EP0314981B1 - Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process - Google Patents
Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process Download PDFInfo
- Publication number
- EP0314981B1 EP0314981B1 EP88117417A EP88117417A EP0314981B1 EP 0314981 B1 EP0314981 B1 EP 0314981B1 EP 88117417 A EP88117417 A EP 88117417A EP 88117417 A EP88117417 A EP 88117417A EP 0314981 B1 EP0314981 B1 EP 0314981B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- copper
- tellurium
- chromium
- melting
- electrode according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims description 37
- 239000010949 copper Substances 0.000 title claims description 27
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 22
- 229910052802 copper Inorganic materials 0.000 title claims description 22
- 239000011651 chromium Substances 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims description 11
- 229910052804 chromium Inorganic materials 0.000 title claims description 9
- 238000003723 Smelting Methods 0.000 title 1
- 238000002844 melting Methods 0.000 claims description 38
- 230000008018 melting Effects 0.000 claims description 37
- 229910052714 tellurium Inorganic materials 0.000 claims description 27
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 27
- 239000000843 powder Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 15
- 239000011669 selenium Substances 0.000 claims description 15
- 229910052787 antimony Inorganic materials 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- 229910052711 selenium Inorganic materials 0.000 claims description 13
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 claims description 9
- 229910002531 CuTe Inorganic materials 0.000 claims description 7
- IRPLSAGFWHCJIQ-UHFFFAOYSA-N selanylidenecopper Chemical compound [Se]=[Cu] IRPLSAGFWHCJIQ-UHFFFAOYSA-N 0.000 claims description 6
- QZCHKAUWIRYEGK-UHFFFAOYSA-N tellanylidenecopper Chemical compound [Te]=[Cu] QZCHKAUWIRYEGK-UHFFFAOYSA-N 0.000 claims description 6
- 229910001245 Sb alloy Inorganic materials 0.000 claims description 5
- 239000002140 antimony alloy Substances 0.000 claims description 5
- KGHMFMDJVUVBRY-UHFFFAOYSA-N antimony copper Chemical compound [Cu].[Sb] KGHMFMDJVUVBRY-UHFFFAOYSA-N 0.000 claims description 5
- 229910000765 intermetallic Inorganic materials 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 238000010891 electric arc Methods 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 claims 1
- 239000000654 additive Substances 0.000 description 6
- 238000010309 melting process Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000005275 alloying Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910018030 Cu2Te Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001370 Se alloy Inorganic materials 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010314 arc-melting process Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000289 melt material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- XSOKHXFFCGXDJZ-UHFFFAOYSA-N telluride(2-) Chemical compound [Te-2] XSOKHXFFCGXDJZ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0203—Contacts characterised by the material thereof specially adapted for vacuum switches
- H01H1/0206—Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
Definitions
- the invention relates to a method for producing melting materials made of copper (Cu), chromium (Cr) and at least one highly volatile component, an arc melting method being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without Macroscopic segregation of copper and chrome is caught.
- the invention also relates to a consumable electrode for use in this method, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component predetermined total composition of all components.
- EP-B-0115292 A method of the type mentioned at the outset is known from EP-B-0115292. Materials produced by such a method were initially intended for use as contact materials for vacuum medium-voltage circuit breakers with breaking currents above 10 kA. From EP-A-0172411 it is also known to provide such a material also as a contact material for vacuum contactors, the material for reducing the welding force adding at least one of the metals tellurium (Te), antimony (Sb), bismuth (Bi) and / or tin (Sn) and their alloys. The additives are introduced by subsequent alloying or diffusing into the contact pieces produced by the known method, which is comparatively lengthy and complex.
- Tellurium and / or selenium and / or antimony or bismuth in particular have proven to be suitable as additional components for copper-chromium contact materials for reducing the welding force.
- the elements mentioned are characterized by a high vapor pressure, so that additives of these elements evaporate easily when the arc is melted. Accordingly, it has been shown that the direct alloying of these additives is not possible when arc-melting copper-chromium, since the additives - especially if they are mixed in as a fine powder of the electrode - evaporate due to their high vapor pressure under the influence of the arc and lead to pore formation in the melting block .
- Tellurium or selenium or antimony form intermetallic compounds with copper, the vapor pressure and thus evaporation tendency - as measurements have shown - are reduced compared to the pure components tellurium and selenium or antimony.
- pore formation also occurs when the additives are not mixed as elemental tellurium or selenium or antimony, but as intermetallic compounds Cu2Te or Cu2Se or Cu3Sb in powder form. This is due to the gas loading of the finely divided Cu2Te or Cu2Se or Cu3Sb powder.
- a fine-particle powder has so far been considered essential for homogeneous distribution.
- tellurium has been specifically used after the arc melting and, if appropriate, after a corresponding shaping of the CuCr blanks, for example, by extrusion in a separate manufacturing step. This involves an additional process step that makes the manufacturing process more expensive.
- the object of the invention is to improve the method of the type mentioned at the outset in such a way that an easily evaporable Component can be introduced directly into the material during the melting process.
- suitable consumable electrodes should be specified that can be used in the context of an arc melting process.
- a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in Sum composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting.
- the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper Selenium or copper-antimony alloy is present as a solid part in the electrode structure.
- the invention enables the introduction of easily evaporable additives in arc-melted copper-chromium alloys directly during the melting process and thus the production of pore-free CuCrTe or CuCrSe or CuCrSb melting blocks, provided the correspondingly constructed melting electrodes are used.
- the introduction of tellurium in particular in the melting process all effects leading to pore formation are now avoided.
- massive rods of a CuTe alloy, such as CuTe0.6 can be introduced into a tube electrode, which are then coated with CuCr powder.
- 1 denotes a copper tube with the cross-sectional dimensions of, for example, 70 ⁇ 2 mm.
- the copper pipe 1 may, for example OFHC (o Xigen f ree h igh c onductive) - or SF (s auerstof f rei) material may be used.
- Reference numeral 2 denotes a CuCr powder mixture in low-gas quality with a predetermined particle size distribution.
- Fig. 1 three solid rods 3 to 5 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 are embedded in the powder mixture 2 made of CuCr.
- This material is known according to DIN 17666 under the material number 2.1546 with a tellurium content of 0.4 to 0.7 m%.
- the number of rods can expediently be varied between one and ten, their number and the diameter and the tellurium or selenium or antimony content of the individual rod as a result determine the concentration of the finished material.
- the profile of the individual bar is irrelevant; the rods can, for example, as round or. Square part or be designed as a tube.
- the concentration in the CuCr powder mixture can be varied. Powder from 25 m% Cr up to pure Cr powder are possible.
- FIG. 3 a plurality of individual sections 13 of rods or profiles with a predetermined cross section made of CuTe0.6 material are approximately uniformly embedded in the copper tube 1 with CuCr powder mixture 2. If a melting electrode constructed in this way is used, the highly evaporable component in the melting material is also largely bonded.
- Fig. 4 there is an outer tube 41 with the cross-sectional dimensions 70 ⁇ 2 mm made of CuTe material.
- a CuCr powder mixture 42 is introduced into the tube 41. Even with a melting electrode constructed in this way, the tellurium remains bound during the melting process and alloys into the melting material.
- the composition of the CuCrTe or CuCrSe or CuCrSb melt material to be produced for a given rod diameter should in particular be determined by the number of rods on the one hand and by the tellurium or selenium or antimony content in the rods on the other hand: From a manufacturing point of view it is theoretically possible that rods made of copper-tellurium alloys as solid parts can have a tellurium content of up to 8.2% by mass.
- the table below shows a number of examples specifically for the production of CuCrTe melting materials using a melting electrode according to FIG. 1 or 2, such as the number of rods, their tellurium content and the composition of the copper-chromium powder mixture the concentration of the finished melting material can be influenced.
- a tube electrode with ⁇ 70 ⁇ 2 mm is assumed.
- the tellurium content of the melting material is also determined by the number and diameter of the CuTe rods or the diameter and thickness of the CuTe tube.
- two rods of CuTe0.6 with a diameter of 10 mm already have a tellurium content in the melting material of 0.1 m%.
- the arc melting with the above-described melting electrodes takes place in the manner described in EP-B-0115292 under a protective gas atmosphere; for example, 100 mb helium or argon have proven to be suitable.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Discharge Heating (AREA)
Description
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Schmelzwerkstoffen aus Kupfer (Cu), Chrom (Cr) und wenigstens einer leichtverdampflichen Komponente, wobei ein Lichtbogenschmelzverfahren angewandt wird, bei dem das von einer Abschmelzelektrode vorgegebener Summenzusammensetzung abschmelzende Elektrodenmaterial in einer wassergekühlten Kokille zwecks Abkühlung ohne makroskopische Entmischung von Kupfer und Chrom aufgefangen wird. Daneben bezieht sich die Erfindung auch auf eine Abschmelzelektrode zur Verwendung bei diesem Verfahren, die aus Kupfer (Cu) und Chrom (Cr) sowie Tellur (Te) und/oder Selen (Se) und/oder Antimon (Sb) als leicht verdampfliche Komponente mit vorgegebener Summenzusammensetzung aller Komponenten besteht.The invention relates to a method for producing melting materials made of copper (Cu), chromium (Cr) and at least one highly volatile component, an arc melting method being used in which the electrode material melting from a melting electrode is melted in a water-cooled mold for the purpose of cooling without Macroscopic segregation of copper and chrome is caught. In addition, the invention also relates to a consumable electrode for use in this method, which consists of copper (Cu) and chromium (Cr) as well as tellurium (Te) and / or selenium (Se) and / or antimony (Sb) as an easily evaporable component predetermined total composition of all components.
Ein Verfahren der eingangs genannten Art ist aus der EP-B-0115292 bekannt. Nach einem derartigen Verfahren hergestellte Werkstoffe waren zunächst zur Verwendung als Kontaktwerkstoffe für Vakuum-Mittelspannungsleistungsschalter mit Ausschaltströmen oberhalb 10 kA vorgesehen. Aus der EP-A-0172411 ist es darüberhinaus bekannt, einen solchen Werkstoff auch als Kontaktwerkstoff für Vakuumschütze vorzusehen, wobei der Werkstoff zur Herabsetzung der Schweißkraft Zusätze wenigstens eines der Metalle Tellur (Te), Antimon (Sb), Wismut (Bi) und/oder Zinn (Sn) sowie deren Legierungen aufweisen kann. Das Einbringen der Zusätze erfolgt dabei durch nachträgliches Einlegieren oder Eindiffundieren in die nach dem bekannten Verfahren gefertigten Kontaktstücke, was vergleichsweise langwierig und aufwendig ist.A method of the type mentioned at the outset is known from EP-B-0115292. Materials produced by such a method were initially intended for use as contact materials for vacuum medium-voltage circuit breakers with breaking currents above 10 kA. From EP-A-0172411 it is also known to provide such a material also as a contact material for vacuum contactors, the material for reducing the welding force adding at least one of the metals tellurium (Te), antimony (Sb), bismuth (Bi) and / or tin (Sn) and their alloys. The additives are introduced by subsequent alloying or diffusing into the contact pieces produced by the known method, which is comparatively lengthy and complex.
Speziell Tellur und/oder Selen und/oder Antimon oder auch Wismut haben sich als Zusatzkomponenten für Kupfer-Chrom-Kontaktwerkstoffe zur Schweißkraftsenkung als geeignet erwiesen. Die genannten Elemente zeichnen sich jedoch durch einen hohen Dampfdruck aus, so daß Zusätze dieser Elemente beim Lichtbogenschmelzen leicht verdampfen. Dementsprechend hat sich gezeigt, daß das unmittelbare Einlegieren dieser Zusätze beim Lichtbogenschmelzen von Kupfer-Chrom nicht möglich ist, da die Zusätze ― insbesondere wenn sie als feinteiliges Pulver der Elektrode zugemischt werden ― aufgrund ihres hohen Dampfdruckes unter der Lichtbogeneinwirkung verdampfen und zur Porenbildung im Schmelzblock führen. Tellur oder Selen oder Antimon bilden mit Kupfer intermetallische Verbindungen, deren Dampfdruck und damit Verdampfungsneigung ― wie Messungen gezeigt haben ― gegenüber den reinen Komponenten Tellur und Selen oder Antimon herabgesetzt ist. Es tritt jedoch auch dann Porenbildung auf, wenn die Zusätze nicht als elementares Tellur oder Selen oder Antimon, sondern als intermetallische Verbindungen Cu₂Te oder Cu₂Se oder Cu₃Sb in Pulverform zugemischt werden. Dies ist auf die Gasbeladung der feinteiligen Cu₂Te- bzw. Cu₂Se- bzw. Cu₃Sb-Pulver zurückzuführen. Ein feinteiliges Pulver wird bisher aber für eine homogene Verteilung als zwingend notwendig erachtet.Tellurium and / or selenium and / or antimony or bismuth in particular have proven to be suitable as additional components for copper-chromium contact materials for reducing the welding force. However, the elements mentioned are characterized by a high vapor pressure, so that additives of these elements evaporate easily when the arc is melted. Accordingly, it has been shown that the direct alloying of these additives is not possible when arc-melting copper-chromium, since the additives - especially if they are mixed in as a fine powder of the electrode - evaporate due to their high vapor pressure under the influence of the arc and lead to pore formation in the melting block . Tellurium or selenium or antimony form intermetallic compounds with copper, the vapor pressure and thus evaporation tendency - as measurements have shown - are reduced compared to the pure components tellurium and selenium or antimony. However, pore formation also occurs when the additives are not mixed as elemental tellurium or selenium or antimony, but as intermetallic compounds Cu₂Te or Cu₂Se or Cu₃Sb in powder form. This is due to the gas loading of the finely divided Cu₂Te or Cu₂Se or Cu₃Sb powder. A fine-particle powder has so far been considered essential for homogeneous distribution.
Da das unmittelbare Einlegieren von Tellur bzw. Selen bzw. Antimon oder deren intermetallischer Cu-Verbindungen beim Schmelzprozess in der beschriebenen Weise nicht möglich ist, wurde bisher entsprechend der EP-A-0172411 speziell Tellur im Anschluß an das Lichtbogenschmelzen und gegebenenfalls nach einer entsprechenden Formgebung der CuCr-Rohlinge durch beispielsweise Fließpressen in einem separatem Fertigungsschritt eingebracht. Dabei wird ein zusätzlicher Verfahrensschritt in Kauf genommen, der das Herstellungsverfahren verteuert.Since the direct alloying of tellurium or selenium or antimony or their intermetallic Cu compounds in the melting process is not possible in the manner described, according to EP-A-0172411, tellurium has been specifically used after the arc melting and, if appropriate, after a corresponding shaping of the CuCr blanks, for example, by extrusion in a separate manufacturing step. This involves an additional process step that makes the manufacturing process more expensive.
Aufgabe der Erfindung ist es demgegenüber, das Verfahren der eingangs genannten Art so zu verbessern, daß eine leichtverdampfliche Komponente direkt beim Schmelzprozeß in den Werkstoff eingebracht werden kann. Dazu sollen geeignete Abschmelzelektroden angegeben werden, die im Rahmen eines Lichtbogenschmelzverfahrens verwendet werden können.In contrast, the object of the invention is to improve the method of the type mentioned at the outset in such a way that an easily evaporable Component can be introduced directly into the material during the melting process. For this purpose, suitable consumable electrodes should be specified that can be used in the context of an arc melting process.
Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß zum Erschmelzen des Werkstoffes mit der leichtverdampflichen Komponente eine solche Abschmelzelektrode verwendet wird, die teilweise aus einer festen Legierung von Kupfer mit der leichtverdampflichen Komponente besteht, wobei die Konzentration der leichtverdampflichen Komponente in der Legierung höher ist als in der Summenzusammensetzung des Schmelzwerkstoffes, und daß beim Erschmelzen die leichtverdampfliche Komponente im Schmelzwerkstoff gebunden bleibt. Bei einer Abschmelzelektrode zur Verwendung bei diesem Verfahren, die aus Kupfer und Chrom sowie Tellur und/oder Selen und/oder Antimon besteht, ist die leichtverdampfliche Komponente zumindest zum Teil als intermetallische Verbindung im Kupfer legiert, wobei die Kupfer-Tellur- bzw. Kupfer-Selen- bzw. Kupfer-Antimon-Legierung im Elektrodenaufbau als Massivteil vorliegt.The object is achieved in that such a melting electrode is used to melt the material with the easily evaporable component, which partially consists of a solid alloy of copper with the easily evaporable component, the concentration of the easily evaporable component in the alloy being higher than in Sum composition of the melting material, and that the easily evaporable component remains bound in the melting material during melting. In the case of a melting electrode for use in this method, which consists of copper and chromium and tellurium and / or selenium and / or antimony, the easily evaporable component is at least partially alloyed as an intermetallic compound in the copper, the copper-tellurium or copper Selenium or copper-antimony alloy is present as a solid part in the electrode structure.
Die Erfindung ermöglicht das Einbringen von leichtverdampflichen Zusätzen in lichtbogengeschmolzene Kupfer-Chrom-Legierungen direkt beim Schmelzprozess und damit die Herstellung porenfreier CuCrTe- bzw. CuCrSe- bzw. CuCrSb-Schmelzblöcke, sofern die entsprechend aufgebauten Abschmelzelektroden verwendet werden. Für das Einbringen von insbesondere Tellur beim Schmelzprozeß werden nunmehr alle zur Porenbildung führenden Effekte vermieden. Beispielsweise können in eine Rohrelektrode massive Stangen einer CuTe-Legierung wie etwa CuTe0,6 eingebracht werden, die dann mit CuCr-Pulver umhüllt werden.The invention enables the introduction of easily evaporable additives in arc-melted copper-chromium alloys directly during the melting process and thus the production of pore-free CuCrTe or CuCrSe or CuCrSb melting blocks, provided the correspondingly constructed melting electrodes are used. For the introduction of tellurium in particular in the melting process, all effects leading to pore formation are now avoided. For example, massive rods of a CuTe alloy, such as CuTe0.6, can be introduced into a tube electrode, which are then coated with CuCr powder.
Es wurde festgestellt, daß der Dampfdruck von beispielsweise massivem CuTe0,6 wesentlich niedriger ist als der von reinem Tellur bzw. Kupfertellurid. Dadurch findet beim Umschmelzen kein Verdampfen der Te-Komponente statt, wodurch das Tellur im Schmelzwerkstoff gebunden bleibt. Auch die Gasbeladung von tellurhaltigem Pulver entfällt beim erfindungsgemäßen Herstellungsverfahren. Es wird somit erreicht, daß erstmalig porenfreie lichtbogengeschmolzene CuCrTe- oder CuCrSe- oder CuCrSb- sowie auch CuCrTeSe- oder CuCrTeSb-Werkstoffe ohne zusätzliche Fertigungsschritte hergestellt werden können.It was found that the vapor pressure of, for example, massive CuTe0.6 is significantly lower than that of pure tellurium or copper telluride. This takes place when remelting no evaporation of the Te component takes place, as a result of which the tellurium remains bound in the melting material. The gas loading of tellurium-containing powder is also eliminated in the manufacturing process according to the invention. It is thus achieved that pore-free arc-melted CuCrTe or CuCrSe or CuCrSb as well as CuCrTeSe or CuCrTeSb materials can be produced for the first time without additional manufacturing steps.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit den Patentansprüchen.
- Es zeigen Fig. 1 und 2 zwei Beispiele für eine Abschmelzelektrode erster Art im Querschnitt,
- Fig. 3 eine andere Abschmelzelektrode im Längsschnitt und
- Fig. 4 eine weitere Abschmelzelektrode im Querschnitt.
- 1 and 2 show two examples of a melting electrode of the first type in cross section,
- Fig. 3 shows another melting electrode in longitudinal section and
- Fig. 4 shows a further consumable electrode in cross section.
Die Figuren sind etwa im Maßstab 1: 2 gezeichnet, so daß die jeweiligen Größenverhältnisse vergleichbar sind. Identische Teile haben die gleichen Bezugszeichen, wobei die Figuren teilweise zusammen beschrieben werden.The figures are drawn approximately on a scale of 1: 2, so that the respective proportions are comparable. Identical parts have the same reference numerals, the figures being partially described together.
In den Fig. 1 bis 3 kennzeichnet 1 ein Kupfer-Rohr mit den Querschnittsabmessungen von beispielsweise 70 × 2 mm. Für das Kupferrohr 1 kann zum Beispiel OFHC (oxigen free high conductive)- bzw. SF (sauerstoffrei)-Material verwendet werden. Bezugszeichen 2 bedeutet eine CuCr-Pulvermischung in gasarmer Qualität vorgegebener Teilchengrößenverteilung.1 to 3, 1 denotes a copper tube with the cross-sectional dimensions of, for example, 70 × 2 mm. For the copper pipe 1 may, for example OFHC (o Xigen f ree h igh c onductive) - or SF (s auerstof f rei) material may be used. Reference numeral 2 denotes a CuCr powder mixture in low-gas quality with a predetermined particle size distribution.
In Fig. 1 sind in die Pulvermischung 2 aus CuCr drei Massivstangen 3 bis 5 mit Durchmesser von 10 mm aus einer Legierung aus beispielsweise CuTe0,6 eingebettet. Dieser Werkstoff ist gemäß DIN 17666 unter der Werkstoffnummer 2.1546 mit einem Tellurgehalt von 0,4 bis 0,7 m-% bekannt. Ganz entsprechend sind in Fig. 2 neun Stangen 3 bis 11 mit Durchmesser von 10 mm aus einer Legierung aus beispielsweise CuTe0,6 in der CuCr-Pulvermischung 2 eingebettet.In Fig. 1, three solid rods 3 to 5 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 are embedded in the powder mixture 2 made of CuCr. This material is known according to DIN 17666 under the material number 2.1546 with a tellurium content of 0.4 to 0.7 m%. Are in accordance with Fig. 2 nine rods 3 to 11 with a diameter of 10 mm made of an alloy of, for example, CuTe0.6 embedded in the CuCr powder mixture 2.
Es hat sich gezeigt, daß bei der in Fig. 1 oder Fig. 2 vorgegebenen Geometrie des Kupferrohres die Anzahl der Stangen zweckmäßigerweise zwischen einer und zehn variiert werden kann, wobei deren Anzahl sowie der Durchmesser und der Tellur- bzw. Selen- bzw. Antimongehalt der einzelnen Stange im Ergebnis die Konzentration des fertigen Werkstoffes bestimmen. Dabei spielt das Profil der einzelnen Stange keine Rolle; die Stangen können beispielsweise als Rund-bzw. Vierkantteil oder auch als Rohr ausgebildet sein.It has been shown that with the geometry of the copper pipe given in FIG. 1 or FIG. 2, the number of rods can expediently be varied between one and ten, their number and the diameter and the tellurium or selenium or antimony content of the individual rod as a result determine the concentration of the finished material. The profile of the individual bar is irrelevant; the rods can, for example, as round or. Square part or be designed as a tube.
Weiterhin kann die Konzentration in der CuCr-Pulvermischung variiert werden. Es kommen Pulver ab 25 m-% Cr bis zu reinem Cr-Pulver in Frage.Furthermore, the concentration in the CuCr powder mixture can be varied. Powder from 25 m% Cr up to pure Cr powder are possible.
In Fig. 3 sind in das Kupferrohr 1 mit CuCr-Pulvermischung 2 in etwa gleichmäßig eine Vielzahl von Einzelabschnitten 13 von Stangen oder Profilen mit vorgegebenem Querschnitt aus CuTe0,6-Material eingebettet. Bei Verwendung einer so aufgebauten Abschmelzelektrode ergibt sich ebenfalls eine weitgehende Bindung der leichtverdampflichen Komponente im Schmelzwerkstoff.In FIG. 3, a plurality of
In Fig. 4 besteht ein äußeres Rohr 41 mit den Querschnittsabmessungen 70 × 2 mm aus CuTe-Material. In das Rohr 41 ist eine CuCr-Pulvermischung 42 eingebracht. Auch bei einer derartig aufgebauten Abschmelzelektrode bleibt das Tellur beim Abschmelzen gebunden und legiert in den Schmelzwerkstoff ein.In Fig. 4 there is an
Speziell bei den Abschmelzelektroden gemäß den Fig. 1 oder Fig. 2 soll die Zusammensetzung des herzustellenden CuCrTe- oder CuCrSe- oder CuCrSb-Schmelzwerkstoffes bei vorgegebenem Stangendurchmesser insbesondere durch die Anzahl der Stangen einerseits und durch den Tellur- bzw. Selen- bzw. Antimongehalt in den Stangen andererseits vorgegeben werden: Fertigungstechnisch ist es theoretisch möglich, daß Stangen aus Kupfer-Tellur-Legierungen als Massivteile einen Tellurgehalt von bis zu 8,2% Massengehalt aufweisen können. Dies würde bei einer maximalen Zahl von zehn Stangen CuTe8,2 mit ⌀ 10 mm in einem Kupferrohr ⌀ 70 × 2 mm zu einem CuCr50Te4,1-Werkstoff führen, sofern auch das Rohr aus der CuTe-Vorlegierung besteht. Einer Herstellung von Massivlegierungen mit höherem Tellurgehalt steht die im Zweistoffsystem CuTe auftretende Entmischung im flüssigen Zustand entgegen. Ähnliches gilt auch für Kupfer-Selen-Legierungen, da auch im System CuSe oberhalb von 2,2 m-% eine Entmischung im flüssigen Zustand vorliegt. Damit ist bei maximaler Stangenzahl von zehn ein CuCr50Se1,1-Werkstoff herstellbar. Bezüglich einer Abschmelzelektrode mit einem Antimongehalt wird auf Anspruch 13 hingewiesen.Especially in the case of the consumable electrodes according to FIG. 1 or 2, the composition of the CuCrTe or CuCrSe or CuCrSb melt material to be produced for a given rod diameter should in particular be determined by the number of rods on the one hand and by the tellurium or selenium or antimony content in the rods on the other hand: From a manufacturing point of view it is theoretically possible that rods made of copper-tellurium alloys as solid parts can have a tellurium content of up to 8.2% by mass. With a maximum number of ten rods of CuTe8.2 with ⌀ 10 mm in a copper tube ⌀ 70 × 2 mm, this would lead to a CuCr50Te4.1 material, provided that the tube also consists of the CuTe pre-alloy. The production of solid alloys with a higher tellurium content is prevented by the segregation in the CuTe two-component system in the liquid state. The same applies to copper-selenium alloys, since even in the CuSe system there is a separation in the liquid state above 2.2 m%. This means that a CuCr50Se1.1 material can be produced with a maximum number of rods of ten. With regard to a melting electrode with an antimony content, reference is made to claim 13.
In der nachfolgenden Tabelle ist für eine Reihe von Beispielen speziell zur Herstellung von CuCrTe-Schmelzwerkstoffen unter Verwendung einer Abschmelzelektrode nach Fig. 1 oder Fig. 2 zusammengestellt, wie durch die Anzahl der Stangen, deren Tellurgehalt und durch die Zusammensetzung der Kupfer-Chrom-Pulvermischung die Konzentration des fertigen Schmelzwerkstoffes beeinflußbar ist. Dabei wird durchweg von einer Rohrelektrode mit ∅ 70 × 2 mm ausgegangen. Zum Herstellen anderer Abmessungen ist auch die Verwendung von Rohrelektroden größeren bzw. kleineren Durchmessers, beispielsweise zwischen 50 und 100 mm, möglich. Der Tellurgehalt des Schmelzwerkstoffes wird dabei ebenfalls durch Anzahl und Durchmesser der CuTe-Stangen bzw. Durchmesser und Dicke des CuTe-Rohres bestimmt. So ergibt sich bei Cu-Rohren ∅ 52 × 2 mm schon bei zwei Stangen CuTe0,6 mit 10 mm Durchmesser ein Tellurgehalt im Schmelzwerkstoff von 0,1 m-%.The table below shows a number of examples specifically for the production of CuCrTe melting materials using a melting electrode according to FIG. 1 or 2, such as the number of rods, their tellurium content and the composition of the copper-chromium powder mixture the concentration of the finished melting material can be influenced. A tube electrode with ∅ 70 × 2 mm is assumed. To produce other dimensions, the use of tubular electrodes of larger or smaller diameter, for example between 50 and 100 mm, is also possible. The tellurium content of the melting material is also determined by the number and diameter of the CuTe rods or the diameter and thickness of the CuTe tube. For copper pipes ∅ 52 × 2 mm, two rods of CuTe0.6 with a diameter of 10 mm already have a tellurium content in the melting material of 0.1 m%.
Entsprechende Berechnungen für die Dimensionierung der Rohrelektrode und der Anzahl der Stangen lassen sich für CuCrSe- bzw. CuCrSb- und auch für CuCrTeSe- und CuCrTeSb-Schmelzwerkstoffe durchführen.Corresponding calculations for the dimensioning of the tube electrode and the number of rods can be made for CuCrSe or CuCrSb and also for CuCrTeSe and CuCrTeSb melting materials carry out.
Das Lichtbogenschmelzen mit den oben beschriebenen Abschmelzelektroden erfolgt in der in der EP-B-0115292 beschriebenen Weise unter Schutzgasatmosphäre; beispielsweise haben sich 100 mb Helium oder Argon als geeignet erwiesen.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3737135 | 1987-11-02 | ||
DE3737135 | 1987-11-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0314981A1 EP0314981A1 (en) | 1989-05-10 |
EP0314981B1 true EP0314981B1 (en) | 1991-09-18 |
Family
ID=6339604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88117417A Expired - Lifetime EP0314981B1 (en) | 1987-11-02 | 1988-10-19 | Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process |
Country Status (7)
Country | Link |
---|---|
US (1) | US4906291A (en) |
EP (1) | EP0314981B1 (en) |
JP (1) | JPH0784628B2 (en) |
KR (1) | KR960006449B1 (en) |
CN (1) | CN1018934B (en) |
DE (1) | DE3864979D1 (en) |
IN (1) | IN171315B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0368860A1 (en) * | 1987-07-28 | 1990-05-23 | Siemens Aktiengesellschaft | Contact material for vacuum switches and process for manufacturing same |
DE3915155A1 (en) * | 1989-05-09 | 1990-12-20 | Siemens Ag | METHOD FOR PRODUCING MELTING MATERIALS FROM COPPER, CHROME AND AT LEAST ONE OXYGEN REFINING COMPONENT, AND MELTING ELECTRODE FOR USE IN SUCH A METHOD |
GB2344110A (en) * | 1998-11-27 | 2000-05-31 | George Mcelroy Carloss | The production of alloy granules and their use in hydrogen generation |
JP2011108380A (en) * | 2009-11-13 | 2011-06-02 | Hitachi Ltd | Electric contact for vacuum valve, and vacuum interrupter using the same |
CN102286673B (en) * | 2011-08-29 | 2013-04-17 | 上海理工大学 | Preparation method of CuCr25Me alloy cast blank |
CN103706783B (en) * | 2013-10-15 | 2017-02-15 | 陕西斯瑞新材料股份有限公司 | High-fusion-welding-resistance CuCr40Te contact material and preparation method thereof |
KR102172848B1 (en) * | 2017-02-07 | 2020-11-02 | 주식회사 엘지화학 | Preparation method of long-life electrode for secondary battery |
CN111593224B (en) * | 2020-04-22 | 2021-05-07 | 陕西斯瑞新材料股份有限公司 | Preparation method of consumable electrode bar for copper-chromium arc melting |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4836071B1 (en) * | 1968-07-30 | 1973-11-01 | ||
US3933474A (en) * | 1974-03-27 | 1976-01-20 | Norton Company | Leech alloying |
US4088475A (en) * | 1976-11-04 | 1978-05-09 | Olin Corporation | Addition of reactive elements in powder wire form to copper base alloys |
CA1202490A (en) * | 1981-08-26 | 1986-04-01 | Charles B. Adasczik | Alloy remelting process |
DE3303170A1 (en) * | 1983-01-31 | 1984-08-02 | Siemens AG, 1000 Berlin und 8000 München | METHOD FOR PRODUCING COPPER-CHROME MELTING ALLOYS AS A CONTACT MATERIAL FOR VACUUM CIRCUIT BREAKER |
US4481030A (en) * | 1983-06-01 | 1984-11-06 | The United States Of America As Represented By The United States Department Of Energy | Tantalum-copper alloy and method for making |
DE3344684A1 (en) * | 1983-12-10 | 1985-06-20 | Leybold-Heraeus GmbH, 5000 Köln | Closed electric arc furnace for consumable electrodes |
DE3565907D1 (en) * | 1984-07-30 | 1988-12-01 | Siemens Ag | Vacuum contactor with contact pieces of cucr and process for the production of such contact pieces |
-
1988
- 1988-10-19 EP EP88117417A patent/EP0314981B1/en not_active Expired - Lifetime
- 1988-10-19 DE DE8888117417T patent/DE3864979D1/en not_active Expired - Lifetime
- 1988-10-24 IN IN874/CAL/88A patent/IN171315B/en unknown
- 1988-10-28 US US07/264,327 patent/US4906291A/en not_active Expired - Fee Related
- 1988-10-28 JP JP63274351A patent/JPH0784628B2/en not_active Expired - Lifetime
- 1988-11-01 CN CN88107634A patent/CN1018934B/en not_active Expired
- 1988-11-02 KR KR1019880014408A patent/KR960006449B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE3864979D1 (en) | 1991-10-24 |
CN1041975A (en) | 1990-05-09 |
KR890008336A (en) | 1989-07-10 |
JPH0784628B2 (en) | 1995-09-13 |
JPH01149930A (en) | 1989-06-13 |
EP0314981A1 (en) | 1989-05-10 |
IN171315B (en) | 1992-09-19 |
US4906291A (en) | 1990-03-06 |
CN1018934B (en) | 1992-11-04 |
KR960006449B1 (en) | 1996-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0115292B1 (en) | Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches | |
DE69433453T2 (en) | Vacuum switch and electrical contact used in it | |
DE2346179A1 (en) | COMPOSITE METAL AS CONTACT MATERIAL FOR VACUUM SWITCHES | |
EP0314981B1 (en) | Process for production of smelting material containing copper, chromium and at least one volatile component and consumable electrode for use in such a process | |
DE69506776T2 (en) | Vacuum switch and method of making the same | |
DE68914905T2 (en) | Contact material for a vacuum switch. | |
DE69221398T2 (en) | Process for the production of contact materials for vacuum switches | |
EP0586410B1 (en) | Silver-based contact material for use in power-engineering switchgear, and a method of manufacturing contacts made of this material | |
EP0172411B1 (en) | Vacuum contactor with contact pieces of cucr and process for the production of such contact pieces | |
DE1558666C2 (en) | Alloy for erosion-proof electrical contacts | |
DE2514237A1 (en) | PROCESS FOR PRODUCING AN ELECTRICAL CONTACT MATERIAL | |
DE69825227T2 (en) | vacuum switch | |
EP0474628A1 (en) | PROCESS FOR PRODUCING A CuCr CONTACT MATERIAL FOR VACUUM SWITCHES AND APPROPRIATE CONTACT MATERIAL. | |
EP0099066B2 (en) | Process for manufacturing a composite article from chromium and copper | |
EP1130608B1 (en) | Process for the manufacture of a contact material for contacts elements for vacuum switches, contact material and contact elements | |
DE69219397T2 (en) | Silver-based metal oxide material for electrical contacts | |
EP0586411A1 (en) | SILVER-BASED CONTACT MATERIAL FOR USE IN SWITCHING APPARATUS IN HIGH CURRENT TECHNOLOGY, AS WELL AS PROCESS FOR THE MANUFACTURE OF CONTACT PARTS THEREOF. | |
DE102009056504B4 (en) | A method of making an inclusion-free Nb alloy of powder metallurgy material for an implantable medical device | |
CH652246A5 (en) | SURGE ARRESTERS. | |
DE69614489T2 (en) | Contact material for vacuum switch and process for its manufacture | |
DE3427034C2 (en) | Use of an oxygen-free copper deoxidized by boron or lithium for hollow profiles | |
DE3402091C2 (en) | Composite material for electrical contact pieces | |
EP0234246A1 (en) | Switch contact members for vacuum switch apparatuses, and method for their production | |
DE3915155C2 (en) | ||
DE4110600C2 (en) | Electrode for a vacuum circuit breaker |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19890627 |
|
17Q | First examination report despatched |
Effective date: 19901206 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3864979 Country of ref document: DE Date of ref document: 19911024 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920124 Year of fee payment: 4 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921016 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19921031 Ref country code: CH Effective date: 19921031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19931020 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19941020 Year of fee payment: 7 |
|
EUG | Se: european patent has lapsed |
Ref document number: 88117417.1 Effective date: 19940510 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19950918 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19951017 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19951031 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 19951031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19961019 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19970501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19961019 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19970501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19971029 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19981217 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051019 |