EP0313560B1 - Membrane system with flexion-resistant rotationally symmetric plate for use as a sound reflecting or receiving element - Google Patents
Membrane system with flexion-resistant rotationally symmetric plate for use as a sound reflecting or receiving element Download PDFInfo
- Publication number
- EP0313560B1 EP0313560B1 EP19870903856 EP87903856A EP0313560B1 EP 0313560 B1 EP0313560 B1 EP 0313560B1 EP 19870903856 EP19870903856 EP 19870903856 EP 87903856 A EP87903856 A EP 87903856A EP 0313560 B1 EP0313560 B1 EP 0313560B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plate
- diaphragm
- wall thickness
- edge
- diaphragm system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/12—Non-planar diaphragms or cones
- H04R7/122—Non-planar diaphragms or cones comprising a plurality of sections or layers
Definitions
- the invention relates to a membrane system with a plate according to the preamble of claim 1 and applications of the membrane system.
- a plate is understood to mean a structure that has no inner edge.
- the plate can be used as a membrane or membrane part for sound transducers, in particular loudspeakers of all kinds for the reproduction of speech or music, e.g. in a dome emitter, in a pressure chamber system or as the middle part of a loudspeaker cone or plate.
- a membrane for electroacoustic transducer systems which is characterized as a vibration system by a predominant resistance inhibition;
- the inner portion is designed as a light, rigid or rigid, piston radiator-like vibrating body, which is driven by electromagnetic forces.
- the thickness (wall thickness) of the piston body-like vibrating body differs at different points, with an increase in thickness towards the drive point being provided in particular. This is particularly intended to achieve a low level of distortion.
- the invention aims more towards a membrane system with a plate for use as a piston transducer with elastic edge clamping, the sound-radiating or absorbing surface of the plate being significantly larger than the corresponding surface of a flexible elastic edge ring (bead) used for edge clamping.
- the invention is based on calculations and tests which have shown that good mechanical properties can be achieved with the shape of the plate found, with the result that disruptive partial vibrations are largely avoided.
- a certain course of the bending rigidity and the area moment of inertia must be maintained or approximated from the inside to the outside of the plate.
- stiffening struts or trusses are preferably dispensed with and instead a preferably solid shape is selected, to which foamed variants are also to be counted.
- the preamble of claim 1 contains the feature that the plate is driven "near its edge". This means that the drive for the plate is located in an annular edge region of the plate, which preferably extends from 90% of the plate radius to the edge of the plate.
- the attachment zone at the edge mentioned in claim 1 can be the zone for attaching the drive of the plate and / or for attaching an edge ring which the plate has on its edge and which in turn is clamped in place so that the guide Plate is guaranteed in the axial direction.
- the fastening zone can also be the zone where the plate is connected to a membrane, for example a cone membrane of a loudspeaker, the plate being the inner edge or the center of the membrane covered or bridged.
- the mounting zone where the plate is connected to the drive and the mounting zone where the plate is connected to an edge ring will have the same value of the radial coordinate.
- the fastening zone where the plate is connected to the membrane and the drive can be at the same radial coordinate value.
- FIG. 1 shows a half of a radial section through a membrane M, which is provided on its inner edge with a radial guide R f (not mandatory) and an electromagnetic drive E, which acts in the direction of the membrane axis 1.
- the membrane is rigid, ring-shaped, rotationally symmetrical and conical.
- the drive is both plate and membrane drive.
- the membrane M merges into an edge ring R r , which is flexible and ring-shaped and has the shape of a Sikke. (An edge ring with several beads can also be used.)
- the edge ring R r has on its outer edge an annular extension F, which serves to clamp the edge ring and thus indirectly the membrane M.
- a rotationally symmetrical, rigid plate P is now glued inside the inner edge of the membrane M and serves as a spherical oscillator and dust protection for the drive E.
- the membrane M and the plate P are glued together in a manner not shown.
- the glue point is called the fastening zone.
- Their radial extent has been assumed to be negligibly small in the schematic FIG. 1.
- the plate P and the membrane M can also be made in one piece.
- the wall thickness maximum K x is therefore outside half the plate radius, but still within the radial coordinate value r i for the drive E, which in the example shown is equal to R0, the radial coordinate value for the edge of the plate.
- the plate and the membrane preferably consist of homogeneous or foamed material with a smooth surface; if a higher effort and thus a higher price is permitted, sandwich molds are preferred, as stated in claims 9, 10, 21, 22.
- FIG. 2 shows an enlarged section 11 from FIG. 1, that is to say the fastening zone where the edge ring R r is fastened to the outer edge of the membrane M.
- the wall thickness S of the edge ring R r in the region between the fastening zones V and F follows the relationship specified in claim 25 with a permissible deviation of ⁇ 20%, the permissible deviation preferably being restricted in accordance with claim 26.
- the features specified in claims 27 to 29 should be observed with regard to the material density and the modulus of elasticity.
- the loudspeaker shown schematically in section in FIG. 3 has a permanent magnetic ring magnet 2 with a soft magnetic core 3 and with a pole plate 4.
- a diaphragm drive E 'on a cylinder Z which is guided by a radial guide Rf and via which a diaphragm M is driven.
- This is a so-called Nawi membrane (membrane that cannot be unwound) that deviates from the cone shape (FIG. 1), but nevertheless has a wall thickness profile corresponding to FIG. 1.
- the membrane shape resembles an exponential funnel.
- the regulations for the embodiments of the invention with membrane are also applicable to other basic membrane forms, e.g. on flat membranes or bell-shaped.
- Basic shapes other than the arched one shown can also be used for the plate P (the edge of which is attached to the membrane at the maximum wall thickness).
- the radial coordinate for the diaphragm drive E 'does not coincide with the radial coordinate for the edge of the plate. However, if one only looks at the plate P, it is actually directly driven at its edge by the membrane M, so the membrane is the "drive" for the plate.
- the membrane M merges at its outer edge into an edge ring R r , the extension F of which is attached to a loudspeaker basket 5, which in turn is connected to the pole plate 4.
- the statements made in connection with FIG. 1 apply to the edge ring.
- FIG. 4 shows a more precise and preferred cross-sectional profile for The membrane and plate (each made of homogeneous material) of the loudspeaker according to FIG. 3, but using a conical membrane M. It can be seen that the plate P is attached to the wall thickness of the membrane M at a maximum H m .
- H m the membrane drive E 'is attached, while the drive of the plate P is carried out by the membrane M at the location of the maximum wall thickness H m .
- the edge of the plate P need not necessarily be exactly at the location of the maximum H m .
- the plate could, for example, have only 90% of its diameter or could be much larger than shown.
- the tolerance values + 50% or + 30% of claims 15 or 16 must be regarded as correspondingly reduced if the outer radius of the membrane 4r in / 3 plus the tolerance values of 50% or 30% does not even reach.
- the tolerance range is preferably used only from -5% to + 10%.
- FIG. 5 shows an application example of the plate P according to the invention, which is used here in a spherical speaker, which in turn is shown in section. It has a permanent magnet 6 with a soft magnetic pot 7 and a yoke 8, supplemented by a soft magnetic ring 8a. Apart from clamping rings 9 to 13 and clamping screws 14 and 15, the remaining reference numerals correspond to those in the other figures. The same applies to the edge ring R r as said in connection with FIG. 1. Its wall thickness decreases increasingly steeply starting from its fastening zone on its inner edge towards the fastening zone on the outer edge. With regard to the wall thickness profile of the plate P, reference is made to FIG. 6.
- the profile of the plate P according to FIG. 5 is projected onto the r-axis, while such a projection has been dispensed with for the edge ring R r .
- the straight line G is laid through the plate P in such a way that the smallest angles that can be measured on each side of the plate between the straight line and the plate surface are the same as one another.
- the wall thickness K measured perpendicular to the radial coordinate r, decreases again clearly before reaching 90% of the maximum radial coordinate value of the plate P and before reaching 90% of the path from the plate axis to the drive E (FIG. 3).
- the relationship specified in claim 11 is preferred, the tolerance range being only ⁇ 10% if possible.
- the exponents m and n are preferably selected according to claim 20, 21 or 22, depending on the material used.
- the wall thickness profile S of the edge ring R r is preferably such that the wall thickness S, starting from the fastening zone V on the inner edge of the edge ring in the direction of the fastening zone F on the outer edge, becomes increasingly steeper.
- the wall thickness profile of the edge ring R r is qualitatively a reflection of the wall thickness profile of the plate P on the plate circumference, but in FIG. 6 only the plate profile is mirrored to the left of the maximum K x , r x .
- FIG. 7 shows a further application example for the plate P according to the invention, namely a section through a pressure chamber loudspeaker with permanent ring magnet 16, yoke 17 and field plate 18.
- a soft magnetic cylinder 19 with a sound guide opening 20 is arranged in the center.
- the edge ring R r is clamped with the aid of a disk ring 21, which in turn is held by a cover 22. From a pressure chamber located between the cylinder 19 and the plate P, the sound passes through the sound guide opening 20 for radiation.
- the plate is dome-shaped, adapted to the cylinder 19, with regard to the wall thickness having to be reverted to what was said above in connection with the other figures. The same applies to the edge ring R r .
- the amounts of the maximum wall thicknesses of the plate, the membrane and the edge ring are determined in a known manner either on the basis of empirical values with safety supplements or on the basis of calculations or tests.
- the strength of the selected material and its density (specific weight) must be taken into account, because the lower limit frequency of a sound transducer depends on the moving masses.
- the maximum wall thicknesses must therefore be chosen in accordance with previous practice so that with the maximum deflection (which depends on the specified maximum load capacity of the sound transducer) of the plate or membrane or the edge ring, neither fatigue breaks nor clinking occur.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
Description
Die Erfindung betrifft ein Membransystem mit einer Platte nach dem Oberbegriff des Patentanspruches 1 sowie Anwendungen des Membransystems. Im Gegensatz zu einem Ring wird unter einer Platte ein Gebilde verstanden, das keinen Innenrand aufweist.The invention relates to a membrane system with a plate according to the preamble of
Die Platte ist anwendbar als Membran oder Membranteil für Schallwandler, insbesondere Lautsprecher aller Art für die Wiedergabe von Sprache oder Musik, z.B. in einem Kalottenstrahler, in einem Druckkammersystem oder als Mittelteil eines Lautsprecherkonus oder einer -platte.The plate can be used as a membrane or membrane part for sound transducers, in particular loudspeakers of all kinds for the reproduction of speech or music, e.g. in a dome emitter, in a pressure chamber system or as the middle part of a loudspeaker cone or plate.
Bei solchen Anwendungen führen unerwünschte Partialschwingungen zu Verzerrungen bei-den abgestrahlten Schallschwingungen.In such applications, undesired partial vibrations lead to distortions in the radiated sound vibrations.
Aus der deutschen Patentschrift DE 31 23 098 C2 ist eine Membran für elektroakustische Wandlersysteme bekannt, die sich als Schwingungssystem durch eine vorwiegende Widerstandshemmung auszeichnet; bei dieser Membran ist der innere Teilbereich als leichter, starrer bzw. formsteifer, kolbenstrahlerartiger Schwingkörper ausgebildet, der durch elektromagnetische Kräfte angetrieben wird. Dabei ist die Dicke (Wandstärke) des kolbenstrahlerartigen Schwingkörpers an verschiedenen Stellen unterschiedlich, wobei insbesondere eine Zunahme der Dicke zur Antriebsstelle hin vorgesehen ist. Damit soll insbesondere Verzerrungsarmut erreicht werden.
Die Erfindung zielt mehr in Richtung auf ein Membransystem mit einer Platte zur Anwendung als Kolbenschwinger mit biegeelastischer Randeinspannung, wobei die schallabstrahlende oder -aufnehmende Fläche der Platte deutlich größer ist als die entsprechende Fläche eines zur Randeinspannung dienenden biegeelastischen Randringes (Sicke).From the German patent DE 31 23 098 C2 a membrane for electroacoustic transducer systems is known which is characterized as a vibration system by a predominant resistance inhibition; In this membrane, the inner portion is designed as a light, rigid or rigid, piston radiator-like vibrating body, which is driven by electromagnetic forces. The thickness (wall thickness) of the piston body-like vibrating body differs at different points, with an increase in thickness towards the drive point being provided in particular. This is particularly intended to achieve a low level of distortion.
The invention aims more towards a membrane system with a plate for use as a piston transducer with elastic edge clamping, the sound-radiating or absorbing surface of the plate being significantly larger than the corresponding surface of a flexible elastic edge ring (bead) used for edge clamping.
Es ist Aufgabe der Erfindung, ein Membransystem mit Platte anzugeben,It is an object of the invention to provide a membrane system with a plate,
bei welchem die Verzerrungen abgestrahlter Schallschwingungen gering sind gegenüber den erzwungenen Schwingungen ihres Antriebes.in which the distortions of radiated sound vibrations are low compared to the forced vibrations of their drive.
Diese Aufgabe wird gelöst durch das Membransystem mit den Merkmalen des Patentanspruches 1.
Vorteilhafte Weiterbildungen sind in den Patentansprüchen 2 bis 32 angegeben. Anwendungen des Membransystems nach der Erfindung sind in den Patentansprüchen 33 und 36 beansprucht.This object is achieved by the membrane system with the features of
Advantageous further developments are given in claims 2 to 32. Applications of the membrane system according to the invention are claimed in claims 33 and 36.
Die Erfindung beruht auf Berechnungen und Versuchen, die ergeben haben, daß mit der gefundenen Formgebung der Platte gute mechanische Eigenschaften mit der Folge erzielt werden können, daß störende Partialschwingungen weitgehend vermieden werden. Um solche Partialschwingungen einzudämmen, muß bei der Platte von innen nach außen ein bestimmter Verlauf der Biegesteifigkeit und des Flächenträgheitsmomentes eingehalten oder angenähert werden. Vorzugsweise wird dabei auf versteifende Streben oder Fachwerke verzichtet und statt dessen eine bevorzugt massive Gestalt gewählt, zu der allerdings auch geschäumte Varianten zu rechnen sind.The invention is based on calculations and tests which have shown that good mechanical properties can be achieved with the shape of the plate found, with the result that disruptive partial vibrations are largely avoided. In order to contain such partial vibrations, a certain course of the bending rigidity and the area moment of inertia must be maintained or approximated from the inside to the outside of the plate. In this case, stiffening struts or trusses are preferably dispensed with and instead a preferably solid shape is selected, to which foamed variants are also to be counted.
Im Oberbegriff des Patentanspruches 1 ist das Merkmal enthalhen, daß die Platte "nahe ihrem Rand" angetrieben ist. Dies bedeutet, daß sich der Antrieb für die Platte in einem ringförmigen Randbereich der Platte befindet, der sich bevorzugt von 90 % des Plattenradius bis zum Plattenrand erstreckt.The preamble of
Bei der im Patentanspruch 1 genannten Befestigungszone am Rand kann es sich um die Zone für die Befestigung des Antriebes der Platte und/oder für die Befestigung eines Randringes handeln, welchen die Platte an ihrem Rand aufweist und der seinerseits ortsfest eingespannt ist, damit eine Führung der Platte in Axialrichtung gewährleistet ist. Es kann sich bei der Defestigungszone aber auch um die Zone handeln, wo die Platte mit einer Membran, beispielsweise einer Konusmembran eines Lautsprechers verbunden ist, wobei die Platte den Innenrand oder das Zentrum der Membran überdeckt oder überbrückt. Oft wird die Befestigungszone, wo die Platte mit dem Antrieb verbunden ist, und die Befestigungszone, wo die Platte mit einem Randring verbunden ist, denselben Wert der Radialkoordinate aufweisen.In the attachment zone at the edge mentioned in
Auch bei der Ausführungsform, bei welcher die Platte das Zentrum einer Membran koaxial überbrückt, kann sich die Befestigungszone, wo die Platte mit der Membran verbunden ist, und der Antrieb beim selben Radialkoordinatenwert befinden.Even in the embodiment in which the plate coaxially bridges the center of a membrane, the fastening zone where the plate is connected to the membrane and the drive can be at the same radial coordinate value.
Anhand der Zeichnungen werden Ausführungsbeispiele der Erfindung erläutert.
Figur 1 zeigt eine Hälfte eines Schnittes entlang eines Durchmessers eines Membransystems für einen Lautsprecher,- Figur 2 ist ein vergrößerter Detailausschnitt aus
Figur 1, - Figur 3 zeigt den prinzipiellen Aufbau eines Lautsprechers im Schnitt,
- Figur 4 gibt genauer den Querschnittsverlauf des in Figur 3 verwendeten Membransystems an,
- Figur 5 zeigt die Anwendung der erfindungsgemäßen Platte in einem Kalottenlautsprecher, der im Schnitt dargestellt ist,
- Figur 6 gibt genauer den zugehörigen Querschnittsverlauf der in Figur 5 verwendeten Platte an und
- Figur 7 zeigt die Anwendung der erfindungsgemäßen Platte in einem Druckkammerlautsprecher, der ebenfalls im Schnitt dargestellt ist.
- FIG. 1 shows a half of a section along a diameter of a membrane system for a loudspeaker,
- FIG. 2 is an enlarged detail section from FIG. 1,
- FIG. 3 shows the basic structure of a loudspeaker in section,
- FIG. 4 shows more precisely the cross-sectional profile of the membrane system used in FIG. 3,
- FIG. 5 shows the use of the plate according to the invention in a spherical speaker, which is shown in section,
- Figure 6 specifies the associated cross-sectional profile of the plate used in Figure 5 and
- Figure 7 shows the application of the plate according to the invention in a pressure chamber loudspeaker, which is also shown in section.
Figur 1 zeigt eine Hälfte eines Radialschnittes durch eine Membran M, die an ihrem inneren Rand mir einer Radialführung Rf (nicht zwingend) und einem elektromagnetischen Antrieb E versehen ist, der in Richtung der Membranachse 1 wirkt. Die Membran ist biegesteif, ringförmig, rotationssymmetrisch und konisch. Der Antrieb ist zugleich Platten- und Membranantrieb.1 shows a half of a radial section through a membrane M, which is provided on its inner edge with a radial guide R f (not mandatory) and an electromagnetic drive E, which acts in the direction of the
Die in Richtung der Membranachse 1 gemessene Wandstärke H der Membran M verändert sich in Abhängigkeit von einer Radialkoordinate r, die im Zentrum der Membran M mit dem Wert r = 0 beginnt und am äußeren Rand ihren Maximalwert r = R erreicht. Dort geht die Membran M in einen Randring Rr über, der biegeelastisch und ringförmig ist sowie die Gestalt einer Sikke aufweist. (Es kann auch ein Randring mit mehreren Sicken zur Anwendung gelangen.)
Die ebenfalls in Richtung der Membranachse 1 gemessene Wandstärke S des Randringps verringert sich in Richtung einer Abstandskoordinate s von s = 0 ausgehend bis zum Außenrand. Der Randring Rr weist an seinem Außenrand einen ringförmigen Fortsatz F auf, der zur Einspannung des Randringes und damit indirekt auch der Membran M dient.The wall thickness H of the membrane M measured in the direction of the
The wall thickness S of the edge ring ps, likewise measured in the direction of the
Innerhalb des inneren Randes der Membran M befindet sich nun eingeklebt eine rotationssymmetrische, biegesteife Platte P, die als Kalottenschwinger und Staubschutz für den Antrieb E dient. Die Wandstärke K dieser Platte P verändert sich in Abhängigkeit von der Radialkoordinate r, die in der Membranachse 1 mit dem Wert r = 0 beginnt und für die Platte P bis zu dem Grenzwert r = R₀ am Plattenrand läuft.A rotationally symmetrical, rigid plate P is now glued inside the inner edge of the membrane M and serves as a spherical oscillator and dust protection for the drive E. The wall thickness K of this plate P changes depending on the radial coordinate r, which begins in the
Bei r = R₀ sind die Membran M und die Platte P miteinander in nicht näher dargestellter Weise verklebt. Die Klebestelle wird Befestigungszone genannt. Ihre radiale Ausdehnung ist in der schematischen Figur 1 als vernachlässigbar klein angenommen worden. Die Platte P und die Membran M können auch einstückig hergestellt sein. Dann weichen die Verläufe der Wandstärken K und H in der Umgebung des Radialkoordinatenwertes r = R₀ von den aufgrund theoretischer Überlegungen errechenbaren Werten in der Praxis ab; denn theoretisch ist die Wandstärke bei r = R₀ verschwindend klein, was natürlich in der Praxis nicht realisierbar ist.At r = R₀ the membrane M and the plate P are glued together in a manner not shown. The glue point is called the fastening zone. Their radial extent has been assumed to be negligibly small in the schematic FIG. 1. The plate P and the membrane M can also be made in one piece. Then the courses of the wall thicknesses K and H in the vicinity of the radial coordinate value r = R₀ deviate from the values that can be calculated in practice on the basis of theoretical considerations; because theoretically the wall thickness at r = R₀ is vanishingly small, which of course cannot be achieved in practice.
Die Platte P, angetrieben durch den Antrieb E in Gestalt einer Schwingspule, wirkt als Kolbenschwinger. Ihre Wandstärke K nimmt ausgehend vom Zentrum (r = 0) zunächst bis über den halben Plattenradius (r = R₀/2) hinaus zu und dann wieder ab. Minimalwerte der Wandstärke K werden also in der Plattenachse 1 und an ihrem Rand bei r = R₀ erreicht. Zwischen diesen Minima verläuft die Wandstärke K selbst, aber auch deren Zu- bzw. deren Abnahme (also der Differentialquotient dK/dr) stetig oder wenigstens stückweise angenähert stetig. Dies trifft jedenfalls in einem Bereich zu, der sich von r = 0,1 R₀ bis an die Befestigungszgne um r = R₀ erstreckt; denn die Befestigungszone am Rand muß aus den oben angegebenen Gründen unter Umständen bei Aussagen über den Wandstärkeverlauf ausgenommen werden, und ähnliches gilt für einen kleinen Bereich um die Plattenachse 1 herum, wo die Wandstärke theoretisch Null sein müßte, was aber in der Praxis nicht sinnvoll ist.The plate P, driven by the drive E in the form of a voice coil, acts as a piston oscillator. Starting from the center (r = 0), its wall thickness K initially increases beyond half the plate radius (r = R₀ / 2) and then decreases again. Minimum values of the wall thickness K are thus reached in the
Das Wandstärkemaximum Kx liegt also außerhalb des halben Plattenradius, aber noch innerhalb des Radialkoordinatenwertes ri für den Antrieb E, der in dem gezeigten Beispiel gleich R₀, dem Radialkoordinatenwert für den Rand der Platte, ist.The wall thickness maximum K x is therefore outside half the plate radius, but still within the radial coordinate value r i for the drive E, which in the example shown is equal to R₀, the radial coordinate value for the edge of the plate.
Einzelheiten zum bevorzugten Wandstärkenverlauf der Platte P werden weiter unten noch anhand der Figur 6 erläutert.Details of the preferred wall thickness profile of the plate P are explained below with reference to FIG. 6.
Die Platte und die Membran bestehen bevorzugt aus homogenem oder geschäumtem Material mit glatter Oberfläche; wenn ein höherer Aufwand und damit höherer Preis zugelassen ist, werden Sandwich-Formen bevorzugt, wie in den Patentansprüchen 9, 10, 21, 22 angegeben.The plate and the membrane preferably consist of homogeneous or foamed material with a smooth surface; if a higher effort and thus a higher price is permitted, sandwich molds are preferred, as stated in
Figur 2 zeigt einen vergrößerten Ausschnitt 11 aus Figur 1, also die Befestigungszone, wo der Randring Rr am äußeren Rand der Membran M befestigt ist. Die Befestigung wird durch einen Verbindungsring V erzielt, der an die Membran M angeklebt und einstückig mit dem Randring Rr verbunden ist, der biegeelastisch und ringförmig ist sowie die Gestalt einer Sicke aufweist. Er hat die ebenfalls in Richtung der Membranachse 1 gemessene Wandstärke S, die sich in Richtung einer Abstandskoordinate s von s = 0 ausgehend bis zum Außenrand bei s = R2 verringert, und zwar mit stetigem Verlauf oder wenigstens einem stetigen Verlauf stückweise angenähert. Dieser Verlauf ist gegeben zwischen einerseits der Befestigungszone V, wo Membran und Randring aneinander befestigt sind, und andererseits dem Außenrand des Randringes, wo dieser nach Erreichen eines Minimums der Wandstärke in den ringförmigen Fortsatz F übergeht. Dieser Fortsatz F dient zur Einspannung des Randringes und damit indirekt auch der Membran M. Die Umgebung des Abstandskoordinatenwertes s = R₂ kann ebenfalls wieder als Befestigungszone bezeichnet werden, die wiederum bei Aussagen über den Verlauf der Wandstärke S aus praktischen Gründen außer Betracht bleibt.FIG. 2 shows an enlarged
Die Wandstärke S des Randringes Rr im Bereich zwischen den Befestigungszonen V und F folgt mit einer zulässigen Abweichung von ± 20 % der in Patentanspruch 25 angegebenen Beziehung, wobei die zulässige Abweichung bevorzugt entsprechend Patentanspruch 26 eingeschränkt ist. Dabei sollten bezüglich der Materialdichte und des Elastizitätsmoduls die in den Patentansprüchen 27 bis 29 angegebenen Merkmale eingehalten sein.The wall thickness S of the edge ring R r in the region between the fastening zones V and F follows the relationship specified in claim 25 with a permissible deviation of ± 20%, the permissible deviation preferably being restricted in accordance with claim 26. The features specified in claims 27 to 29 should be observed with regard to the material density and the modulus of elasticity.
Der schematisch im Schnitt in Figur 3 gezeigte Lautsprecher weist einen permanentmagnetischen Ringmagneten 2 mit weichmagnetischem Kern 3 und mit einer Polplatte 4 auf. Im Luftspalt des damit gebildeten magnetischen Kreises befindet sich ein Membranantrieb E′ an einem Zylinder Z, der durch eine Radialführung Rf geführt ist und über den eine Membran M angetrieben ist. Dabei handelt es sich um eine sogenannte Nawi-Membran (nicht abwickelbare Membran) die von der Konusform (Figur 1) abweicht, aber dennoch ein der Figur 1 entsprechendes Wandstärkeprofil aufweist. Die Membranform ähnelt einem Exponentialtrichter. Bei dieser Gelegenheit sei darauf verwiesen, daß die Vorschriften für die Ausführungsformen der Erfindung mit Membran auch auf andere Membran-Grundformen anwendbar sind, z.B. auf flache Membranen oder glockenförmig gewölbte.The loudspeaker shown schematically in section in FIG. 3 has a permanent magnetic ring magnet 2 with a soft magnetic core 3 and with a pole plate 4. In the air gap of the magnetic circuit thus formed, there is a diaphragm drive E 'on a cylinder Z which is guided by a radial guide Rf and via which a diaphragm M is driven. This is a so-called Nawi membrane (membrane that cannot be unwound) that deviates from the cone shape (FIG. 1), but nevertheless has a wall thickness profile corresponding to FIG. 1. The membrane shape resembles an exponential funnel. On this occasion, it should be noted that the regulations for the embodiments of the invention with membrane are also applicable to other basic membrane forms, e.g. on flat membranes or bell-shaped.
Auch für die Platte P (deren Rand im Wandstärkemaximum der Membran an dieser befestigt ist) sind andere Grundformen als die gezeigte gewölbte verwendbar.
Bei dem Beispiel nach Figur 3 fällt die Radialkoordinate für den Membranantrieb E′ nicht mit der Radialkoordinate für den Rand der Platte zusammen. Betrachtet man allerdings nur die Platte P, so wird diese tatsächlich an ihrem Rand von der Membran M unmittelbar angetrieben, die Membran ist also "Antrieb" für die Platte.Basic shapes other than the arched one shown can also be used for the plate P (the edge of which is attached to the membrane at the maximum wall thickness).
In the example of Figure 3, the radial coordinate for the diaphragm drive E 'does not coincide with the radial coordinate for the edge of the plate. However, if one only looks at the plate P, it is actually directly driven at its edge by the membrane M, so the membrane is the "drive" for the plate.
Die Membran M geht an ihrem Außenrand über in einen Randring Rr, dessen Fortsatz F an einem Lautsprecherkorb 5 befestigt ist, der seinerseits mit der Polplatte 4 verbunden ist. Für den Randring gilt das im Zusammenhang mit Figur 1 Gesagte.The membrane M merges at its outer edge into an edge ring R r , the extension F of which is attached to a loudspeaker basket 5, which in turn is connected to the pole plate 4. The statements made in connection with FIG. 1 apply to the edge ring.
Figur 4 zeigt einen genaueren und bevorzugten Querschnittsverlauf für Membran und Platte (jeweils aus homogenem Material) des Lautsprechers nach Figur 3, allerdings unter Verwendung einer konischen Membran M. Es ist ersichtlich, daß die Platte P im Maximum Hm der Wandstärke der Membran M befestigt ist. Man sieht in dem halbseitigen Schnittbild, wie die Platte P den mittleren Bereich der Membran M koaxial überbrückt. In diesem mittleren Bereich ist der Membranantrieb E′ angebracht, während der Antrieb der Platte P durch die Membran M an der Stelle der maximalen Wandstärke Hm erfolgt. Insbesondere weil das Maximum Hm hier allerdings sehr flach ist, braucht sich der Rand der Platte P nicht unbedingt genau am Ort des Maximums Hm zu befinden. Die Platte könnte also z.B. auch nur 90 % ihres Durchmessers aufweisen oder auch wesentlich größer als gezeigt sein.FIG. 4 shows a more precise and preferred cross-sectional profile for The membrane and plate (each made of homogeneous material) of the loudspeaker according to FIG. 3, but using a conical membrane M. It can be seen that the plate P is attached to the wall thickness of the membrane M at a maximum H m . One can see in the half-sided sectional view how the plate P coaxially bridges the central region of the membrane M. In this central area, the membrane drive E 'is attached, while the drive of the plate P is carried out by the membrane M at the location of the maximum wall thickness H m . Especially since the maximum H m is very flat here, the edge of the plate P need not necessarily be exactly at the location of the maximum H m . The plate could, for example, have only 90% of its diameter or could be much larger than shown.
Der Verlauf der Wandstärke H der Membran ist in den Patentansprüchen 14 bis 19 und 32, 33 angegeben, während die Materialeigenschaften in den Patentansprüchen 20 bis 22 beschrieben sind.The course of the wall thickness H of the membrane is specified in
Die Toleranzwerte + 50 % bzw. + 30 % der Patentansprüche 15 bzw. 16 müssen dabei als entsprechend reduziert angesehen werden, wenn der Außenradius der Membran 4rim/3 zuzüglich der Toleranzwerte von 50 % bzw. 30 % gar nicht erreicht. Bevorzugt wird der Toleranzbereich nur von - 5 % bis + 10 % ausgenutzt.The tolerance values + 50% or + 30% of
Figur 5 zeigt ein Anwendungsbeispiel der Platte P nach der Erfindung, die hier in einem Kalottenlautsprecher eingesetzt ist, der wiederum im Schnitt dargestellt ist. Er weist einen Permanentmagneten 6 mit einem weichmagnetischen Topf 7 und einem joch 8 auf, ergänzt durch einen weichmagnetischen Ring 8a. Abgesehen von Einspannringen 9 bis 13 und Spannschrauben 14 und 15 entsprechen die restlichen Bezugszeichen denjenigen in den anderen Figuren. Bezüglich des Randringes Rr gilt dasselbe, wie im Zusammenhang mit Figur 1 gesagt. Seine Wandstärke nimmt ausgehend von seiner Befestigungszone an seinem Innenrand in Richtung zur Befestigungszone am Außenrand zunehmend steiler ab. Zum Wandstärkeverlauf der Platte P wird auf Figur 6 verwiesen.Figure 5 shows an application example of the plate P according to the invention, which is used here in a spherical speaker, which in turn is shown in section. It has a permanent magnet 6 with a soft magnetic pot 7 and a yoke 8, supplemented by a soft magnetic ring 8a. Apart from clamping
In dem Diagramm nach Figur 6 ist das Profil der Platte P nach Figur 5 auf die r-Achse projiziert, während für den Randring Rr auf eine solche Projektion verzichtet worden ist.In the diagram according to FIG. 6, the profile of the plate P according to FIG. 5 is projected onto the r-axis, while such a projection has been dispensed with for the edge ring R r .
Die Darstellung der Wandstärke K in Figur 6 läßt zunächst erkennen, daß die Wandstärke von dem Radialkoordinatenwert rx ihres Maximums Kx ausgehend jeweils in Richtung zum Rand (r = R₀) und in entgegengesetzter Richtung (r = 0) zunehmend steiler abnimmt. Auch die nicht parallel zur K-Achse, sondern konventionell gemessene Wandstärke W nimmt (wie die Wandstärke K) in Richtung der Radialkoordinate r zum Rand hin zunächst bis über den halben Platten- und/oder Antriebsradius hinaus zu und dann wieder ab. Bei der konventionellen Messung der Wandstärke sind die Winkel untereinander gleich, wenn auch nicht notwendigerweise gleich 90°. Die Gerade G ist dabei so durch die Platte P gelegt, daß die kleinsten Winkel , die auf jeder Plattenseite zwischen der Geraden und der Plattenoberfläche meßbar sind, untereinander gleich sind. Der Abstand der Schnittpunkte der Geraden mit der Plattenoberfläche entspricht der konventionell gemessenen Wandstärke W, die ebenfalls von dem Radialkoordinatenwert rx ihres Maximalwertes Wmax = Kx ausgehend in Richtung der Radialkoordinate r und in entgegengesetzter Richtung zunehmend steiler abnimmt.The representation of the wall thickness K in FIG. 6 first shows that the wall thickness decreases increasingly steeply starting from the radial coordinate value r x of its maximum K x in the direction towards the edge (r = R₀) and in the opposite direction (r = 0). Also, the wall thickness W measured not parallel to the K-axis, but conventionally measured (like the wall thickness K) in the direction of the radial coordinate r towards the edge initially increases to over half the plate and / or drive radius and then decreases again. In the conventional measurement of the wall thickness, the angles with one another are the same, although not necessarily equal to 90 °. The straight line G is laid through the plate P in such a way that the smallest angles that can be measured on each side of the plate between the straight line and the plate surface are the same as one another. The distance between the intersection of the straight line and the plate surface corresponds to the conventionally measured wall thickness W, which also decreases increasingly steeply starting from the radial coordinate value r x of its maximum value W max = K x in the direction of the radial coordinate r and in the opposite direction.
Die Wandstärke K, senkrecht zur Radialkoordinate r bemessen, nimmt deutlich vor Erreichen von 90 % des maximalen Radialkoordinatenwertes der Platte P und vor Erreichen von 90 % des Weges von der Plattenachse zum Antrieb E (Figur 3) wieder ab.The wall thickness K, measured perpendicular to the radial coordinate r, decreases again clearly before reaching 90% of the maximum radial coordinate value of the plate P and before reaching 90% of the path from the plate axis to the drive E (FIG. 3).
Für die Wandstärke K in Abhängigkeit von der Radialkoordinate r wird die in Patentanspruch 11 angegebene Beziehung bevorzugt, wobei der Toleranzbereich möglichst nur ± 10 % beträgt. Die Exponenten m und n werden je nach dem verwendeten Material bevorzugt nach Patentanspruch 20, 21 oder 22 gewählt.For the wall thickness K as a function of the radial coordinate r, the relationship specified in
Der Wandstärkeverlauf S des Randringes Rr ist bevorzugt so, daß die Wandstärke S ausgehend von der Befestigungszone V am Innenrand des Randringes in Richtung zur Befestigungszone F am Außenrand zunehmend steiler abfällt. Grob gesagt ist der Wandstärkeverlauf des Randringes Rr qualitativ eine Spiegelung des Wandstärkeverlaufes der Platte P am Plattenumfang, wobei aber in Figur 6 nur das Plattenprofil links vom Maximum Kx, rx gespiegelt wird.The wall thickness profile S of the edge ring R r is preferably such that the wall thickness S, starting from the fastening zone V on the inner edge of the edge ring in the direction of the fastening zone F on the outer edge, becomes increasingly steeper. Roughly speaking, the wall thickness profile of the edge ring R r is qualitatively a reflection of the wall thickness profile of the plate P on the plate circumference, but in FIG. 6 only the plate profile is mirrored to the left of the maximum K x , r x .
Ähnlich verhält es sich mit der Wandstärke H der Membran M in den Figuren 1, 3, 4: Sie ergibt sich qualitativ aus der Spiegelung der Plattenwandstärke K am Plattenumfang.The situation is similar with the wall thickness H of the membrane M in FIGS. 1, 3, 4: it results qualitatively from the reflection of the plate wall thickness K on the plate circumference.
Figur 7 zeigt ein weiteres Anwendungsbeispiel für die Platte P nach der Erfindung, nämlich einen Schnitt durch einen Druckkammerlautsprecher mit permanentem Ringmagneten 16, Joch 17 und Feldplatte 18. Im Zentrum ist ein weichmagnetischer Zylinder 19 mit einer Schallführungsöffnung 20 angeordnet. Der Randring Rr ist mit Hilfe eines Scheibenringes 21 eingespannt, der seinerseits von einer Abdeckung 22 gehalten wird. Aus einer Druckkammer, die sich zwischen dem Zylinder 19 und der Platte P befindet, gelangt der Schall über die Schallführungsöffnung 20 zur Abstrahlung. Die Platte ist kuppelförmig ausgebildet, angepaßt an den Zylinder 19, wobei bezüglich der Wandstärke wieder auf das zuvor im Zusammenhang mit den anderen Figuren Gesagte zurückzugreifen ist. Dasselbe gilt für den Randring Rr.FIG. 7 shows a further application example for the plate P according to the invention, namely a section through a pressure chamber loudspeaker with
Bemerkenswert bei dem Ausführungsbeispiel nach Figur 7 ist, daß zwischen der Druckkammer und der Schallaustrittsöffnung der Schallführungsöffnung 20 nur eine einzige Öffnung vorhanden ist, nämlich nur die Schallführungsöffnung 20 selbst. Bei bekannten Druckkammerlautsprechern führten mehrere Kanäle von der Druckkammer zur Schallführungsöffnung. Die über diese Kanäle gelangenden Schallschwingungen hatten unterschiedliche Phasen, die zudem noch abhängig waren von exemplarabhängigen Schwingungsmoden, die sich auf der Platte ausbilden konnten. Der Druckkammerlautsprecher nach dem in Figur 7 gezeigten Prinzip strahlt den Schall mit größerer Phasenreinheit ab, d.h., der Phasenverlauf über der Frequenz ist exemplarunabhängiger als bisher. Dies ist wichtig zur Erzielung eines guten Stereoeindruckes bei der Verwendung solcher Druckkammerlautsprecher in Stereoanlagen. Die fiktive Lage von Schallquellen kann bei der Verwendung solcher Druckkammerlautsprecher besser als bisher geortet werden. Dies gilt auch für andere als Druckkammerlautsprecher, sofern die Platte (gegebenenfalls mit Membran und/oder Randring) nach der Erfindung verwendet wird.In the exemplary embodiment according to FIG. 7, it is remarkable that only a single opening is present between the pressure chamber and the sound outlet opening of the
Die Beträge der maximalen Wandstärken der Platte, der Membran und des Randringes werden in bekannter Weise entweder aufgrund von Erfahrungswerten mit Sicherheitszuschlägen oder aufgrund von Berechnungen oder Versuchen festgelegt. Dabei ist die Festigkeit des gewählten Materials zu berücksichtigen und auch dessen Dichte (spezifisches Gewicht), denn von den bewegten Massen hängt die untere Grenzfrequenz eines Schallwandlers ab. An sich würde man die Maximalwandstärken gerne möglichst klein wählen, muß aber mit Rücksicht auf die Gefahr von Ermüdungsbrüchen und auf die Gefahr von Klirrerscheinungen (z.B. aufgrund von Membranverformungen) Mindestwandstärken einhalten. Die maximalen Wandstärken müssen also in Übereinstimmung mit der bisherigen Praxis so gewählt sein, daß bei der maximalen Auslenkung (die abhängig ist von der vorgegebenen maximalen Belastbarkeit des Schallwandlers) der Platte bzw. Membran bzw. des Randringes weder Ermüdungsbrüche noch Klirren auftritt.The amounts of the maximum wall thicknesses of the plate, the membrane and the edge ring are determined in a known manner either on the basis of empirical values with safety supplements or on the basis of calculations or tests. The strength of the selected material and its density (specific weight) must be taken into account, because the lower limit frequency of a sound transducer depends on the moving masses. In itself, one would like to choose the maximum wall thicknesses as small as possible, but must consider the minimum wall thicknesses with regard to the risk of fatigue fractures and the risk of distortion (e.g. due to membrane deformation). The maximum wall thicknesses must therefore be chosen in accordance with previous practice so that with the maximum deflection (which depends on the specified maximum load capacity of the sound transducer) of the plate or membrane or the edge ring, neither fatigue breaks nor clinking occur.
Die besten Ergebnisse im Sinne der Aufgabenstellung lassen sich erzielen, wenn die Beziehungen eingehalten werden, wie in den Patentansprüchen 11, 18 und 25 angegeben.The best results in terms of the task can be achieved if the relationships are observed, as specified in
Claims (36)
the curve for the increase and decrease (dK/dr) of the wall thickness (K) along the radial coordinate r up to a fastening zone at the edge (r = R₀) is steady or approaches a steady curve in sections; and
the maximum (Kx) of the wall thickness (K) of the plate (P) has a radial coordinate value (rx) which is smaller than the radial coordinate value (ri) of the region near the edge where the plate (P) is being driven.
the conventionally measured wall thickness (W) of the plate (P) increases toward the edge (r = R₀) as a function of the radial coordinate r to beyond one-half of the plate radius (R₀/2) and/or the plate driver radius and then decreases again.
starting with the radial coordinate value (rx) of its maximum (Kx), the wall thickness (K, W) decreases with increasing steepness in the direction toward the edge (r = R₀) and in the opposite direction.
the plate (P) is driven by a plate driver (E).
the wall thickness (K, W) of the plate (P) decreases again before it reaches 90 % of the maximum radial coordinate value (r = R₀).
the wall thickness (K, W) of the plate (P) decreases again before reaching 90 % of the path from the plate axis (1) to the plate driver (E).
the plate (P) is made of a homogeneous material, with the density of the material and/or the modulus of elasticity having a constancy, independent of the radial coordinate (r), as it is realized with conventional production methods.
starting from a core region, the density of the material of the plate (P) increases in both axial directions (A, B).
the plate (P) is rotationally symmetrical only relative to its envelope and is made of a foamed core or a frame type or honeycomb type core formed between two cover layers.
in dependence on the standardized radial coordinate x = r/R₀, in a region between x = 0.1 and the region near the edge where the plate (P) is being driven, the wall thickness (K) of the plate (P) measured in the direction of the plate axis (1) is subject to the rule that
the tolerance range is only ±10 %.
the plate (P) coaxially bridges a region near the axis of a diaphragm (M), said region forming the driver for the plate, with the plate itself being driven in the bridged region (Figure 3).
with increasing values for the radial coordinate r, the wall thickness (H) of the diaphragm measured in the direction of the plate axis (1) approaches a steady curve in sections or is steady in the region between fastening zones for the diaphragm driver (E′) and for an edge ring (Rr) and initially increases up to a maximum (Hm at rm) to then remain constant or decrease again, with the radial coordinate value (rm) at which the maximum (Hm) is reached lying closer to the inner fastening zone (r = ri) than to the outer edge (r = R) of the diaphragm and, beginning at the inner fastening zone (r = ri), the wall thickness (H) approaches, with constantly decreasing steepness, the maximum (Hm), with the edge (r = R₀) of the plate being fastened to the diaphragm in a region of the diaphragm (M) extending from the outer edge (R) of the diaphragm (M) up to 90 % of that radial coordinate value (rm) where the diaphragm (M) reaches its maximum (Hm) wall thickness (H) (Figure 4).
the radial coordinate value (r = rm) at the point where the diaphragm (M) reaches it maximum (Hm) wall thickness (H) is 4/3 of the radial coordinate value (r = rim) of the fastening zone where the diaphragm (M) is fastened to its diaphragm driver (E′), within a tolerance range from +50 % to -15 %.
the tolerance range extends only from +30 % to -10 %.
the conventionally measured wall thickness (WM) of the diaphragm (M) also approaches a maximum beginning at its inner fastening zone and with constantly decreasing steepness, said maximum meeting the same conditions of the respective one of claims 13 to 15 as apply for the wall thickness (H) measured perpendicularly to the radial coordinate r.
the wall thickness (H) of the diaphragm (M) measured perpendicularly to the radial coordinate r and including a tolerance range of ±20 % with reference to the maximum wall thickness is equal to
the tolerance range is only ±10 %.
the diaphragm (M) is made of a homogeneous material and the density of the material and/or its modulus of elasticity have a constancy, independently of the radial coordinate r, as it is realized with customary production methods.
beginning in a core region, the material density of the diaphragm (M) increases in both axial directions (A, B).
the diaphragm (M) is rotationally symmetrical only with respect to its envelope and is made of a foamed core or a core in the form of a framework or honeycomb between two cover layers.
a flexible edge ring (Rr) is fastened to the edge of the plate (P) and to the outer edge of the diaphragm (M), respectively, for clamping in the diaphragm, with the wall thickness (S) of said ring, measured in the direction of the plate axis (1) decreasing steadily, or at least in a manner approaching a steady curve in sections as a function of a radial distance coordinate s, said decrease occurring between the fastening zone (V) where plate and diaphragm, respectively, as well as the edge ring are fastened to one another, on the one hand, and the wall thickness minimum at the fastening zone (F) at the outer edge of the edge ring, on the other hand, with the distance coordinate s extending perpendicularly to the plate axis (1) and counting from the inner edge (s = 0) to the outer edge (s = R₂) of the edge ring (Rr) (Figures 1, 5 and 6).
starting from its fastening zone (V) at the inner edge (s = 0), the wall thickness (S) of the edge ring (Rr) decreases with increasing steepness in the direction toward the fastening zone (F) at the outer edge (s = R₂).
in the region between the fastening zones (V, F), the wall thickness (S) of the edge ring (Rr), with a permissible deviation of +20 % with reference to the maximum wall thickness, is equal to
the permissible deviation is limited to ±10 %.
the density of the material of the edge ring (Rr), independently of the distance coordinate (s), has a constancy as it is realized with customary manufacturing methods.
the modulus of elasticity of the edge ring (Rr) also has a constancy, independently of the distance coordinate (s), as it is realized with customary manufacturing methods.
the constancy of the material density and of the modulus of elasticity also exists in the direction of the plate axis (1).
m = 1/5 and n = 2/5.
m = 1/3 and n = 2/3.
m = 1/5 and n = 2/5.
the plate (P) is dome shaped.
the pressure chamber of the pressure chamber loudspeaker has only one sound guidance opening (20) arranged around the plate axis (1) for radiation of the sound (Figure 7).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT87903856T ATE70937T1 (en) | 1986-07-04 | 1987-06-19 | MEMBRANE SYSTEM WITH ROTATIONALLY SYMMETRICAL FLEXURABLE PLATE AS SOUND RADIANT OR RECEPTION ELEMENT. |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE8617947 | 1986-07-04 | ||
DE19863622526 DE3622526A1 (en) | 1986-07-04 | 1986-07-04 | Flexurally rigid plate, particularly calotte for a sound transducer |
DE3622526 | 1986-07-04 | ||
DE8617965U | 1986-07-04 | ||
DE19868617965 DE8617965U1 (en) | 1986-07-04 | 1986-07-04 | Part of a sound transducer |
DE8617947U | 1986-07-04 | ||
DE3718824 | 1987-06-05 | ||
DE3718824 | 1987-06-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0313560A1 EP0313560A1 (en) | 1989-05-03 |
EP0313560B1 true EP0313560B1 (en) | 1991-12-27 |
Family
ID=27433633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19870903856 Expired - Lifetime EP0313560B1 (en) | 1986-07-04 | 1987-06-19 | Membrane system with flexion-resistant rotationally symmetric plate for use as a sound reflecting or receiving element |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0313560B1 (en) |
JP (1) | JPH01503189A (en) |
DE (1) | DE3775563D1 (en) |
DK (1) | DK113988D0 (en) |
WO (1) | WO1988000423A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3838853C1 (en) * | 1988-09-30 | 1989-11-30 | Ant Nachrichtentechnik Gmbh, 7150 Backnang, De | |
JP4749402B2 (en) * | 2007-09-28 | 2011-08-17 | フォスター電機株式会社 | Diaphragm for electroacoustic transducer |
GB2534859B (en) * | 2015-01-30 | 2020-06-10 | B&W Group Ltd | Diaphragm for a loudspeaker drive unit or a microphone |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3125647A (en) * | 1964-03-17 | Frequency-o cycles sec | ||
US1872081A (en) * | 1927-11-07 | 1932-08-16 | Jesse B Hawley | Sound radiator |
AT274080B (en) * | 1967-07-05 | 1969-09-10 | Philips Nv | Sound transducer with a foam membrane |
US3586121A (en) * | 1969-03-03 | 1971-06-22 | Nippon Musical Instruments Mfg | Diaphragm for loudspeakers |
DE2651026A1 (en) * | 1976-11-09 | 1978-05-18 | Helmut Dipl Ing Krueger | Determn. of radial thickness variation of loudspeaker diaphragm - uses equation based on specified external measurements of cone |
JPS53119023A (en) * | 1977-03-26 | 1978-10-18 | Kenzou Inoue | Moving coil type sound converting vibration plate |
DE3123098C2 (en) * | 1981-06-11 | 1983-06-01 | Martin 4600 Dortmund Stute | Membrane for electroacoustic transducer systems |
-
1987
- 1987-06-19 WO PCT/DE1987/000275 patent/WO1988000423A1/en active IP Right Grant
- 1987-06-19 JP JP50370387A patent/JPH01503189A/en active Pending
- 1987-06-19 DE DE8787903856T patent/DE3775563D1/en not_active Expired - Fee Related
- 1987-06-19 EP EP19870903856 patent/EP0313560B1/en not_active Expired - Lifetime
-
1988
- 1988-03-03 DK DK113988A patent/DK113988D0/en unknown
Also Published As
Publication number | Publication date |
---|---|
DK113988A (en) | 1988-03-03 |
JPH01503189A (en) | 1989-10-26 |
DK113988D0 (en) | 1988-03-03 |
WO1988000423A1 (en) | 1988-01-14 |
EP0313560A1 (en) | 1989-05-03 |
DE3775563D1 (en) | 1992-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3302592C2 (en) | ||
DE2924204A1 (en) | SPEAKERS AND METHOD OF MANUFACTURING THEREOF | |
DE69616989T2 (en) | ADAPTER RING FOR AUDIO VOICE COIL | |
DE2933425C2 (en) | ||
DE69724795T2 (en) | SPEAKER POWER UNITS | |
EP0755045B1 (en) | Sound wave cancellation arrangement | |
DE3508102C2 (en) | ||
AT397898B (en) | MEMBRANE FOR ELECTRODYNAMIC CONVERTERS | |
AT398354B (en) | ELECTROACOUSTIC TRANSFORMER WITH A MASK | |
DE2401132A1 (en) | SOUND CONE FOR ACOUSTIC IMPEDANCE TRANSFORMATION | |
DE1207964B (en) | Microphone membrane | |
DE69911861T2 (en) | ELECTROACOUSTIC CONVERTER AND MEMBRANE FOR ELECTROACUSTIC CONVERTER | |
EP0313560B1 (en) | Membrane system with flexion-resistant rotationally symmetric plate for use as a sound reflecting or receiving element | |
EP0616483B1 (en) | Electroacoustic transducer having a cover part | |
DE10322692B4 (en) | Membrane for electroacoustic transducers, electroacoustic transducers and loudspeakers | |
DE3838853C1 (en) | ||
DE3721068C2 (en) | ||
DE3024777C2 (en) | Coaxial multi-way speaker system with planar membrane | |
DE3622558C2 (en) | ||
DE19747955C2 (en) | speaker | |
EP0055841A1 (en) | Electrodynamic loudspeaker with diaphragm in the form of a dome | |
DE3135003A1 (en) | Dynamic treble system | |
AT382281B (en) | CIRCULAR RING MEMBRANE, IN PARTICULAR FOR MICROPHONES AND HEADPHONES | |
DE4007657C1 (en) | Coupling mfg. for loudspeaker - has inner section connector to diaphragm and outer section connected to loudspeaker box | |
DE19541197A1 (en) | Arrangement for the emission of sound waves |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19881028 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19910313 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19911227 Ref country code: FR Effective date: 19911227 Ref country code: BE Effective date: 19911227 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19911227 Ref country code: GB Effective date: 19911227 Ref country code: SE Effective date: 19911227 |
|
REF | Corresponds to: |
Ref document number: 70937 Country of ref document: AT Date of ref document: 19920115 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3775563 Country of ref document: DE Date of ref document: 19920206 |
|
EN | Fr: translation not filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19920619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19920630 Ref country code: LI Effective date: 19920630 Ref country code: CH Effective date: 19920630 |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930813 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950301 |