 with a tellurium content of 0.4 to 0.7 m%. Are in accordance with Fig. 2 nine rods 3 to 11 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 embedded in the CuCr powder mixture 2.

Es hat sich gezeigt, daß bei der in Fig. 1 oder Fig. 2 vorgegebenen Geometrie des Kupferrohres die Anzahl der Stangen zweckmäßigerweise zwischen einer und zehn variiert werden kann, wobei deren Anzahl sowie der Durchmesser und der Tellur- bzw. Selen- bzw. Antimongehalt der einzelnen Stange im Ergebnis die Konzentration des fertigen Werkstoffes bestimmen. Dabei spielt das Profil der einzelnen Stange keine Rolle; die Stangen können beispielsweise als Rund-bzw. Vierkantteil oder auch als Rohr ausgebildet sein.It has been shown that with the geometry of the copper pipe given in FIG. 1 or FIG. 2, the number of rods can expediently be varied between one and ten, their number and the diameter and the tellurium or selenium or antimony content of the individual rod as a result determine the concentration of the finished material. The profile of the individual bar is irrelevant; the rods can, for example, as round or. Square part or be designed as a tube.

Weiterhin kann die Konzentration in der CuCr-Pulvermischung variiert werden. Es kommen Pulver ab 25 m-% Cr bis zu reinem Cr-Pulver in Frage.Furthermore, the concentration in the CuCr powder mixture can be varied. Powder from 25 m% Cr up to pure Cr powder are possible.

In Fig. 3 sind in das Kupferrohr 1 mit CuCr-Pulvermischung 2 in etwa gleichmäßig eine Vielzahl von Einzelabschnitten 13 von Stangen oder Profilen mit vorgegebenem Querschnitt aus CuTe0,6-Material eingebettet. Bei Verwendung einer so aufgebauten Abschmelzelektrode ergibt sich ebenfalls eine weitgehende Bindung der leichtverdampflichen Komponente im Schmelzwerkstoff.In FIG. 3, a plurality of individual sections 13 of rods or profiles with a predetermined cross section made of CuTe0.6 material are approximately uniformly embedded in the copper tube 1 with CuCr powder mixture 2. If a melting electrode constructed in this way is used, the highly evaporable component in the melting material is also largely bonded.

In Fig. 4 besteht ein äußeres Rohr 41 mit den Querschnittsabmessungen 70  ×  2 mm aus CuTe-Material. In das Rohr 41 ist eine CuCr-Pulvermischung 42 eingebracht. Auch bei einer derartig aufgebauten Abschmelzelektrode bleibt das Tellur beim Abschmelzen gebunden und legiert in den Schmelzwerkstoff ein.In Fig. 4 there is an outer tube 41 with the cross-sectional dimensions 70 × 2 mm made of CuTe material. A CuCr powder mixture 42 is introduced into the tube 41. Even with a melting electrode constructed in this way, the tellurium remains bound during the melting process and alloys into the melting material.

Speziell bei den Abschmelzelektroden gemäß den Fig. 1 oder Fig. 2 soll die Zusammensetzung des herzustellenden CuCrTe- oder CuCrSe- oder CuCrSb-Schmelzwerkstoffes bei vorgegebenem Stangendurchmesser insbesondere durch die Anzahl der Stangen einerseits und durch den Tellur- bzw. Selen- bzw. Antimongehalt in den Stangen andererseits vorgegeben werden: Fertigungstechnisch ist es theoretisch möglich, daß Stangen aus Kupfer-Tellur-Legierungen als Massivteile einen Tellurgehalt von bis zu 8,2% Massengehalt aufweisen können. Dies würde bei einer maximalen Zahl von zehn Stangen CuTe8,2 mit ⌀ 10 mm in einem Kupferrohr ⌀ 70  ×  2 mm zu einem CuCr50Te4,1-Werkstoff führen, sofern auch das Rohr aus der CuTe-Vorlegierung besteht. Einer Herstellung von Massivlegierungen mit höherem Tellurgehalt steht die im Zweistoffsystem CuTe auftretende Entmischung im flüssigen Zustand entgegen. Ähnliches gilt auch für Kupfer-Selen-Legierungen, da auch im System CuSe oberhalb von 2,2 m-% eine Entmischung im flüssigen Zustand vorliegt. Damit ist bei maximaler Stangenzahl von zehn ein CuCr50Se1,1-Werkstoff herstellbar. Bezüglich einer Abschmelzelektrode mit einem Antimongehalt wird auf Anspruch 13 hingewiesen.Especially in the case of the consumable electrodes according to FIG. 1 or 2, the composition of the CuCrTe or CuCrSe or CuCrSb melt material to be produced for a given rod diameter should in particular be determined by the number of rods on the one hand and by the tellurium or selenium or antimony content in the rods on the other hand: From a manufacturing point of view it is theoretically possible that rods made of copper-tellurium alloys as solid parts can have a tellurium content of up to 8.2% by mass. With a maximum number of ten rods of CuTe8.2 with ⌀ 10 mm in a copper tube ⌀ 70 × 2 mm, this would lead to a CuCr50Te4.1 material, provided that the tube also consists of the CuTe pre-alloy. The production of solid alloys with a higher tellurium content is prevented by the segregation in the CuTe two-component system in the liquid state. The same applies to copper-selenium alloys, since even in the CuSe system there is a separation in the liquid state above 2.2 m%. This means that a CuCr50Se1.1 material can be produced with a maximum number of rods of ten. With regard to a melting electrode with an antimony content, reference is made to claim 13.

In der nachfolgenden Tabelle ist für eine Reihe von Beispielen speziell zur Herstellung von CuCrTe-Schmelzwerkstoffen unter Verwendung einer Abschmelzelektrode nach Fig. 1 oder Fig. 2 zusammengestellt, wie durch die Anzahl der Stangen, deren Tellurgehalt und durch die Zusammensetzung der Kupfer-Chrom-Pulvermischung die Konzentration des fertigen Schmelzwerkstoffes beeinflußbar ist. Dabei wird durchweg von einer Rohrelektrode mit ∅ 70  ×  2 mm ausgegangen. Zum Herstellen anderer Abmessungen ist auch die Verwendung von Rohrelektroden größeren bzw. kleineren Durchmessers, beispielsweise zwischen 50 und 100 mm, möglich. Der Tellurgehalt des Schmelzwerkstoffes wird dabei ebenfalls durch Anzahl und Durchmesser der CuTe-Stangen bzw. Durchmesser und Dicke des CuTe-Rohres bestimmt. So ergibt sich bei Cu-Rohren ∅ 52  ×  2 mm schon bei zwei Stangen CuTe0,6 mit 10 mm Durchmesser ein Tellurgehalt im Schmelzwerkstoff von 0,1 m-%.The table below shows a number of examples specifically for the production of CuCrTe melting materials using a melting electrode according to FIG. 1 or 2, such as the number of rods, their tellurium content and the composition of the copper-chromium powder mixture the concentration of the finished melting material can be influenced. A tube electrode with ∅ 70 × 2 mm is assumed. To produce other dimensions, the use of tubular electrodes of larger or smaller diameter, for example between 50 and 100 mm, is also possible. The tellurium content of the melting material is also determined by the number and diameter of the CuTe rods or the diameter and thickness of the CuTe tube. For copper pipes ∅ 52 × 2 mm, two rods of CuTe0.6 with a diameter of 10 mm already have a tellurium content in the melting material of 0.1 m%.

Entsprechende Berechnungen für die Dimensionierung der Rohrelektrode und der Anzahl der Stangen lassen sich für CuCrSe- bzw. CuCrSb- und auch für CuCrTeSe- und CuCrTeSb-Schmelzwerkstoffe durchführen.Corresponding calculations for the dimensioning of the tube electrode and the number of rods can be made for CuCrSe or CuCrSb and also for CuCrTeSe and CuCrTeSb melting materials carry out.

Das Lichtbogenschmelzen mit den oben beschriebenen Abschmelzelektroden erfolgt in der in der EP-B-0115292 beschriebenen Weise unter Schutzgasatmosphäre; beispielsweise haben sich 100 mb Helium oder Argon als geeignet erwiesen.

Figure imgb0001
The arc melting with the above-described melting electrodes takes place in the manner described in EP-B-0115292 under a protective gas atmosphere; for example, 100 mb helium or argon have proven to be suitable.
Figure imgb0001

Claims (14)

1. A method for manufacturing melting materials of copper (Cu), chromium (Cr) and at least one easily evaporable component, wherein an electric arc melting method is used, in which the electrode material melting off from a fusible electrode of a predetermined total composition, is collected in a water-cooled permanent mould for the purpose of cooling without macroscopic separation of copper and chromium, characterised in that for melting the material with the easily evaporable component such a fusible electrode is used, which consists partially of a solid alloy of copper with the easily evaporable component, wherein the concentration of the easily evaporable component in the alloy is higher than in the total composition of the melting material and that when melting the easily evaporable component remains bonded in the melting material.
2. A fusible electrode for using with a method for manufacturing melting materials according to claim 1, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and/or selenium (Se) and/or antimony (Sb) as easily evaporable component with a predetermined total composition of all components, characterised in that the easily evaporable component is alloyed at least partially as an intermetallic compound in the copper, wherein the copper-tellurium or copper-selenium or copper-antimony alloy is present in the electrode structure as a solid part.
3. A fusible electrode according to claim 2, characterised in that the solid parts can have any profile, for example round or square or tubular.
4. A fusible electrode according to claim 2, characterised in that the electrode structure consists of a pipe (1) of copper, in which, embedded in a copper chromium powder mixture (2) the solid parts (3-5; 5-11;13) of the copper-tellurium, copper-selenium or copper-antimony alloy are arranged (Figures 1-3).
5. A fusible electrode according to claim 4, characterised in that the copper pipe (1) consists of copper, which is low in oxygen, for example OFHC or SF copper.
6. A fusible electrode according to claim 4, characterised in that the solid parts are continuous rods (3-5; 3-11), which are embedded in parallel and at a distance relative to each other in the CuCr powder mixture (2), (Figure 1, 2).
7. A fusible electrode according to claim 6, characterised in that the electrode structure consists of a pipe (1) with the cross-section dimensions 70  ×  2 mm, in which one to ten rods (3-5; 3-11) of a copper-tellurium or a copper-selenium or a copper-antimony alloy with 10 mm diameter are distributed over the cross-section.
8. A fusible electrode according to claim 7, characterised in that the rods (3-5; 3-11) are distributed symmetrically.
9. A fusible electrode according to claim 3, characterised in that the solid parts are distributed as sections (13) evenly in the CuCr powder mixture (2)(Figure 3).
10. A fusible electrode according to claim 3, characterised in that the electrode structure consists of a pipe (41) of copper-tellurium or copper-selenium or copper-antimony alloys as outer shell, in which a copper-chromium powder mixture (42) is arranged (Figure 4).
11. A fusible electrode according to claim 2, wherein the easily evaporable component is tellurium, characterised in that the tellurium content in the solid part is  ≦ 8.2 m-% and a copper-chromium or pure chromium power is used, whereby a CuCrTe material is able to be produced with a tellurium content of up to 4.1 m-%.
12. A fusible electrode according to claim 2, wherein the easily evaporable component is selenium, characterised in that the selenium content in the solid part is  ≦  2.2 m-%; and a copper-chromium or pure chromium powder is used, whereby a CuCrSe material is able to be produced with a selenium component of up to 1.1 m-%.
13. A fusible electrode according to claim 2, wherein the easily evaporable component is antimony, characterised in that the antimony content in the solid part is  ≦ 11 m-% and a copper-chromium or pure chromium powder is used, whereby a CuCrSe material is able to be produced with an antimony content of up to 5.5 m-%.
14. A fusible electrode according to claim 7 and claim 11, characterised in that the rods consist of a CuTe alloy with 0.4 to 0.7 m-% tellurium.
EP88117417A 1987-11-02 1988-10-19 Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process Expired - Lifetime EP0314981B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3737135 1987-11-02
DE3737135 1987-11-02

Publications (2)

Publication Number Publication Date
EP0314981A1 EP0314981A1 (en) 1989-05-10
EP0314981B1 true EP0314981B1 (en) 1991-09-18

Family

ID=6339604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88117417A Expired - Lifetime EP0314981B1 (en) 1987-11-02 1988-10-19 Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process

Country Status (7)

Country Link
US (1) US4906291A (en)
EP (1) EP0314981B1 (en)
JP (1) JPH0784628B2 (en)
KR (1) KR960006449B1 (en)
CN (1) CN1018934B (en)
DE (1) DE3864979D1 (en)
IN (1) IN171315B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368860A1 (en) * 1987-07-28 1990-05-23 Siemens Aktiengesellschaft Contact material for vacuum switches and process for manufacturing same
DE3915155A1 (en) * 1989-05-09 1990-12-20 Siemens Ag METHOD FOR PRODUCING MELTING MATERIALS FROM COPPER, CHROME AND AT LEAST ONE OXYGEN REFINING COMPONENT, AND MELTING ELECTRODE FOR USE IN SUCH A METHOD
GB2344110A (en) * 1998-11-27 2000-05-31 George Mcelroy Carloss The production of alloy granules and their use in hydrogen generation
JP2011108380A (en) * 2009-11-13 2011-06-02 Hitachi Ltd Electric contact for vacuum valve, and vacuum interrupter using the same
CN102286673B (en) * 2011-08-29 2013-04-17 上海理工大学 Preparation method of CuCr25Me alloy cast blank
CN103706783B (en) * 2013-10-15 2017-02-15 陕西斯瑞新材料股份有限公司 High-fusion-welding-resistance CuCr40Te contact material and preparation method thereof
KR102172848B1 (en) * 2017-02-07 2020-11-02 주식회사 엘지화학 Preparation method of long-life electrode for secondary battery
CN111593224B (en) * 2020-04-22 2021-05-07 陕西斯瑞新材料股份有限公司 Preparation method of consumable electrode bar for copper-chromium arc melting

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836071B1 (en) * 1968-07-30 1973-11-01
US3933474A (en) * 1974-03-27 1976-01-20 Norton Company Leech alloying
US4088475A (en) * 1976-11-04 1978-05-09 Olin Corporation Addition of reactive elements in powder wire form to copper base alloys
CA1202490A (en) * 1981-08-26 1986-04-01 Charles B. Adasczik Alloy remelting process
DE3303170A1 (en) * 1983-01-31 1984-08-02 Siemens AG, 1000 Berlin und 8000 München METHOD FOR PRODUCING COPPER-CHROME MELTING ALLOYS AS A CONTACT MATERIAL FOR VACUUM CIRCUIT BREAKER
US4481030A (en) * 1983-06-01 1984-11-06 The United States Of America As Represented By The United States Department Of Energy Tantalum-copper alloy and method for making
DE3344684A1 (en) * 1983-12-10 1985-06-20 Leybold-Heraeus GmbH, 5000 Köln Closed electric arc furnace for consumable electrodes
DE3565907D1 (en) * 1984-07-30 1988-12-01 Siemens Ag Vacuum contactor with contact pieces of cucr and process for the production of such contact pieces

Also Published As

Publication number Publication date
DE3864979D1 (en) 1991-10-24
CN1041975A (en) 1990-05-09
KR890008336A (en) 1989-07-10
JPH0784628B2 (en) 1995-09-13
JPH01149930A (en) 1989-06-13
EP0314981A1 (en) 1989-05-10
IN171315B (en) 1992-09-19
US4906291A (en) 1990-03-06
CN1018934B (en) 1992-11-04
KR960006449B1 (en) 1996-05-16

Similar Documents

Publication Publication Date Title
EP0115292B1 (en) Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches
DE69433453T2 (en) Vacuum switch and electrical contact used in it
DE2346179A1 (en) COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES
EP0314981B1 (en) Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process
DE69506776T2 (en) Vacuum switch and method of making the same
DE68914905T2 (en) Contact material for a vacuum switch.
DE69221398T2 (en) Process for the production of contact materials for vacuum switches
EP0586410B1 (en) Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material
EP0172411B1 (en) Vacuum contactor with contact pieces of cucr and process for the production of such contact pieces
DE1558666C2 (en) Alloy for erosion-proof electrical contacts
DE2514237A1 (en) PROCESS FOR PRODUCING AN ELECTRICAL CONTACT MATERIAL
DE69825227T2 (en) vacuum switch
EP0474628A1 (en) PROCESS FOR PRODUCING A CuCr CONTACT MATERIAL FOR VACUUM SWITCHES AND APPROPRIATE CONTACT MATERIAL.
EP0099066B2 (en) Process for manufacturing a composite article from chromium and copper
EP1130608B1 (en) Process for the manufacture of a contact material for contacts elements for vacuum switches, contact material and contact elements
DE69219397T2 (en) Silver-based metal oxide material for electrical contacts
EP0586411A1 (en) SILVER-BASED CONTACT MATERIAL FOR USE IN SWITCHING APPARATUS IN HIGH CURRENT TECHNOLOGY, AS WELL AS PROCESS FOR THE MANUFACTURE OF CONTACT PARTS THEREOF.
DE102009056504B4 (en) A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device
CH652246A5 (en) SURGE ARRESTERS.
DE69614489T2 (en) Contact material for vacuum switch and process for its manufacture
DE3427034C2 (en) Use of an oxygen-free copper deoxidized by boron or lithium for hollow profiles
DE3402091C2 (en) Composite material for electrical contact pieces
EP0234246A1 (en) Switch contact members for vacuum switch apparatuses, and method for their production
DE3915155C2 (en)
DE4110600C2 (en) Electrode for a vacuum circuit breaker

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19890627

17Q First examination report despatched

Effective date: 19901206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3864979

Country of ref document: DE

Date of ref document: 19911024

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920124

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921016

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921031

Ref country code: CH

Effective date: 19921031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19941020

Year of fee payment: 7

EUG Se: european patent has lapsed

Ref document number: 88117417.1

Effective date: 19940510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950918

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951017

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19951031

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961019

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971029

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981217

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051019