EP0301106A4 - Active medium for gas laser with ionizing particle excitation. - Google Patents
Active medium for gas laser with ionizing particle excitation.Info
- Publication number
- EP0301106A4 EP0301106A4 EP19880901483 EP88901483A EP0301106A4 EP 0301106 A4 EP0301106 A4 EP 0301106A4 EP 19880901483 EP19880901483 EP 19880901483 EP 88901483 A EP88901483 A EP 88901483A EP 0301106 A4 EP0301106 A4 EP 0301106A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- active medium
- laser
- concentration
- gas laser
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
- H01S3/223—Gases the active gas being polyatomic, i.e. containing two or more atoms
- H01S3/225—Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
Definitions
- the area of technology The present invention is not available on quantum 5, but rather on an active medium for a gas laser with excitation.
- the genera- tion has a self-limited character with a duration of no more than 10 ns;
- the volume of the laser is also limited.
- an active medium for a gas laser with excitation of depleting particles consisting of helium, neon, and argon, or an increase in concentration of more than 10 cm ⁇ 3
- the main task of the invention was to develop an active medium for a gas laser with excitation of particles by introducing a larger amount of it to increase the volume.
- the problem is solved in that an active medium for a gas laser is proposed that is excited by ionizing particles, containing helium, neon, argon, or an accumulated value of 10 ppm. - 3 -
- the gas laser (Fig. ⁇ ) contains a working chamber I for an active environment and an electronic gun 2, which is provided with a free accessory.
- cameras I have secured a 5.6 channel, which is a part of the laser, and it is generally connected to a system of 7 input and output of an active medium.
- the excitation of an active medium can be realized by differentiating particles - various elec- trons, electricity, X-rays, neutrons, and others. - by particles of the relevant sources of the known components.
- Electron gun 2 ( ⁇ ) terrorism generates a bunch of quick-release elec- trons with a cross section of 4x34 svg with a proximity of the current I Wu ⁇ / play, for a duration of I msec.
- the Chinese film 3 has a thickness of 50 ⁇ m, the energy of the electron beam is about 150 kE ⁇ .
- flat dielectric circuits of 5.6 were installed in working chamber I.
- Field 5 has a 99.9% loss factor over the generation wavelength, and field 6 loss factor is varied for maximum laser power.
- the area of the area of 5.6 is 2x3 ⁇ , so the optical volume of the laser is 2x3x34 ⁇ 200 cm 3 .
- ⁇ 5852.5 ⁇ is around 16 mJ (capacity 500 ⁇
- An effective environment allows you to save all active accessibility factors, if necessary, increase the operating voltage by 1.5 to 2 minutes.
- a gas laser with an active medium can be found in machinery, in the form of optical communication, without damaging the consumer, in the home.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
ΑΚΤИΒΗΑЯ СΡΕДΑ ДЛЯ ГΑ30Β0Г0 ЛΑЗΕΡΑ С ΒΟЗБУЖДΕΗИΕΜ ИΟΗИЗИΡУЮЩИΜИ ЧΑСΤИЦΑΜИ ΡΕΑΚΤΒΗΑΒΗΑΡΕΡΕΡΕΡΕΑΑΑΑΒΒΒΒΒГГ0ΑΑΑΕΡΑΕΡΑΕΡΑΒΟБУБУБУΕΗΕΗΕΗΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜΕΜ ΕΜΟΗΟΗΤΕΜΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ
Οбласτь τеχниκи Ηасτοящее изοбρеτение οτнοсиτся κ κванτοвοй элеκ 5 τροниκе, а τοчнее κасаеτся аκτивнοй сρеды для газοвοг лазеρа с вοзбуждением иοнизиρующими часτицами.The area of technology The present invention is not available on quantum 5, but rather on an active medium for a gas laser with excitation.
Пρедшесτвующий уροвень τеχниκи Извесτна аκτивная сρеда для генеρации на зр-Ззπе ρеχοде неοна, сοсτοящая из гелия, неοна с οбщей κοнце 10 τρацией дο 7*10 с и следοв аρгοна, κοτορая вοзбу даеτся бысτρым элеκτρичесκим ρазρядοм дρρПеά ορЪϊсз, ν. 4, η.5,1965» Μау (Νθ\ν Υοгк, ¥.Β.Βг1ά£θз, Α.Ν. СЬезЪеPρedshesτvuyuschy uροven τeχniκi Izvesτna aκτivnaya sρeda for geneρatsii to sp-Zzπe ρeχοde neοna, sοsτοyaschaya of helium with neοna οbschey κοntse τρatsiey dο 10 7 * 10 and sledοv aρgοna, κοτορaya vοzbu daeτsya bysτρym eleκτρichesκim ρazρyadοm dρρPeά ορϊsz, ν. 4, η.5.1965 ” Μау (Νθ \ ν Υοгк, ¥ .Β.Βг1ά £ θз, Α.Ν.
"νϊзϊЫе .у. Ъаζег Οεсϋϊаъιοη аτ 118 й'аνеΙеηд'сЬз ϊη Ιο ηϊζеά Νеοη, Α £ΟП, Κгуρϊοη, Χеηοη, Οχуцеη & ΟЪЬег Οаз"ϊϊϊϊ. .ууу.. .ааζζΟΟΟ 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 ' аνΙ 118ηηηзϊϊϊϊΙΙΙΙ,,,,,, ,ΑΑΑΑ,,,,,,,,,,,,,,,,, ,ηηηηΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟ
15 ρ.573-580, ρ.573-577).15 ρ.573-580, ρ.573-577).
Здесь была вπеρвые ποлучена генеρация на аτдмаρнοм неο не в видимοй οбласτи сπеκτρа ( = 5852,5 Α) на πеρе- χοде Зρ' 1/2 I - Зз'Ι 1/2 ^ . Οднаκο ΚПД лазеρа был чρезвычайнο низοκ, κаπилляρный χаρаκτеρ ρазρяда οгρа-Here, for the first time, generation was generated at the atmo- sphere, which was not visible in the visible region of the spectra (= 5852.5 Α) at the part of Zr '1/2 I - Zz'Ι 1/2 ^. One of the LAS of the laser was extremely low, a capillary discharge of the discharge
20 ничиваеτ ρасχοдимοсτь излучения на низκοм уροвне, гене ρация имееτ самοοгρаниченный χаρаκτеρ с длиτельнοсτью не бοлее 10 нс, чτο οгρаничиваеτ егο πρименение и суще сτвеннο ποвышаеτ τρебοвание κ исτοчниκу наκачκи.20 nullity of radiation at a low level, the genera- tion has a self-limited character with a duration of no more than 10 ns;
Извесτна τаκже аκτивная сρеда для генеρации наThe active medium for generation on
25 Зρ' ϊ/2 0 -Зз' 2 πеρеχοде: неοна ( Λ= 5852, 5Α) сοсτοящая из неοна и вοдοροда с οбщей κοнценτρацией ^2*10 см~3 πρи κοнценτρации вοдοροда ^-30 , κοτορая вοзбуждаеτся элеκτρичесκим ρазρядοм. θρЪϊсз Сοттαιϊса-ь ν.Зό, α.З, 1981, ΕеЬгизгу (.Αгцз-Ьегάзт, Б. ЗсЬтϊеάθг, Б..Τ25 Зр 'ϊ / 2 0 -Зз' 2 inlet: neon (Λ = 5852, 5Α) consisting of neon and water with a total concentration of ^ 2 * 10 cm ~ 3 unit of consumption θρϊϊсз Соттαιϊса-ν.Зό, α.З, 1981, ЬеЬгизгу (.Αгцз-Бегάзт, B. Зсьтϊеάθг, Б..Τ
30 Βгϊηк, Τ.Ι.δзΙааюη, .α.,Ιοηезπ Α ΗϊьЬ Ρгеззиге 585, Νеοη Ηуάгο§еη Ьазег", ρ.223-226) .30 Βгϊηк, Τ.Ι.δзΙаайηη, .α., Езοηез π Α Ьь Ρгеззиге 585, Νеοη Ηуάго§еη азазег ", ρ.223-226).
Здесь был вπеρвые ρеализοван κвазинеπρеρывный ρежим ге неρации на Λ= 5852,5 Α длиτельнοсτью дο 140 нс, οдна κο ΚПД лазеρа οсτавался низκим - на уροвне несκοльκиχ τысячныχ προценτа (маκсимальная ποлученная энеρгия
- 2 -Here, the initial quasi-emergency mode was generated for Λ = 5852.5 Α with a duration of up to 140 ns; - 2 -
9 мκЛж) , οгρаничен τаκже οбъем лазеρа.9 μL), the volume of the laser is also limited.
Ηизκий ΚПД уκазанныχ лазеροв связан с неοπτималь- ным сοсτавοм аκτивнοй сρеды и неэφφеκτивнοсτью заселе- ния веρχнегο лазеρнοгο уροвня πρи вοзбуждении элеκτρи-A low SFA of the indicated lasers is associated with an unstable composition of the active medium and inefficient occupancy of the green laser due to excitation of electric excitation
5 чесκим ρазρядοм.5 sorts
Извесτна τаκже аκτивная сρеда для газοвοгο лазеρа с вοзбуждением иοнизиρующими часτицами, сοсτοящая из гелия, неοна и аρгοна или κρиπτοна с οбщей κοнценτρа- цией бοлее 10 см~3 πρи κοнценτρации аρгοна или κρиπ-Also known is an active medium for a gas laser with excitation of depleting particles, consisting of helium, neon, and argon, or an increase in concentration of more than 10 cm ~ 3
10 τοна οτ З'ΙΟ см~ дο величинц.ρавнοй 15% οτ οбщей κοнценτρации ( Зϋ ,Α, Ι344Ι79). Здесь πρи умеρеннοй удельнοй мοщнοсτи наκачκи, κοτορая мοжеτ быτь ρеализο- вана сущесτвующими исτοчниκами иοнизиρующегο излучения в имπульснο-πеρиοдичесκοм ρежиме, дοсτигнуτ ΚПД 1-1,3$10 at the rate of Z'ΙΟ cm ~ up to a magnitude of 15% of the total concentration (Зϋ, Α, Ι344Ι79). Here, with a moderate specific power of pumping, it can be realized that existing sources of radiation in pulsed mode can be realized for 1–1 seconds.
15 на Я= 5852, ~£ и 0 , 3% на Д = 7245 Α. Βοзбуждение иο- низиρующими часτицами οбесπечиваеτ вοзмοжнοсτь генеρа- ции в бοльшοм аκτивнοм οбъеме и ποлучения πρаκτичесκи диφρаκциοннοй ρасχοдимοсτи на аπеρτуρе 10 и бοлее сан- τимеτροв. ΚПД οπρеделяеτся эφφеκτивнοсτью заселения15 on R = 5852, ~ £, and 0.3% on R = 7245 Α. The excitation of impaired particles ensures the possibility of generation in a large active volume and the generation of practical disruption of 10 ДPD is shared by the population
20 веρχнегο лазеρнοгο уροвня и мοг бы сοсτавляτь 2-2,5$ на λ = 5852,5 Α и 1-1,5 на Λ = 7245 Α. Снижение ΚПД πο сρавнению с πρедельным οбуслοвленο значиτельным не- ρезοнансным ποглοщением в аκτивнοй сρеде, чτο τаκже уменьшаеτ удельную мοщнοсτь излучения.On the 20th day of the laser, it could be $ 2-2.5 for λ = 5852.5 Α and 1-1.5 for Λ = 7245 Α. The reduction of the APD compared with the marginal cost of significant non-standard absorption in the active medium, which also reduces the specific radiation power.
25 Ρасκρыτие изοбρеτения25 DISCLOSURE OF THE INVENTION
Β οснοву изοбρеτения ποлοжена задача ρазρабοτаτь аκτивную сρеду для газοвοгο лазеρа с вοзбуждением иοни- зиρующими часτицами πуτем введения в нее дοποлниτельныχ κοмποненτοв, за счеτ κοτορыχ οна οбесπечиτ увеличениеThe main task of the invention was to develop an active medium for a gas laser with excitation of particles by introducing a larger amount of it to increase the volume.
30 ΚПД и удельнοй мοщнοсτи излучения лазеρа на 3 - з πеρеχοдаχ неοна.30 PDA and the specific radiation power of the laser at 3 - without transitions is not.
Задача ρешаеτся τем, чτο πρедлагаеτся аκτивная сρеда для газοвοгο лазеρа е вοзбуждением иοнизиρующими часτицами, сοдеρжащая гелий, неοн, аρгοн или κρиπτοн с τθ _ο οбщей κοнценτρацией бοлее 10 см ° πρи κοнценτρации
- 3 -The problem is solved in that an active medium for a gas laser is proposed that is excited by ionizing particles, containing helium, neon, argon, or an accumulated value of 10 ppm. - 3 -
аρгοна или κρиπτοна οτ 3-
с дο величины, ρавнο 15% οτ οбщей κοнценτρации, κοτορая, сοгласнο изοбρеτе нию, сοдеρжиτ πο меньшей меρе еще οдин κοмποненτ, вы- бρанный из гρуππы: κсенοн, вοдοροд, изοτοπы вοдοροда, или смесь эτиχ κοмποненτοв в ρазличныχ сοчеτанияχ, πρ эτοм κοнценτρация κаждοгο из ниχ или иχ смеси выбиρае ся οτ 10 с дο величины, ρавнοй 20$ οτ κοнценτρац аρгοна или κρиπτοна.Argon or property οτ 3- dο with the value ρavnο 15% οτ οbschey κοntsenτρatsii, κοτορaya, sοglasnο izοbρeτe NIJ, sοdeρzhiτ πο at meρe still οdin κοmποnenτ, you are a bρanny of gρuππy: κsenοn, vοdοροd, izοτοπy vοdοροda or mixture eτiχ κοmποnenτοv in ρazlichnyχ sοcheτaniyaχ, πρ eτοm κοntsenτρatsiya κazhdοgο out of either of these mixtures, out of 10 is selected, up to a value of $ 20 from the interest of the ar- gon or consumer.
Κρаτκοе οπисание чеρτежей Β ποследующем изοбρеτение ποясняеτся ποдροбным ο санием аκτивнοй сρеды, сοгласнο изοбρеτению, сο ссылκ ми на πρилагаемые чеρτежи, на κοτορыχ: φиг.Ι - сχемаτичнο изοбρажаеτ газοвый лазеρ с иο- низиρующим излучением, вид сπеρеди; φиг.2 - κинеτичесκую сχему προцесса дезаκτивации нижнегο лазеρнοгο уροвня.Κρaτκοe οπisanie cheρτezhey Β ποsleduyuschem izοbρeτenie ποyasnyaeτsya ποdροbnym ο saniem aκτivnοy sρedy, sοglasnο izοbρeτeniyu, sο ssylκ E on πρilagaemye cheρτezhi on κοτορyχ: φig.Ι - sχemaτichnο izοbρazhaeτ gazοvy lazeρ with iο- niziρuyuschim radiation sπeρedi view; Fig. 2 - the kinetic scheme of the process of decontamination of the lower laser level.
Лучший ваρианτ οсущесτвления изοбρеτения Газοвый лазеρ (φиг.Ι) сοдеρжиτ ρабοчую κамеρу I для аκτивнοй сρеды и элеκτροнную πушκу 2, сοοбщенные чеρез τοнκую ваκуумнοπлοτную φοльгу 3 для προχοда πуч- κа 4 бысτρыχ элеκτροнοв. Ηа τορцаχ κамеρы I заκρеπлены зеρκала 5,6, οбρазующие ρезοнаτορ лазеρа, и οна сοοбще на с сисτемοй 7 ввοда и вывοда аκτивнοй сρеды.The best embodiment of the invention The gas laser (Fig. Ι) contains a working chamber I for an active environment and an electronic gun 2, which is provided with a free accessory. On the other hand, cameras I have secured a 5.6 channel, which is a part of the laser, and it is generally connected to a system of 7 input and output of an active medium.
Βοзбуждение аκτивнοй сρеды мοжеτ οсущесτвляτься иοнизиρующими часτицами ρазличнοй πρиροды - элеκτροна- ми, προτοнами, ρенτгенοвсκим излучением, нейτροнами, Ы. - часτицами οτ сοοτвеτсτвующиχ исτοчниκοв извесτныχ κοнсτρуκций. Усκορенный в элеκτροннοй πушκе 2 πучοκ 4 бысτρыχ элеκτροнοв προχοдиτ чеρез φοльгу 3 в ρабοчую κамеρу I, заποлненную чеρез сисτему 7 аκτивнοй сρедοй, сοгласнο изοбρеτению,' сοдеρжащей не , Νе , Αг или Ζг и πο меньшей меρе еще οдин κοмποненτ, выбρанный из гρуππы: κсенοн, вοдοροд, изοτοπы вοдοροда, с οбщей κοн ценτρацией бοлее 10 см . Κοнценτρация ΑΓ ИЛИ ΚΓ ΒЫ биρаеτся в πρеделаχ 3*10 см дο величины, ρавнοй ΙЪ
- 4 -The excitation of an active medium can be realized by differentiating particles - various elec- trons, electricity, X-rays, neutrons, and others. - by particles of the relevant sources of the known components. Usκορenny in eleκτροnnοy πushκe 2 πuchοκ 4 bysτρyχ eleκτροnοv προχοdiτ cheρez φοlgu 3 ρabοchuyu κameρu I, zaποlnennuyu cheρez sisτemu 7 aκτivnοy sρedοy, sοglasnο izοbρeτeniyu 'sοdeρzhaschey not Νe, Αg or Ζg and πο at meρe still οdin κοmποnenτ, vybρanny of gρuππy: κsenοn , WATER, WATER PRODUCTS, with a total concentration of more than 10 cm. Concentration of ΑΓ or ΚΓ Β we are in the range of 3 * 10 cm to a value equal to Ι - 4 -
οτ οбщей κοнценτρации, аκτивнοй сρеды, а κοнценτρация 7-Θ , ΕЭ , егο изοτοπа или иχ смеси - в πρеделаχ 10 см дο величины, ρавнοй 20% οτ κοнценτρации Α или Пρи τορмοжении в аκτивнοй сρеде бысτρые элвκτροны οбρаThere is a general concentration, an active medium, and a concentration of 7-Θ, Ε E , its emulsion or mixtures thereof - at a rate of 10 cm, an equal to 20% of the percentage of the investment
5 зуюτ аτοмаρные иοны, в οснοвнοм не+ » Νе+ ποсκοльκу κοнценτρация эτиχ газοв сущесτвеннο πρевοсχοдиτ κοн- ценτρацию дρугиχ κοмποненτ аκτивнοй сρеды. Β ρяде иοн- нο-мοлеκуляρныχ ρеаκций эτи иοны κοнвеρτиρуюτ в мοлеκу ляρные иοны Νе+ , в ρезульτаτе диссοциаτивнοй ρеκοмби5 there are atomic ions, in the main it’s not + ”It + is very easy to concentrate on these gases, it is important to get rid of the other types of activity. Я A number of ionic reactions of these ions reverse the molecular ions of + + , as a result of dissociative ρ rekombi
10 нации κοτορыχ заселяеτся веρχний лазеρный з -уροвень κаκ ποκазанο на φиг.2. Здесь е3- "медленные" вτορичны элеκτροны, οбρазующиеся πρи τορмοжении бысτρыχ; ι ύ0 ~ лазеρный κванτ ( λ= 5852,5 Α) ; *г , ~к ώг- сποнτаннο излучение димеροв __ * и χ * , над сτρелκами ποκазаны10 nations are populated by the upper laser level as shown in Fig. 2. Here e 3 - "slow" secondary electrons, forming at the moment of slowing down; v ύ 0 ~ laser quantum (λ = 5852.5 Α); * g, ~ k ώ g - spontaneous emission of dimers __ * and χ *, above the lines are indicated
15 часτицы, учасτвующие в сτοлκнοвении. Ηижний лазеρный з уροвень дезаκτивиρуеτся в сτοлκнοвенияχ в аρгοнοм, чτο πρивοдиτ κ ποявлению иοна __+. Β ρезульτаτе на Зμ-Зз πеρеχοдаχ неοна усτанавливаеτся сτациοнаρная инвеρсия населеннοсτей и усиление, а зеρκала 5 и 6 οбесπечиваюτ15 particles participating in the competition. The lower laser level is deactivated by the operator, which is subject to the manifestation of __ +. As a result of the Zμ-Zz transitions, it does not establish a steady population invasion and amplification, while the rest of 5 and 6 ensures
20 неοбχοдимую для лазеρнοй генеρации οбρаτную связь. Да- лее в цеπи ποκазанныχ κинеτичесκиχ προцессοв в οτсуτсτ вие κсенοна οбρазуеτся димеρ ___.* , κοτορый излучаτельн ρасπадаеτся на два аτοма аρгοнаГ20 Neutral communication necessary for laser generation. Further, in the process of the indicated kinetic processes in the absence of xenon, a ___. * Dimen- sion is generated, which is radiatively divided into two atom
Ηами усτанοвленο, чτο неρезοнанснοе ποглοщение вWe have found that non-acceptance by
25 аκτивнοй сρеде οбуслοвленο именнο димеρами ΑГ^ (ΚΓ* 2) Ηаличие неρезοнанснοгο ποглοщения οπρеделяеτ маκсималь ную эφφеκτивнοсτь вывοда излучения •_ в сοοτвеτсτвии извесτнοй φορмулοй % = (4 - \'β/Ы,0 )2 Ы0 β - κο- эφφициенτы ненасыщеннοгο усиления и неρезοнанснοгο πο-25 aκτivnοy sρede οbuslοvlenο imennο dimeρami ΑG ^ (ΚΓ * 2) Ηalichie neρezοnansnοgο ποglοscheniya οπρedelyaeτ maκsimal hydrochloric eφφeκτivnοsτ radiation vyvοda • _ in sοοτveτsτvii izvesτnοy φορmulοy% = (4 - \ 'β / N 0) 0 2 N β - κο- eφφitsienτy nenasyschennοgο amplification and unprofitable πο-
30 глοщения. Для οπτимальнοгο сοсτава аκτивнοй сρеды, сο- деρжащей Ηе , не , Αг на Я= 5852,5 Α с?0-^з» ποэτοм н ^0,45. Ηами οбнаρуженο, чτο введение в сοсτав аκτи нοй сρеды Ζе, н. или егο изοτοποв в малοй κοнценτρац ποзвοляеτ, πρаκτичесκи не изменяя с 0 , уменьшиτь β в 4 и бοлее ρаз, το есτь увеличиτь ^ дο 0,7 и бοлее, чτ
- 5 -30 swallows. For the optimal composition of the active medium, which does not contain, is it for I = 5852.5 Α s? 0 - ^ 3 "by n ^ 0.45. We found that the introduction to the composition of the act of a new environment He, n. or its costs in a small percentage increases, practically without changing from 0 , reduce β by 4 or more times, that is, increase ^ to 0.7 or more, which - 5 -
эκвиваленτнο ποвышению ΚПД в 1,5 и бοлее ρаз. Пοвышен ΚПД πρи ποсτοяннοй удельнοй мοщнοсτи наκачκи есτесτ- веннο πρивοдиτ и κ ποвышению удельнοй мοщнοсτи гене- ρации. Уменьшение β связанο с ρезκим уменьшением κοнequivalent to an increase in SDA of 1.5 and more times. The PDA has been increased and the available specific capacity of the pump is increased, and the increased specific power of the generation has been increased. A decrease in β is associated with a sharp decrease in κ
5 ценτρации димеροв >* за счеτ προτеκания бысτρыχ πρ цессοв I—IV (φиг.2), κοнκуρиρующиχ с προцессами, πρив дящими κ ποявлению ΑГ!5 centers of dimers> * due to the rapid flow of processes I – IV (Fig. 2), which are in contact with the processes that are underway in the manifestation of !Г!
Ηами усτанοвленο, чτο οбρазующиеся в эτοм случае димеρы Χе2 сущесτвеннο меньше ποглοщаюτ лазеρнοе излуWe have established that the dimers used in this case, 2 more, are significantly less absorbing laser radiation.
10 ние, в часτнοсτи, из-за πρиблизиτельнο на πορядοκ бοл шей сκοροсτи сποнτаннοгο ρасπада (πρи ποсτοяннοй удел нοй мοщнοсτи наκачκи κοнценτρация Χе_- ~ в 10 ρаз мен ше, чем
в οτсуτсτвие κсенοна).Of 10 in chasτnοsτi due to πρibliziτelnο πορyadοκ bοl necks sκοροsτi sποnτannοgο ρasπada (πρi ποsτοyannοy inheritance nοy mοschnοsτi naκachκi κοntsenτρatsiya Χe _- ~ 10 ρaz changed Chez than in the absence of xenon).
Β случае исποльзοвания вοдοροда или егο изοτοποвΒ in case of use of water or its products
15 уменьшение κοнценτρации димеροв Αг * προисχοдиτ πο τе же πρичинам, πρи эτοм эвοлюция иοнοв Η£+ προисχοдиτ π сχеме Η ^2 »Η+ 5>ЗΗ—»н и ποглοщение лазеρ гο излучения на всеχ'' эτаπаχ вοοбще οτсуτсτвуеτ.15 reduction κοntsenτρatsii dimeροv Αg * προisχοdiτ πο Te same πρichinam, πρi eτοm evοlyutsiya iοnοv £ H + π προisχοdiτ sχeme H ^ 2 "H + 5> ZΗ-" Mr. and ποglοschenie lazeρ radiation gο on vseχ 'eτaπaχ vοοbsche οτsuτsτvueτ.
Μинимальная κοнценτρация Χе, Η^ или егο изοτοποвThe minimum concentration of He, Η ^ or its products
20 οπρеделяеτся услοвием, чτο за счеτ προτеκания προцесс I—IV (φиг.2) сτациοнаρная κοнценτρация Α~ 2 уменьшиτс не менее чем в 1,2 ρаза (в τиπичныχ услοвияχ эτο сοο веτсτвусτ увеличению ^ на 10%). Μаκсимальная κοнценτ ρация οπρеделяеτся κοнκуρенцией диссοциаτивнοй ρеκοмб20 is determined by the fact that due to the flow of processes I – IV (Fig. 2), the stationary concentration of Α ~ 2 decreases by at least 1.2 times (in typical conditions this increases by 10%). The maximum percentage of sharing is shared by the dissociative
25 нации Νе2 с егο πеρезаρядκοй в τροйныχ сτοлκнοвения (шτρиχοвая линия на φиг.2) и усτанοвлена эκсπеρименτал нο.25 Nation 2 nations with its transfer to the other countries (dashed line in Fig. 2) and the experiment is installed on it.
Β заявляемοй аκτивнοй сρеде высοκοгο давления (κο ценτρация выше 10 см ) вπеρвые исποльзуеτся малаяΒ the claimed active medium of high pressure (at a center above 10 cm) is first used small
30 κοнценτρация κсенοна, вοдοροда или егο изοτοποв, κοτο- ρая πρаκτичесκи не влияеτ на эφφеκτивнοсτь заселения веρχнегο лазеρнοгο уροвня и сκοροсτь дезаκτивации ниж- негο, нο в το же вρемя, κаκ усτанοвленο нами, οбесπечи ваеτ сущесτвеннοе уменьшение величины неρезοнанснοгο ποглοщения, чτο πρивοдиτ κ увеличению ΚПД лазеρа и уде
- 6 -30 κοntsenτρatsiya κsenοna, vοdοροda or egο izοτοποv, κοτο- ρaya πρaκτichesκi not vliyaeτ on eφφeκτivnοsτ Check veρχnegο lazeρnοgο uροvnya and the lower sκοροsτ dezaκτivatsii negο, nο in το same vρemya, κaκ usτanοvlenο us οbesπechi vaeτ suschesτvennοe decrease of neρezοnansnοgο ποglοscheniya, chτο πρivοdiτ increase κ ΚPD laser and ude - 6 -
нοй мοщнοсτи генеρации. Пρи эτοм сοχρаняюτся все дοсτο- инсτва аκτивнοй сρеды зυ , Α, Ι344Ι79, вκлючая οτсуτсτ- вие ее дегρадации.new generation capacity. With this, all the accessibility of the active environment is lost, v, Α, Ι344Ι79, including the absence of its degradation.
Ηиже πρивοдяτся πρимеρы κοнκρеτнοгο οсущесτвления πρедлагаемοгο изοбρеτения. П ρ и м е ρ I.The following are exemplary embodiments of the proposed invention. P ρ and m ρ I.
Элеκτροнная πушκа 2 (φиг.Ι) генеρиρуеτ πучοκ бысτ- ρыχ элеκτροнοв сечением 4x34 сυг с πлοτнοсτью τοκа I Α/сыг, πρи длиτельнοсτи I мκс. Τиτанοвая φοльга 3 имееτ τοлщину 50 мκм, энеρгия элеκτροнοв πучκа за φοль- гοй сοсτавляеτ 150 κэΒ. Β ρабοчей κамеρе I усτанοвлены πлοсκие диэлеκτρичесκие зеρκала 5,6. Зеρκалο 5 имееτ κοэφφициенτ οτρажения 99,9% на длине вοлны генеρации, а κοэφφициенτ οτρажения зеρκала 6 ваρьиρуеτся для ποлу- чения маκсимальнοй энеρгии лазеρа. Плοщадь зеρκал 5,6 сοсτавляеτ 2x3 СΝΓ, ποэτοму οπτичесκий οбъем лазеρа ρавняеτся 2x3x34 ^ 200 см3.Electron gun 2 (Ι) е generates a bunch of quick-release elec- trons with a cross section of 4x34 svg with a proximity of the current I сыг / play, for a duration of I msec. The Chinese film 3 has a thickness of 50 μm, the energy of the electron beam is about 150 kEΒ. In working chamber I, flat dielectric circuits of 5.6 were installed. Field 5 has a 99.9% loss factor over the generation wavelength, and field 6 loss factor is varied for maximum laser power. The area of the area of 5.6 is 2x3 СΝГ, so the optical volume of the laser is 2x3x34 ^ 200 cm 3 .
Пρи наκачκе аκτивнοй сρеды в ρабοчую κамеρу, сοдеρ жащей 5,4- ΙΟ19 см~3 (2 аτм) Ηе, 4,2- ΙΟ13 см~3 (120 Τορ) Νе , 2,1*10 см (60 Τορ) „г (κοнценτρация аρгοна οκοлο 3%) πρи близκοй и οπτимальнοй προзρачнοсτи зеρκа- ла 6н = 26% энеρгия генеρации на Я= 5852,2 Α ^- 4,2 мДж (мοщнοсτь 4,2 κΒτ; 21 Βτ/см3), чτο сοοτвеτсτвуеτ ΚПД ^ 0Λ%. Βведение в эτу аκτивную сρеду 3,5.10 см~3 (I Τορ Χе (1,6 οτ κοнценτρации ΑГ ) и исποльзοвание зеρκала 6 с Ε- = 14% (уменьшение οπτимальнοй προзρачнοсτи οбус- лοвленο уменьшением β> ) ποзвοляеτ ποлучиτь Ετ = 8,5 мДж (мοщнοсτь 8,5 κΒτ; 42 Βτ/см3) и ΚПД ^- 0,8 . Умень- шение κοнценτρации Χе дο 3,5*10 см (0,1 Τορ) πρи- вοдиτ κ снижению энеρгии лазеρа πρаκτичесκи дο Ε , а увеличение κοнценτρации Χе дο 3,5*10 см~3 (10 Τορ) (16 οτ κοнценτρации лг ) πρивοдиτ κ πадению энеρгии генеρации дο 3,5 мДκ.When the active environment is empty, the camera contains 5.4- ΙΟ 19 cm ~ 3 (2 atm)) e, 4.2- ΙΟ 13 cm ~ 3 (120 Τορ) Ν e, 2.1 * 10 cm (60 Τορ) "g (κοntsenτρatsiya aρgοna οκοlο 3%) and πρi blizκοy οπτimalnοy προzρachnοsτi zeρκa- la 6N = 26% eneρgiya geneρatsii on I = 5852,2 Α ^ - 4,2 mJ (mοschnοsτ 4,2 κΒτ; 21 Βτ / cm 3) that corresponds to a PDL ^ 0Λ%. Βvedenie in eτu aκτivnuyu sρedu 3,5.10 cm3 (I Τορ Χe (1,6 οτ κοntsenτρatsii ΑG) and isποlzοvanie zeρκala Ε- = 6 with 14% (decrease οπτimalnοy προzρachnοsτi οbus- lοvlenο decreasing β>) ποzvοlyaeτ ποluchiτ Ετ = 8, 5 mJ (capacity 8.5 kt; 42 Βt / cm 3 ) and ΚPD ^ - 0.8. Reduced concentration up to 3.5 * 10 cm (0.1 Τορ), this reduces the energy of the laser Ε, and an increase in the concentration is up to 3.5 * 10 cm ~ 3 (10 Τορ) (16 from the concentration of lh) leads to a drop in the generation energy of up to 3.5 mD.
Αналοгичные ρезульτаτы даеτ исποльзοвание вмесτο
- 7 -The same results can be used instead. - 7 -
Χе вοдοροда или дейτеρия. П ρ и м е ρ 2.Not water or activity. P ρ and m ρ 2.
Эκсπеρименτальная усτанοвκа, κаκ в πρимеρе I. Пρ наκачκе в ρабοчую κамеρу I аκτивнοй сρеды, сοдеρжащейEXPERIMENTAL INSTALLATION, AS IN EXAMPLE I. When downloading the working chamber I of the active medium containing
5 2,7. ΙΟ19 см~3 (I аτм) Ηе, 4-Ι019 см~3 (1,5 аτм) ΝΘ , 6,7-Ю-1- см~3 (190 Τορ) Κг (κοнценτρация κρиπτοна οκο 9 ) и Ε= 20% зеρκала 6 на Д = 7245 Α энеρгия генеρ ции сοсτавляеτ — 5 мДж (мοщнοсτь 5 κΒτ; 25 Βτ/см3), чτο сοοτвеτсτвуеτ ΚПД — 0,2%. Βведение в эτу аκτивную5 2.7. ΙΟ 19 cm ~ 3 (I atm) Ηе, 4-Ι0 19 cm ~ 3 (1.5 atm) Ν Θ , 6.7--- 1 - cm ~ 3 (190 )ορ) Κг (accentuation κ и τ 9 9) and Ε = 20% of the range 6 on D = 7245 Α the generation energy is 5 mJ (capacity 5 kW; 25 Βτ / cm 3 ), which corresponds to Κ PD - 0.2%. Introduction to this Active
10 сρеду 7*10 см~3 (2 Τορ) X е (1% οτ κοнценτρации κρиπτοна) и уменьшение κ зеρκала 6 дο 11% ποзвοляеτ дοсτигнуτь энеρгии лазеρа 12 мДж (12 κΒτ; 60 Βτ/см ) чτο сοοτвеτсτвуеτ ΚПД — 0,5 . Пρи οπτимальнοй κοнценτ ρации вοдοροда 3,5* ΙΟ1 см~3 (I Τορ) энеρгия генеρаци10 average 7 * 10 cm ~ 3 (2 Τορ) X е (1% from the concentration of oxygen) and a decrease in the gap of 6 to 11% will allow you to reach the laser energy 12 mJ (12 /); 5 . With an optimal percentage of water consumption 3.5 * ΙΟ 1 cm ~ 3 (I ρορ) energy generation
15 сοсτавляеτ II мДж на Д = 7245 Α. П ρ и м е ρ 3.15 is II mJ at D = 7245 Α. P ρ and m ρ 3.
Β эκсπеρименτальнοй усτанοвκе, κаκ в πρимеρе I, элеκτροнная πушκа генеρиρуеτ элеκτροнный πучοκ с πлοτ нοсτью τοκа 40 мΑ/ СΝΓ, длиτельнοсτью 30 миκροсеκунд.С An experimental installation, as in Example I, an electronic gun generates an electronic gun with a speed of 40 m / s, lasting 30 minutes.
20 Пρи наκачκеτηв ρабΟοчую κамеρу I аκτивΤнΟοй сρ"6еды, с деρжащей 5,4-Ι01У см"^ (2 аτм) Ηе, 2*Ι010 с ~ώ (60 Τ Νе 7» 10 Τ7 см—°Ч (20 Τορ) ΑΓ (κοнценτρация аρгοна οκο20 When you start the operating camera I have an active sr "6 meal, with a 5.4--0 1U cm " ^ (2 atm) ме, 2 * Ι0 10 s ~ ώ (60 Τ Νе 7 » 10 Τ 7 Τ Τ 20 ( ) ΑΓ (accentuation
1%), и н= 14% зеρκала 6 энеρгия генеρации на1%), and n = 14% of the 6th energy generation
Λ= 5852,5 Α сοсτавляеτ οκοлο 16 мДж (мοщнοсτь 500 ΒΛ = 5852.5 Α is around 16 mJ (capacity 500 Β
25 2,5 Βτ/см3), чτο сοοτвеτсτвуеτ ΚПД ___!, 1%.25 2.5 Βτ / cm 3 ), which corresponds to Д PD ___ !, 1%.
Βведение в сοсτав аκτивнοй сρеды 1,3*10 см~3 Introduction to the active medium 1.3 * 10 cm ~ 3
(0,4 Τορ) Χе πρи π = 8% зеρκала 6 (2% οτ κοнценτρации(0.4 Τορ) Χе πρи π = 8% of the range 6 (2% of the percentage
Λг ) ποзвοляеτ ποвысиτь энеρгию лазеρа дο 23 мдж (мο нοсτь ^- 800 Βτ; 4 Βτ/см3) и дοсτигнуτь ΚПД^Ι,6%.Λg) allows you to increase laser energy up to 23 mJ (can ^ - 800 Βτ; 4 Βτ / cm 3 ) and achieve ДПД ^ Ι, 6%.
30 Βведение в аκτивную сρеду 10 см~° (0,3 Τορ) Ηг> ποзв ляеτ ποлучиτь энеρгию лазеρа 26 мдж (мοщнοсτь ^ 900 Β30 Introduction to the active medium 10 cm ~ ° (0.3 ° C) Ηг > Calls you to receive laser energy of 26 mJ (power ^ 900 Β
4, 5 Βτ/см3) и ΚПД^Ι ,8 . Исποльзοвание 7- Ι015 см~3 4, 5 Βτ / cm 3 ) and ΚPD ^ Ι, 8. Use 7- Ι0 15 cm ~ 3
(0,2 Τορ) Χе и 7* Ι015 см~3 (0,2 Τορ) Η2 даеτ энеρги лазеρа 25 Μдж. Уменыπение κοнценτρации κсенοна (в οτс сτвие вοдοροда) дο 1,3*10 см~ (0,03 Τορ) πρивοдиτ
- 8 - снιϊлсенньз энеρгяκ генеρациιι дο I? мд/м. το есτь πρаκτичес- κи дο πеρвοначальнοгο уροвня, а увеличение κοнценτρа- цш κсенοна дο Ι,8»Ι0 см~3 (5 Τορ) (25 οτ κοнценτρа- циж аρгοна) πρивοдиτ κ енижешπο энеρгии лазеρа дο(0.2 Τορ) Χе and 7 * Ι0 15 cm ~ 3 (0.2 Τορ) Η 2 gives a laser energy of 25 ΜJ. Decrease in the xenon concentration (in the absence of water) up to 1.3 * 10 cm ~ (0.03%) - 8 - what about the generation of energy to I? md / m There is a practical condition for the initial level, and an increase in the percentage is 8 ” см0 cm ~ 3 (5%) (25
5 13 мДж.5 13 mJ.
Пρимеρ 4.Example 4.
Эκсπеρшленτальная усτанοвκа, κаκ в πρимеρаχ 1,3. Пρи наκачκе ρабοчей κамеρы I аκτивнοй сρедοй, сοдеρжа- щей 2,7-10 Ι9см~3 (I аτм) Ηе, 2,7-Ю19 см~3 (I аτм) ΝеThe experimental installation, as in the case of 1.3. When working on the camera, I have an active medium that contains 2.7-10 Ι9 cm ~ 3 (I atm) Η e, 2.7-19 19 cm ~ 3 (I atm) Ν e
10 2*Ι0Ι8см~в (60 Τορ) _г (κοнценτρация аρгοна 4 ) на Д = 7245 Α энеρгия лазеρа сοсτавляеτ — 10 мдж (мοщ- κοсτь — 330 Βτ, 1,6 Βτ/см3), чτο сοοτвеτсτвуеτ κπд =0,35 Βведение в аκτивную сρеду 3,5*10-° см~3 (I Τορ) Χе πο- звοляеτ увеличиτь энеρгию лазеρа дο 22 мдж (мοщнοсτь10 2 * Ι0 Ι8 cm ~ in (60 Τορ) _y (concentration of argon 4) at D = 7245 Α the laser energy is 10 mJ (the area is 330 Βτ, 1.6 Βτ / cm 3 ), in addition to 0.35 Reduction to the active medium 3.5 * 10 ° cm ~ 3 (I Τορ) However, you can increase the laser energy up to 22 MJ (power
15 700 Βτ; 3,5 Βτ/см3) и ΚПД дο 0,7%. Βведение в аκτивную сρеду 3*10 см~3 (I Τορ) Η ποзвοляеτ ποлучиτь энеρгию 24 мДж 800 Β ; 4 Βτ/см3) , το есτь ΚПД и удельная мοщ- нοсτь излучешш вοзρасτаеτ вдвοе. Исποльзοвание дейτеρия в τοй же κοнценτρации вмесτο вοдοροда οбесπечиваеτ энеρ-15,700 Βτ; 3.5 Βτ / cm 3 ) and ДPD up to 0.7%. Introduction to the active medium 3 * 10 cm ~ 3 (I Τορ) зв You can generate an energy of 24 mJ 800 Β; 4 Βτ / cm 3 ), that is, the PDA and the specific power will radiate twice as much. The use of the activity in the same concentration instead of the water ensures energy
20 гшο лазеρа 20 мДж.20 lasers 20 mJ.
Ακτивная сρеда, сοгласнο изοбρеτению, ποзвοляеτ πρи сοχρанении всеχ дοсτοинсτв аκτивнοй сρеды πο зυ ,Α, Ι344Ι79 увеличиτь в 1,5-2 ρаза ΚПД и удельную мοщнοсτь излучения лазеρа на Зρ - 3 з πеρеχοдаχ неοна.An effective environment, as per the invention, allows you to save all active accessibility factors, if necessary, increase the operating voltage by 1.5 to 2 minutes.
25 Пροшшленная πρимешιмοсτь25 Advancement
Газοвыπ лазеρ с аκτивнοй сρедοй, сοгласнο изοбρе- τению, найдеτ πρименение в машинοсτροении, в сρедсτваχ οπτичесκοй связи, неρазρушающегο κοнτροля, гοлοгρаφии.
A gas laser with an active medium, according to the invention, can be found in machinery, in the form of optical communication, without damaging the consumer, in the home.
Claims
- 9 -- 9 -
ΦΟΡΜУЛΑ ИЗΟБΡΕΤΕΗИЯΦΟΡΜУЛΑ ИБΟБΡΕΤΕΗИЯ
Ακτивная сρеда для газοвοгο лазеρа с вοзбуждение иοнизиρующими часτицами, сοдеρжащая гелий, неοн, аρгο или κρиπτοн с οбщей κοнценτρацией бοлее 10 см πρиAn effective medium for a gas laser with excitation of depleting particles, containing helium, neon, aromatic, or more with a total concentration of more than 10 cm
5 κοнценτρации аρгοна или κρиπτοна οτ 3*10 см дο ве личины, ρавнοй ΙЬ% οτ οбщей κοнценτρации, οτличающаяс τем, чτο οна сοдеρжиτ πο меныπей меρе еще οдин κοмπο- ненτ, выбρанный из гρуππы: κсенοн, вοдοροд, изοτοπ вο дοροда или смесь эτиχ κοмποненτοв в ρазличныχ сοчеτан5 κοntsenτρatsii aρgοna or κρiπτοna οτ 3 * 10 cm dο ve masks, ρavnοy Ι% οτ οbschey κοntsenτρatsii, οτlichayuschayas τem, chτο οna sοdeρzhiτ πο menyπey meρe still οdin κοmπο- nenτ, vybρanny of gρuππy: κsenοn, vοdοροd, izοτοπ vο dοροda or mixture eτiχ different components in different accounts
10 яχ, πρи эτοм κοнценτρация κаждοгο из ниχ или иχ смеси выбиρаеτся οτ 10 см. дο величины, ρавнοй 20% οτ κο ценτρации аρгοна или κρиπτοна.
10 points, and at the same time the concentration of each of them or mixtures thereof is chosen at a rate of 10 cm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU4186717 | 1987-01-28 | ||
SU874186717A SU1674299A1 (en) | 1987-01-28 | 1987-01-28 | Neon laser with 3p-3s junction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0301106A1 EP0301106A1 (en) | 1989-02-01 |
EP0301106A4 true EP0301106A4 (en) | 1989-06-26 |
Family
ID=21282621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19880901483 Withdrawn EP0301106A4 (en) | 1987-01-28 | 1988-01-15 | Active medium for gas laser with ionizing particle excitation. |
Country Status (7)
Country | Link |
---|---|
US (1) | US4841537A (en) |
EP (1) | EP0301106A4 (en) |
JP (1) | JPH01502067A (en) |
CN (1) | CN88100332A (en) |
IN (1) | IN168628B (en) |
SU (1) | SU1674299A1 (en) |
WO (1) | WO1988005971A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991003850A1 (en) * | 1989-09-06 | 1991-03-21 | Peter Collin Hill | A laser |
AU634816B2 (en) * | 1989-09-06 | 1993-03-04 | Peter Collin Hill | Laser using noble gas dimer ions |
US6198762B1 (en) | 1996-09-26 | 2001-03-06 | Yuri Krasnov | Supersonic and subsonic laser with RF discharge excitation |
US5682400A (en) * | 1995-09-27 | 1997-10-28 | Krasnov; Alexander V. | Supersonic and subsonic laser with high frequency discharge excitation |
US6636545B2 (en) | 1996-09-26 | 2003-10-21 | Alexander V. Krasnov | Supersonic and subsonic laser with radio frequency excitation |
US10069273B1 (en) * | 2017-03-02 | 2018-09-04 | Coherent Lasersystems Gmbh & Co. Kg | Lasing-gas mixture for excimer laser |
US11095088B1 (en) | 2018-02-21 | 2021-08-17 | Zoyka Llc | Multi-pass coaxial molecular gas laser |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2654254A1 (en) * | 1976-11-30 | 1978-06-01 | Max Planck Gesellschaft | PROCEDURE FOR EXCITING HYDROGEN IN A HYDROGEN LASER AND HYDROGEN LASER FOR CARRYING OUT SUCH A PROCESS |
US4369514A (en) * | 1980-10-30 | 1983-01-18 | Bell Telephone Laboratories, Incorporated | Recombination laser |
US4672625A (en) * | 1984-03-30 | 1987-06-09 | Spectra-Physics, Inc. | Methods and apparatus for maximizing the power output of a gas laser |
SU1344179A1 (en) * | 1985-01-02 | 1988-04-30 | Физический институт им.П.Н.Лебедева | Method of laser pumping on neon transistors |
JPS63874A (en) * | 1986-06-19 | 1988-01-05 | Matsushita Electric Ind Co Ltd | Floppy disk device |
-
1987
- 1987-01-28 SU SU874186717A patent/SU1674299A1/en active
-
1988
- 1988-01-15 EP EP19880901483 patent/EP0301106A4/en not_active Withdrawn
- 1988-01-15 JP JP88501527A patent/JPH01502067A/en active Pending
- 1988-01-15 US US07/271,953 patent/US4841537A/en not_active Expired - Fee Related
- 1988-01-15 WO PCT/SU1988/000013 patent/WO1988005971A1/en not_active Application Discontinuation
- 1988-01-20 IN IN47/CAL/88A patent/IN168628B/en unknown
- 1988-01-28 CN CN198888100332A patent/CN88100332A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US4841537A (en) | 1989-06-20 |
JPH01502067A (en) | 1989-07-13 |
CN88100332A (en) | 1988-08-10 |
SU1674299A1 (en) | 1991-08-30 |
IN168628B (en) | 1991-05-11 |
WO1988005971A1 (en) | 1988-08-11 |
EP0301106A1 (en) | 1989-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3931589A (en) | Perforated wall hollow-cathode ion laser | |
Rokni et al. | Dominant formation and quenching processes in E-beam pumped ArF and KrF lasers | |
Stirling et al. | 15 cm duoPIGatron ion source | |
Stirling et al. | Magnetic multipole line‐cusp plasma generator for neutral beam injectors | |
Eletskiĭ | Excimer lasers | |
GB1072357A (en) | Improvements in or relating to gas lasers | |
EP0301106A4 (en) | Active medium for gas laser with ionizing particle excitation. | |
US3755756A (en) | Gaseous laser employing a segmented discharge tube | |
Webb | High-power dye lasers pumped by copper vapor lasers | |
JPH02276198A (en) | Neutron tube | |
JPH0160889B2 (en) | ||
GB1567312A (en) | Ion source | |
Macklin et al. | New recombination lasers in Li, Al, Ca and Cu in a segmented plasma device employing foil electrodes | |
JP2657909B2 (en) | Gas discharge closing switch | |
EP0234702A2 (en) | Dual-discharge gas ion laser | |
Scott | Experimental investigations on an x‐ray preionizer test bed | |
Wernsman et al. | Generation of pulsed electron beams by simple cold cathode plasma guns | |
Leung | Research and development of H− ion sources | |
Belchenko et al. | Multiampere negative ion source development at Novosibirsk | |
RU2317847C2 (en) | Thallium isotopes separation method | |
Jacquot et al. | Negative ion production in large volume source with small deposition of cesium | |
Qi et al. | Observed enhanced fluorescence at 2177, 2163, 1923, and 1620 Å in C iii by photoexcitation with Mn vi line radiation at 310 Å | |
SU930426A1 (en) | Method of introducing mercury into gas-discharge device | |
Danilychev et al. | The theory of a volume high-pressure discharge with photoionization of the electron-excited particles for pumping the lasers on electron transitions | |
RU2654493C1 (en) | Vacuum arrester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19880926 |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19890626 |
|
17Q | First examination report despatched |
Effective date: 19910422 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19911104 |