[go: up one dir, main page]

EP0301979B1 - Circuit de commande de base en pont à blocage contrôlé même en avalanche - Google Patents

Circuit de commande de base en pont à blocage contrôlé même en avalanche Download PDF

Info

Publication number
EP0301979B1
EP0301979B1 EP88420258A EP88420258A EP0301979B1 EP 0301979 B1 EP0301979 B1 EP 0301979B1 EP 88420258 A EP88420258 A EP 88420258A EP 88420258 A EP88420258 A EP 88420258A EP 0301979 B1 EP0301979 B1 EP 0301979B1
Authority
EP
European Patent Office
Prior art keywords
terminal
base
voltage
main
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88420258A
Other languages
German (de)
English (en)
Other versions
EP0301979A1 (fr
Inventor
Chandra Kumar Patni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
SGS Thomson Microelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics SA filed Critical SGS Thomson Microelectronics SA
Publication of EP0301979A1 publication Critical patent/EP0301979A1/fr
Application granted granted Critical
Publication of EP0301979B1 publication Critical patent/EP0301979B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04126Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0826Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/66Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will

Definitions

  • the present invention relates to the basic control of power switches such as, for example, power transistors, Darlington mount transistors or cascode mount transistors.
  • the present invention relates more particularly to such a basic bridge control circuit of the type described in French patent application FR-A-2 542 948.
  • This type of circuit makes it possible to pass a current through the base of the power transistor when we want it to be conductive, then, when the power transistor opens, to extract a base current (negative base current in the case of an NPN transistor) until the charges stored in this transistor be eliminated.
  • bridge circuits An advantage of bridge circuits is that this can be achieved with a voltage source of single polarity.
  • FIG. 1 shows an example of a basic control arrangement in a conventional bridge.
  • a power transistor TP to be switched comprises base, B, emitter, E, and collector, C terminals.
  • a switching bridge comprises four switches T1 to T4 connected between a supply terminal Vcc and a reference terminal M. More particularly, the switch T1 is connected between the voltage Vcc and the base terminal B, the switch T2 is connected between this base terminal B and the reference terminal M, the switch T3 is connected between the power supply terminal Vcc and the emitter terminal E, and the switch T4 is connected between the terminal E and the reference terminal M.
  • the switches T2 and T3 are open and the switches T1 and T4 are closed and a basic current supplied by a current source IB1 flows from the supply voltage Vcc to the terminal B, the terminal E and the reference terminal M passing through the closed switches T1 and T4 according to the current path indicated by the arrows in solid line.
  • switches T1 and T4 are open and switches T3 and T2 are closed.
  • a reverse current flows from the supply terminal Vcc through the switch T3, the terminal E, the terminal B, the switch T2 towards the reference terminal M.
  • an object of the present invention is to remedy this drawback.
  • Another object of the present invention is to provide a basic bridge control circuit in which the conduction of the main transistor is ensured according to the process known as "switch mode" (control by switching).
  • Another object of the present invention is to provide a basic bridge control circuit with very low consumption.
  • Another object of the present invention is to provide a basic bridge control circuit in which various safety devices are provided to ensure safe and reliable operation of the system.
  • a basic bridge control circuit for power switch in which, on opening, the base is connected to a reference terminal by a first low impedance switching means and the transmitter is connected to a supply terminal by a second switching means to allow the passage of a reverse current in the base-emitter junction, and in which the second switching means has a low impedance as long as the emitter voltage is low, immediately after its closure and that of the first switching means, and an impedance higher as soon as the emitter voltage approaches the supply voltage, this transition taking place automatically.
  • the second switching means comprises, on the one hand, a main switch of the type becoming conductive when the potential difference between its first main terminal and its control terminal is greater than a determined threshold, this first main terminal being connected to the power supply terminal and the second main terminal being connected to the transmitter terminal and, on the other hand, an auxiliary switch connected between the control terminal and the second main terminal, and a resistor connected between the control terminal and the first main terminal.
  • the main and auxiliary switches are P-channel depletion MOS transistors.
  • the main and auxiliary switches are PNP type bipolar transistors.
  • the branch of the bridge ensuring the supply of a basic current for the closing of the power switch is of the switching current source type, comprising a switch controlled in series with an inductor.
  • control circuit comprises a source of tilting order provided with inhibition means when the operation of the power switch appears to be defective.
  • a current limiting resistor is introduced automatically. in the circuit, which interrupts the avalanche effect or at the very least limits the avalanche current to a low value.
  • FIG. 2 represents the case where the switching order on opening has been given and represents the only branches of the bridge allowing a current to flow, that is to say the branches comprising the switches T3 and T2.
  • the switch T2 is produced in the form of an N-channel MOS transistor.
  • the switch T3 comprises two P-channel MOS transistors, T5 and T6 and a resistor R1 having for example a value of 1 kilohm.
  • the source of transistor T5 is connected to the supply terminal Vcc
  • the drain of transistor T5 is connected to the emitter terminal
  • the gate of transistor T5 is connected to a first terminal of resistor R1 and to the source of transistor T6.
  • the other terminal of the resistor R1 is connected to the supply terminal Vcc, that is to say to the source of the transistor T5.
  • the drain of transistor T6 is connected with the drain of transistor T5 to the emitter terminal E and the gate of transistor T6 receives a signal S of order to open the power transistor TP via an inverter I1 , this order signal S being applied directly to the gate of the N-channel transistor T2.
  • the base terminal B is substantially at ground potential and, due to the stored charges, the emitter terminal E is at a potential close to that of the base, for example at a voltage of l '' order of 1.5 Volt.
  • This voltage on terminal E is found, via the transistor T6 on the gate of transistor T5. This transistor therefore conducts well, since the potential on its source (Vcc) is significantly higher than the potential on the gate (a few volts).
  • a P-channel MOS transistor such as transistor T5 stops driving when the voltage difference between its source and its gate falls below a certain threshold. Consequently, when the transistor TP begins to block and the voltage on its emitter increases, the transistor T5 blocks.
  • the transistor T6 remains conductive and therefore the application of potential on the terminal E is maintained by the link to the terminal Vcc provided by the transistor T6 and the current limiting resistor R1.
  • An advantage of this structure is that, if the transistor T5 had remained conductive, and the voltage Vcc is higher than the emitter-base avalanche voltage of the power transistor TP, there would be an avalanche of the emitter junction -base of this TP transistor. A large current would therefore be dissipated in the basic control circuit.
  • the resistor R1 is put in series with the emitter-base junction and therefore, if an avalanche occurs, the avalanche current is extremely limit.
  • FIG. 2 has been shown in relation to a particular embodiment in order to clearly understand the operation of the invention. It is however clear that other elements having the same functions could be used.
  • the transistors T5 and T6 instead of being P channel MOS transistors could be bipolar PNP type transistors.
  • the power transistor is an NPN transistor, which is the most general case. However, if one wanted to control a PNP transistor, it would suffice to correspondingly modify the supply voltages and the types of the various transistors.
  • FIG. 3 represents the general structure of an embodiment of a basic bridge control circuit according to the invention in which other improvements have been made in addition to those described in relation to FIG. 2.
  • FIG. 3 the supply terminals Vcc and M, the switches T1, T2, T3 and T4 shown in FIG. 1, the elements T5, T6, R1 and I1 described in relation to FIG. 2.
  • the branch 1 of the bridge connected between the supply terminal Vcc and the base terminal B, comprises a transistor T1 of the MOS type with P channel in series with an inductance L.
  • a first diode D1 is connected between the terminal B and the supply terminal Vcc and a second diode D2 is connected between the reference terminal M and the connection point of the transistor T1 and of the inductor L.
  • the transistor T1 operates at high frequency switching, the inductor L, in relation to the diodes D1 and D2, supplying a smoothed current to the base terminal B when one is in the closing mode of transistor TP and that the switch T4, produced in the form of an N channel MOS transistor, is closed.
  • the bridge circuit according to FIG. 3 makes it possible to carry out switching operations on opening or closing. by acting only on switches T2, T3 and T4, the transistor T1 continuing to be controlled at high frequency, the current paths being closed by the diodes D1 and D2. This constitutes an advantage of the present invention since there is thus available at all times the basic current necessary to turn on the transistor TP.
  • the inverter I1 conventionally consists of two complementary MOS transistors whose gates and drains are respectively interconnected.
  • a buffer stage or adapter stage 10 comprises bipolar transistors, respectively NPN and PNP, connected by their bases and by their emitters, respectively, in relation to polarization resistors appropriate.
  • FIG. 4 A means of supplying this signal is illustrated in FIG. 4.
  • the circuit of FIG. 4 makes it possible to transform a incident logic signal 20 into signal S while providing certain security for the circuit.
  • the high or low level signal 20 is first sent to a buffer circuit or impedance adapter circuit 30, the output of which is connected to a first input of a NAND gate (or NI gate) 40.
  • the NAND gate 40 normally transmits an S signal reverse of signal 20.
  • the other input of this NAND gate 40 is intended to ensure security, that is to say to interrupt the supply of the basic control signal of the main transistor if the latter appears to be defective, and more particularly if its collector voltage is not at a low level soon after the closing order is supplied.
  • the voltage on the collector terminal C is detected by a diode 41 connected to resistors in series 42, 43 and 44 as shown.
  • resistors 42, 43 and 44 can have respective values of 10, 22 and 56 kilohms.
  • the information on the voltage level of the collector C that is to say the voltage at the connection point of the resistors 42 and 43, is transmitted to a first input of a second NAND gate 45 connected between the resistors 43 and 44.
  • the other input of the second NAND gate 45 is connected to terminal 20 via a resistor 46 and is connected to terminal M via a capacitor 47.
  • the signal on terminal 20 is transmitted to the second input of the NAND gate 45 with a certain delay linked to the time constant of the RC circuit 46, 47.
  • the output of gate 45 is sent to the second input of gate 40.
  • This logic circuit works as follows. In the initial state, when a closing command is sent to gate 20, the NAND gate 40 is validated and a signal S is supplied to the basic control circuit. Then, with a delay linked to the above-mentioned time constant, the NAND gate 45 is validated to let the high voltage information pass on the collector C if this state is present, that is to say that there is failure. Then, in this case, the gate 40 is invalidated, the signal S is no longer supplied and the conduction of the switches T1, T2, T3, T4 is reversed. It will be understood that the delay time provided by the RC circuit 46, 47 is intended to allow the collector voltage time to drop immediately after supplying the closing order.
  • the signal at the output of gate 45 can be used as a status signal indicating the conduction or non-conduction state of the power transistor TP.
  • circuit of FIG. 4 can be integrated into a single semiconductor component with the various components of the basic control circuit of FIG. 3.
  • circuits of Figures 3 and 4 are only specific examples of embodiment of the present invention. It is a coherent set of components allowing integration. However, it should be noted that other types of components could be used; for example, the MOS transistors could be replaced by bipolar transistor assemblies provided that these have a switching speed and resistances to the on and off states satisfactory.
  • this switch T3 can be considered as a tripole comprising two main terminals A1 and A2 and an A3 control terminal.
  • This tripole has the electrical characteristic illustrated in Figure 6.
  • this switch has two main operating points.
  • V A1A2 when the voltage between the main terminals A1 and A2, V A1A2 , is high, the switching means T3 is in a low impedance state and allows a high current to pass at a value optimized for the destocking of the transistor TP while the voltage V BE of the transistor TP is low.
  • the voltage V A1A2 can be chosen in any way, including a value greater than the avalanche voltage of the base-emitter junction of the main transistor TP.
  • the second switching means T3 limits the current I A1A2 to a value low enough to limit the energy dissipated in the base-emitter junction of the transistor TP even in the event of an avalanche of the latter has a non-destructive value for this transistor TP.
  • the representation of FIG. 6 is on a logarithmic scale, the impedance being higher at point b than at point a.
  • the transition between points a and b can be made according to any characteristic, for example like that shown in FIG. 5 in dotted lines.

Landscapes

  • Electronic Switches (AREA)

Description

  • La présente invention concerne la commande de base d'interrupteurs de puissance tels que, par exemple, des transistors de puissance, des transistors à montage Darlington ou des transistors à montage cascode.
  • La présente invention concerne plus particulièrement un tel circuit de commande de base en pont du type décrit dans la demande de brevet français FR-A-2 542 948. Ce type de circuit permet de faire passer un courant dans la base du transistor de puissance quand on veut qu'il soit conducteur, puis, au moment de l'ouverture du transistor de puissance, d'extraire un courant de base (courant de base négatif dans le cas d'un transistor NPN) jusqu'à ce que les charges stockées dans ce transistor soit éliminées.
  • Un avantage des circuits en pont est que ce résultat peut être obtenu avec une source de tension de polarité unique.
  • La figure 1 représente un exemple de montage de commande de base en pont classique. Un transistor de puissance TP à commuter comprend des bornes de base, B, d'émetteur, E, et de collecteur, C. Un pont de commutation comprend quatre commutateurs T1 à T4 connectés entre une borne d'alimentation Vcc et une borne de référence M. Plus particulièrement, le commutateur T1 est connecté entre la tension Vcc et la borne de base B, le commutateur T2 est connecté entre cette borne de base B et la borne de référence M, le commutateur T3 est connecté entre la borne d'alimentation Vcc et la borne d'émetteur E, et le commutateur T4 est connecté entre la borne E et la borne de référence M.
  • Ainsi, dans un premier état, les commutateurs T2 et T3 sont ouverts et les commutateurs T1 et T4 sont fermés et un courant de base fourni par une source de courant IB1 circule de la tension d'alimentation Vcc à la borne B, la borne E et la borne de référence M en passant par les commutateurs fermés T1 et T4 selon la trajet de courant indiqué par les flèches en trait plein.
  • A l'ouverture, les commutateurs T1 et T4 sont ouverts et les commutateurs T3 et T2 sont fermés. Ainsi, un courant inverse circule à partir de la borne d'alimentation Vcc par le commutateur T3, la borne E, la borne B, le commutateur T2 vers la borne de référence M.
  • Comme l'indique par exemple, en page 99, l'ouvrage publié par la Société THOMSON CSF en 1983 sous le titre "Le transistor de puissance dans la conversion d'énergie", ouvrage ayant également fait l'objet d'une publication en langue anglaise, un inconvénient de ce type de circuit à extraction de courant de base dans lequel on applique, à l'ouverture, une tension inverse entre l'émetteur et la base est que, si la tension Vcc est trop élevée, une fois que les charges stockées au voisinage de la jonction émetteur-base sont ont été évacuées, la jonction émetteur-base risque de claquer en avalanche interne. Il en résulte une dissipation de courant importante dans le circuit de commande. Différents systèmes ont déjà été proposés pour pallier cet inconvénient, mais aucun n'y remédie de façon parfaite ou de façon simple.
  • Ainsi, un objet de la présente invention est de remédier à cet inconvénient.
  • Un autre objet de la présente invention est de prévoir un circuit de commande de base en pont dans lequel la conduction du transistor principal est assurée selon le procédé dit "switch mode" (commande par commutation).
  • Un autre objet de la présente invention est de prévoir un circuit de commande de base en pont à très faible consommation.
  • Un autre objet de la présente invention est de prévoir un circuit de commande de base en pont dans lequel diverses sécurités sont prévues pour assurer un fonctionnement sûr et fiable du système.
  • Ces objets de l'invention sont atteints en prévoyant un circuit de commande de base en pont pour interrupteur de puissance dans lequel, à l'ouverture, la base est reliée à une borne de référence par un premier moyen de commutation à faible impédance et l'émetteur est relié à une borne d'alimentation par un deuxième moyen de commutation pour permettre le passage d'un courant inverse dans la jonction base-émetteur, et dans lequel le deuxième moyen de commutation présente une faible impédance tant que la tension d'émetteur est faible, immédiatement après sa fermeture et celle du premier moyen de commutation, et une impédance plus élevée dès que la tension d'émetteur se rapproche de la tension d'alimentation, cette transition se faisant de façon automatique.
  • Selon un aspect de la présente invention, le deuxième moyen de commutation comprend, d'une part, un interrupteur principal du type devenant conducteur quand la différence de potentiel entre sa première borne principale et sa borne de commande est supérieure à un seuil déterminé, cette première borne principale étant connectée à la borne d'alimentation et la deuxième borne principale étant reliée à la borne d'émetteur et, d'autre part, un interrupteur auxiliaire connecté entre la borne de commande et la deuxième borne principale, et une résistance connectée entre la borne de commande et la première borne principale.
  • Selon un aspect de la présente invention, les interrupteurs principal et auxiliaire sont des transistors MOS à appauvrissement à canal P.
  • Selon un aspect de la présente invention, les interrupteurs principal et auxiliaire sont des transistors bipolaires de type PNP.
  • Selon un aspect de la présente invention, la branche du pont assurant la fourniture d'un courant de base pour la fermeture de l'interrupteur de puissance est du type à source de courant à commutation, comprenant un interrupteur commandé en série avec une inductance.
  • Selon un aspect de la présente invention, le circuit de commande comprend une source d'ordre de basculement munie de moyens d'inhibition quand le fonctionnement de l'interrupteur de puissance apparaît comme défectueux.
  • Ainsi, avec le montage selon la présente invention, à l'ouverture, dès que l'émetteur est déstocké et que sa tension monte par rapport à la base qui est connectée à la masse, une résistance de limitation de courant est introduite de façon automatique dans le circuit, ce qui interrompt l'effet d'avalanche ou à tout le moins limite le courant d'avalanche à une faible valeur.
  • Ces objets, caractéristiques et avantages ainsi que d'autres de la présente invention seront exposés plus en détail dans la description suivante d'un mode de réalisation particulier faite en relation avec les figures jointes parmi lesquelles:
    • la figure 1, décrite précédemment, représente un circuit de commande de base en pont selon l'art antérieur;
    • la figure 2 représente les branches du circuit en pont selon l'invention servant au passage du courant lors d'une commutation à l'ouverture;
    • la figure 3 représente un mode de réalisation d'un circuit de commande de base en pont selon la présente invention;
    • la figure 4 représente un mode de réalisation d'un circuit logique de founiture de signal d'ordre de commutation pour le circuit de commande de base de la figure 3;
    • la figure 5 représente sous forme généralisée un moyen de commutation utilisé dans la mise en oeuvre de la présente invention; et
    • la figure 6 représente des courbes caractéristiques du moyen de commutation de la figure 5.
  • Comme cela a été indiqué en relation avec la figure 1, quand on veut commuter à l'ouverture un circuit de commande de base en pont, les commutateurs T1 et T4 sont ouverts et les commutateurs T2 et T3 sont fermés.
  • La figure 2 représente le cas où l'ordre de commutation à l'ouverture a été donné et représente les seules branches du pont laissant passer un courant, c'est-à-dire les branches comprenant les commutateurs T3 et T2.
  • Le commutateur T2 est réalisé sous forme d'un transistor MOS à canal N.
  • Le commutateur T3 comprend deux transistors MOS à canal P, T5 et T6 et une résistance R1 ayant par exemple une valeur de 1 kilohm. La source du transistor T5 est reliée à la borne d'alimentation Vcc, le drain du transistor T5 est relié à la borne d'émetteur et la grille du transistor T5 est reliée à une première borne de la résistance R1 et à la source du transistor T6. L'autre borne de la résistance R1 est reliée à la borne d'alimentation Vcc, c'est-à-dire à la source du transistor T5. Le drain du transistor T6 est relié avec le drain du transistor T5 à la borne d'émetteur E et la grille du transistor T6 reçoit un signal S d'ordre d'ouverture du transistor de puissance TP par l'intermédiaire d'un inverseur I1, ce signal d'ordre S étant appliqué directement à la grille du transistor à canal N T2.
  • Ainsi, dès qu'un signal S est appliqué pour commander l'ouverture du transistor de puissance TP, les commutateurs T1 et T4 (non représentés en figure 2) sont immédiatement ouverts et les transistors T2 et T6 deviennent conducteurs. La conduction du transistor T6 entraîne celle du transistor T5. Un courant circule donc entre la borne d'alimentation Vcc et la borne de masse M par l'intermédiaire du transistor T5, de la jonction émetteur-base en inverse du transistor de puissance TP et du transistor T2.
  • Dans une première phase, la borne de base B se trouve sensiblement au potentiel de la masse et, en raison des charges stockées, la borne d'émetteur E est à un potentiel voisin de celui de la base, par exemple à une tension de l'ordre de 1,5 Volt. Cette tension sur la borne E se retrouve, par l'intermédiaire du transistor T6 sur la grille du transistor T5. Ce transistor conduit donc bien, puisque le potentiel sur sa source (Vcc) est nettement supérieur au potentiel sur la grille (quelques volts).
  • Ensuite, tandis que les charges stockées dans la base commencent à s'éliminer, la tension sur la borne d'émetteur E monte par rapport à la tension sur la base et cette tension tend à se rapprocher de Vcc. Un transistor MOS à canal P, tel que le transistor T5, cesse de conduire quand la différence de tension entre sa source et sa grille devient inférieure à un certain seuil. En conséquence, quand le transistor TP commence à se bloquer et que la tension sur son émetteur croît, le transistor T5 se bloque. Par contre, le transistor T6 reste conducteur et donc l'application de potentiel sur la borne E est maintenue par la liaison vers la borne Vcc assurée par le transistor T6 et la résistance de limitation de courant R1. Un avantage de cette structure est que, si le transistor T5 était resté conducteur, et que la tension Vcc est plus élevée que la tension d'avalanche émetteur-base du transistor de puissance TP, il se produirait une mise en avalanche de la jonction émetteur-base de ce transistor TP. Un courant important serait en conséquence dissipé dans le circuit de commande de base.
  • Grâce à la structure représentée du commutateur T3, dès que le transistor de puissance est bloqué, la résistance R1 vient se mettre en série avec la jonction émetteur-base et donc, s'il se produit une avalanche, le courant d'avalanche est extrêmement limité.
  • Le circuit de la figure 2 à été représenté en relation avec un mode de réalisation particulier pour bien faire comprendre le fonctionnement de l'invention. Il est toutefois clair que d'autres éléments présentant les mêmes fonctions pourraient être utilisés. Par exemple, les transistors T5 et T6 au lieu d'être des transistors MOS à canal P pourraient être des transistors bipolaires de type PNP. D'autre part, on a considéré le cas où le transistor de puissance est un transistor NPN, ce qui est le cas le plus général. Toutefois, si l'on voulait commander un transistor PNP, il suffirait de modifier de façon correspondante les tensions d'alimentation et les types des divers transistors.
  • La figure 3 représente la structure générale d'un mode de réalisation de circuit de commande de base en pont selon l'invention dans lequel d'autres perfectionnements ont été apportés en sus de ceux décrits en relation avec la figure 2. On retrouve en figure 3 les bornes d'alimentation Vcc et M, les commutateurs T1, T2, T3 et T4 représentés en figure 1, les éléments T5, T6, R1 et I1 décrits en relation avec la figure 2.
  • Dans le montage de la figure 3, on a adopté pour la source de courant IB1, illustrée symboliquement en figure 1 dans la branche T1, un système couramment désigné dans la technique par l'appellation anglosaxonne "switch-mode", c'est-à-dire à fonctionnement par impulsions, qui présente l'avantage de permettre une réduction importante de la consommation du circuit de commande de base et d'être simplement réglable. L'adaptation particulière de ce circuit de type "switch-mode" à un montage en pont constitue l'un des aspects de la présente invention.
  • Ainsi, la branche 1 du pont, connectée entre la borne d'alimentation Vcc et la borne de base B, comprend un transistor T1 du type MOS à canal P en série avec une inductance L. Une première diode D1 est connectée entre la borne B et la borne d'alimentation Vcc et une deuxième diode D2 est connectée entre la borne de référence M et le point de raccordement du transistor T1 et de l'inductance L. Le transistor T1 fonctionne en commutation à haute fréquence, l'inductance L, en relation avec les diodes D1 et D2, fournissant un courant lissé à la borne de base B quand on est dans le mode fermeture de transistor TP et que le commutateur T4, réalisé sous forme d'un transistor MOS à canal N, est fermé.
  • On notera que le circuit en pont selon la figure 3 permet d'effectuer des commutations à l'ouverture ou à la fermeture en agissant seulement sur les commutateurs T2, T3 et T4, le transistor T1 continuant à être commandé à haute fréquence, les trajets de courant se refermant par les diodes D1 et D2. Ceci constitue un avantage de la présente invention car on dispose ainsi à tout instant du courant de base nécessaire pour mettre en conduction le transistor TP.
  • L'inverseur I1 est constitué classiquement de deux transistors MOS complémentaires dont les grilles et les drains sont respectivement interconnectés.
  • A l'entrée du transistor T2 (transistor MOS à canal N), un étage tampon ou étage adaptateur 10 comprend des transistors bipolaires, respectivement NPN et PNP, connectés par leurs bases et par leurs émetteurs, respectivement, en relation avec des résistances de polarisation appropriées.
  • En relation avec le transistor T1, on a représenté un exemple de circuit oscillant. Ce circuit ne sera pas décrit en détail ici étant donné qu'il pourra être simplement compris de l'homme de l'art. Il a été seulement représenté pour indiquer que sa réalisation est compatible avec les technologies de fabrication des autres éléments. En effet, tous les éléments représentés en figure 3, à l'exception de l'inductance L, peuvent être réalisés sur un circuit intégré unique en utilisant une technologie permettant d'intégrer simultanément des transistors MOS complémentaires et des transistors bipolaires de types différents.
  • On peut voir en figure 3 que l'état de commutation des commutateurs T2, T3 et T4 dépend d'un signal extérieur S. Un moyen de fourniture de ce signal est illustré en figure 4. Le circuit de la figure 4 permet de transformer un signal logique incident 20 en le signal S tout en fournissant certaines sécurités pour le circuit. Le signal 20 à haut ou bas niveau est d'abord envoyé à un circuit tampon ou circuit adaptateur d'impédance 30 dont la sortie est connectée à une première entrée d'une porte NON ET (ou porte NI) 40. La porte NON ET 40 transmet normalement un signal S inverse du signal 20. L'autre entrée de cette porte NON ET 40 est destinée à assurer une sécurité, c'est-à-dire à interrompre la fourniture du signal de commande de base du transistor principal si celui-ci apparaît défectueux, et plus particulièrement si sa tension de collecteur n'est pas à bas niveau peu après la fourniture de l'ordre de fermeture. Pour ce faire, la tension sur la borne de collecteur C est détectée par une diode 41 connectée à des résistances en série 42, 43 et 44 de la façon représentée. A titre d'exemple, les résistances 42, 43 et 44 peuvent avoir des valeurs respectives de 10, 22 et 56 kilohms. L'information sur le niveau de tension du collecteur C, c'est-à-dire la tension au point de raccordement des résistances 42 et 43 est transmise à une première entrée d'une deuxième porte NON ET 45 connectée entre les résistances 43 et 44. L'autre entrée de la deuxième porte NON ET 45 est connectée à la borne 20 par l'intermédiaire d'une résistance 46 et est connectée à la borne M par l'intermédiaire d'un condensateur 47. Ainsi, le signal sur la borne 20 est transmis à la deuxième entrée de la porte NON ET 45 avec un certain retard lié à la constante de temps du circuit RC 46, 47. La sortie de la porte 45 est envoyée à la deuxième entrée de la porte 40.
  • Ce circuit logique fonctionne de la façon suivante. A l'état initial, quand un ordre de fermeture est envoyé sur la porte 20, la porte NON ET 40 est validée et un signal S est fourni au circuit de commande de base. Ensuite, avec un retard lié à la constante de temps susmentionnée, la porte NON ET 45 est validée pour laisser passer l'information de tension élevée sur le collecteur C si cet état est présent, c'est-à-dire qu'il existe un défaut. Alors, en ce cas, la porte 40 est invalidée, le signal S n'est plus fourni et la conduction des commutateurs T1, T2, T3, T4 s'inverse. On comprendra que le temps de retard assuré par le circuit RC 46, 47 est destinée à laisser à la tension de collecteur le temps de chuter immédiatement après fourniture de l'ordre de fermeture.
  • On notera que le signal à la sortie de la porte 45 peut être utilisé comme signal d'état indiquant l'état de conduction ou de non-conduction du transistor de puissance TP.
  • Dans la pratique, le circuit de la figure 4 pourra être intégré en un composant semiconducteur unique avec les divers composants du circuit de commande de base de la figure 3.
  • Bien entendu, les circuits des figures 3 et 4 ne constituent que des exemples particuliers de réalisation de la présente invention. Il s'agit d'un ensemble cohérent de composants permettant une intégration. Toutefois, on notera que d'autres types de composants pourraient être utilisés; par exemple les transistors MOS pourraient être remplacés par des montages à transistors bipolaires pour autant que ceux-ci présentent une rapidité de commutation et des résistances aux états passant et bloqué satisfaisantes.
  • D'autre part, une réalisation particulière du commutateur T3 selon la présente invention a été illustrée en figures 2 et 3. Plus généralement, comme le représente la figure 5, ce commutateur T3 peut être considéré comme un tripôle comprenant deux bornes principales A1 et A2 et une borne de commande A3.
  • Ce tripôle a la caractéristique électrique illustrée en figure 6.
  • Tout d'abord, quand le signal de commande appliqué sur la borne A3 est à l'état "OFF" le commutateur T3 est à l'état bloqué comme le représente la courbe inférieure en trait plein de la figure 6. Ainsi, quand la tension VA1A2 entre ces bornes A1 et A2 augmente, le courant IA1A2 traversant ce commutateur reste pratiquement nul (la pente de la droite en trait plein a été exagérée dans la figure).
  • Par contre, quand le signal sur la borne de commande A3 est à l'état "ON" ce commutateur présente deux points de fonctionnement principaux. Au point a, quand la tension entre les bornes principales A1 et A2, VA1A2, est élevée, le moyen de commutation T3 est dans un état de faible impédance et laisse passer un courant élevé à une valeur optimisée pour le déstockage du transistor TP tandis que la tension VBE du transistor TP est faible. Au point a, la tension VA1A2 peut être choisie d'une manière quelconque, y compris une valeur supérieure à la tension d'avalanche de la jonction base-émetteur du transistor principal TP.
  • Au point b, quand la tension VA1A2 est faible, le deuxième moyen de commutation T3 limite le courant IA1A2 à une valeur suffisamment faible pour limiter l'énergie dissipée dans la jonction base-émetteur du transistor TP même en cas d'avalanche de cette dernière à une valeur non destructive pour ce transistor TP. On comprendra que la représentation de la figure 6 est à échelle logarithmique, l'impédance étant plus élevée au point b qu'au point a. La transition entre les points a et b peut se faire selon une caractéristique quelconque, par exemple comme celle représentée sur la figure 5 en traits pointillés.

Claims (7)

1. Circuit de commande de base en pont pour interrupteur de puissance (TP), dont la tension base-émetteur (VBE) est faible à la conduction et initialement faible à l'ouverture en raison de la présence de charges stockées pendant la phase antérieure de conduction, dans lequel, à l'ouverture, la base est reliée à une borne de référence (M) par un premier moyen de commutation (T2) à faible impédance et l'émetteur est relié à une borne d'alimentation (Vcc) par un deuxième moyen de commutation (T3) pour permettre le passage d'un courant inverse dans la jonction base-émetteur,
caractérisé en ce que le deuxième moyen de commutation comprend une première voie à faible impédance, active immédiatement après la fermeture des premier et deuxième moyens de commutation et tant que la tension base-émetteur (VBE) de l'interrupteur de puissance est faible, et une deuxième voie à impédance plus élevée active dès que la tension d'émetteur se rapproche de la tension d'alimentation (Vcc).
2. Circuit de commande de base selon la revendication 1, caractérisé en ce que le deuxième moyen de commutation comprend:
- un interrupteur principal (T5) du type devenant conducteur quand la différence de potentiel entre sa première borne principale et sa borne de commande est supérieure à un seuil déterminé, cette première borne principale étant connectée à la borne d'alimentation et la deuxième borne principale étant reliée à la borne d'émetteur,
- un interrupteur auxiliaire (T6) connecté entre la borne de commande de l'interrupteur principal et la deuxième borne principale et dont la borne de commande reçoit le signal de commande d'ouverture de l'interrupteur de puissance, et
- une résistance (R1) connectée entre la borne de commande de l'interrupteur principal et la première borne principale.
3. Circuit de commande de base selon la revendication 2, caractérisé en ce que les interrupteurs principal et auxiliaire sont des transistors MOS à appauvrissement à canal P.
4. Circuit de commande de base selon la revendication 2, caractérisé en ce que les interrupteurs principal et auxiliaire sont des transistors bipolaires de type PNP.
5. Circuit de commande de base selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la branche du pont assurant la fourniture d'un courant de base pour la fermeture de l'interrupteur de puissance est du type source de courant à commutation, comprenant un interrupteur (T1) commandé par un signal haute fréquence.
6. Circuit de commande de base selon la revendication 5, caractérisé en ce que la branche du pont connectée entre la borne d'alimentation (Vcc) et la base (B) du commutateur de puissance comprend:
- un transistor à effet de champ à canal P (T1) commandé par un signal oscillant, en série avec une inductance (L),
- une première diode (D1) connectée entre la borne de l'inductance reliée à la borne de base (B) et la tension d'alimentation (Vcc), et
- une deuxième diode (D2) connectée entre l'autre borne de l'inductance (L) reliée au transistor (T1) et la tension de référence (M), ces diodes (D1 et D2) étant polarisées toutes deux en inverse dans le circuit allant de la tension d'alimentation à la tension de référence en passant par ces diodes.
7. Circuit de commande de base selon l'une quelconque les revendications 1 à 6, caractérisé en ce qu'il comprend une source d'ordres de basculement (20, 30) destinés aux diverses branches du pont, cette source étant munie de moyens d'inhibition (40-47) agissant quand le fonctionnement de l'interrupteur de puissance apparaît comme défectueux.
EP88420258A 1987-07-21 1988-07-20 Circuit de commande de base en pont à blocage contrôlé même en avalanche Expired - Lifetime EP0301979B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8710605 1987-07-21
FR8710605A FR2618619B1 (fr) 1987-07-21 1987-07-21 Circuit de commande de base en pont a blocage controle meme en avalanche

Publications (2)

Publication Number Publication Date
EP0301979A1 EP0301979A1 (fr) 1989-02-01
EP0301979B1 true EP0301979B1 (fr) 1991-03-13

Family

ID=9353586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88420258A Expired - Lifetime EP0301979B1 (fr) 1987-07-21 1988-07-20 Circuit de commande de base en pont à blocage contrôlé même en avalanche

Country Status (7)

Country Link
US (1) US4950930A (fr)
EP (1) EP0301979B1 (fr)
JP (1) JPH01105613A (fr)
KR (1) KR890003128A (fr)
DE (1) DE3861995D1 (fr)
ES (1) ES2021158B3 (fr)
FR (1) FR2618619B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115369A (en) * 1990-02-05 1992-05-19 Motorola, Inc. Avalanche stress protected semiconductor device having variable input impedance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3400304A (en) * 1966-02-25 1968-09-03 Raytheon Co Current reversing circuit
US3678291A (en) * 1970-05-18 1972-07-18 Sci Systems Inc Solid state relay
SU508883A1 (ru) * 1973-07-05 1976-03-30 Научно-Исследовательский Институтавтоматики И Электромеханики Притомском Институте Автоматизированныхсистем Управления И Радиоэлектроники Транзисторный инвертор
JPS579130A (en) * 1980-06-19 1982-01-18 Fanuc Ltd Power transistor driving circuit
US4540899A (en) * 1982-09-30 1985-09-10 International Rectifier Corporation Hammer drive circuit using power MOSFETs
FR2542948B1 (fr) * 1983-03-15 1985-06-21 Thomson Csf Circuit de commande de base en pont d'un transistor de puissance
US4454454A (en) * 1983-05-13 1984-06-12 Motorola, Inc. MOSFET "H" Switch circuit for a DC motor
DE3325044C2 (de) * 1983-07-12 1986-10-23 Robert Bosch Gmbh, 7000 Stuttgart Stromregler für einen elektromagnetischen Verbraucher in Verbindung mit Brennkraftmaschinen

Also Published As

Publication number Publication date
JPH01105613A (ja) 1989-04-24
FR2618619A1 (fr) 1989-01-27
US4950930A (en) 1990-08-21
EP0301979A1 (fr) 1989-02-01
KR890003128A (ko) 1989-04-13
DE3861995D1 (de) 1991-04-18
ES2021158B3 (es) 1991-10-16
FR2618619B1 (fr) 1990-01-05

Similar Documents

Publication Publication Date Title
EP0594834B1 (fr) Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard
FR2798014A1 (fr) Circuit d'alimentation a selecteur de tension
EP0454597B1 (fr) Circuit de commande de grille par impulsion avec securité de court-circuit
EP0388329A1 (fr) Circuit de commande de transistor MOS de puissance sur charge inductive
EP0328465B1 (fr) Circuit de commande de grille d'un transistor MOS de puissance fonctionnant en commutation
EP0678802B1 (fr) Circuit de limitation de tension avec comparateur à hystérésis
FR2470485A1 (fr) Amplificateurs equilibres de classe ab
EP0301979B1 (fr) Circuit de commande de base en pont à blocage contrôlé même en avalanche
EP0571302B1 (fr) Amplificateur avec limitation de courant de sortie
EP0434495B1 (fr) Circuit de précharge d'un bus de mémoire
EP0837545B1 (fr) Circuit de commande au zéro de tension d'un triac
FR2653951A1 (fr) Convertisseur de niveau.
EP0109106A1 (fr) Circuit convertisseur de niveaux de signaux entre une logique de type saturée et une logique de type non saturée
EP0505234A1 (fr) Circuit de détection de l'état d'un interrupteur, notamment d'une clé de contact dans un régulateur de tension d'alternateur
FR2564264A1 (fr) Relais statique pour courant continu
EP0899921B1 (fr) Circuit d'attaque de ligne symétrique
EP0164770B1 (fr) Relais statique pour courant continu basse tension
FR2773285A1 (fr) Circuit pour commuter une charge inductive
EP1109026B1 (fr) Dispositif de détection d'une haute tension
EP2319179B1 (fr) Dispositif de connexion pour circuit intégré
EP0187572B1 (fr) Circuit limiteur d'excursion des tensions logiques, et circuit logique comportant un tel limiteur d'excursion
EP0700142B1 (fr) Circuit de détection de la fermeture d'une clé de contact pour la commande d'un régulateur de la charge d'une batterie par un alternateur, équipé de moyens de dérivation des courants de fuite parasites
FR2855683A1 (fr) Dispositif de commande d'un commutateur de puissance commande en tension
FR2648971A1 (fr) Circuit d'interface de sortie entre deux circuits numeriques de natures differentes
EP0292368A1 (fr) Dispositif électronique formant interface bidirectionnelle de commande d'un élément de puissance de commutation d'une charge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB IT LI NL SE

17P Request for examination filed

Effective date: 19890717

17Q First examination report despatched

Effective date: 19900219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910313

REF Corresponds to:

Ref document number: 3861995

Country of ref document: DE

Date of ref document: 19910418

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910719

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19910722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910730

Year of fee payment: 4

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920731

Ref country code: CH

Effective date: 19920731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 88420258.1

Effective date: 19930204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000719

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010720

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050720