[go: up one dir, main page]

EP0292717B1 - Vorrichtung zum Trocknen von Schnittholz - Google Patents

Vorrichtung zum Trocknen von Schnittholz Download PDF

Info

Publication number
EP0292717B1
EP0292717B1 EP19880106746 EP88106746A EP0292717B1 EP 0292717 B1 EP0292717 B1 EP 0292717B1 EP 19880106746 EP19880106746 EP 19880106746 EP 88106746 A EP88106746 A EP 88106746A EP 0292717 B1 EP0292717 B1 EP 0292717B1
Authority
EP
European Patent Office
Prior art keywords
air
flow
drying
stack
timber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP19880106746
Other languages
English (en)
French (fr)
Other versions
EP0292717A2 (de
EP0292717A3 (de
Inventor
Reinhard Dipl.-Ing. Brunner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BRUNNER TROCKENTECHNIK GmbH
Original Assignee
BRUNNER TROCKENTECHNIK GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6328410&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0292717(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BRUNNER TROCKENTECHNIK GmbH filed Critical BRUNNER TROCKENTECHNIK GmbH
Priority to AT88106746T priority Critical patent/ATE91776T1/de
Publication of EP0292717A2 publication Critical patent/EP0292717A2/de
Publication of EP0292717A3 publication Critical patent/EP0292717A3/de
Application granted granted Critical
Publication of EP0292717B1 publication Critical patent/EP0292717B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/22Controlling the drying process in dependence on liquid content of solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/02Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
    • F26B21/022Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/04Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/16Wood, e.g. lumber, timber

Definitions

  • the invention relates to a method for drying sawn timber, which is stacked in a drying room with the interposition of stacking strips, with air passed between the sawn timber layers, air flows generated with at least one fan being directed in time sequence to different partial areas of the stack entry level with the aid of flow control devices.
  • the invention further relates to a device for performing such a method.
  • a drying chamber It is known for a drying chamber to approximately calculate the air speed within the wood stack from the chamber geometry, the delivery capacity of the fans, the flow resistance of the heating register, the size and arrangement of the wood stack, and the stacking factor, and during drying depending on the type of wood, wood thickness and wood moisture as well as the desired quality by Set the fan speed to suitable values.
  • a number of parameters are not taken into account in this calculation, for example the accuracy of the stacking, so-called air short circuits, the surface properties of the wood, changes in the wood layers due to shrinkage, unsuitable stacking strips and the like, which is why the flow velocities between the individual woodcut layers can deviate significantly from the desired value .
  • the flow directing elements therefore have the effect of a flow straightener, which directs a directed air flow obliquely from above against the stack entry level.
  • a crank drive By means of a crank drive, all flow guide elements are simultaneously pivoted back and forth in such a way that the air flow directed by flow guide elements periodically sweeps over the stack entry plane between the upper and lower ends.
  • the invention is based on the object of specifying a process for drying sawn timber with which not only the Known drying deficiencies can be avoided, but this creates the possibility to dry different types of wood with deviations in thickness and / or drying properties simultaneously in a chamber more economically and with better quality than is possible with the known methods.
  • This object is achieved by a method having the features of claim 1.
  • the extent of the air flow concentration is set for each partial area of the stack entry level as a function of measured values of the wood moisture and / or the moisture gradient in the wood.
  • the required air velocity profile is preferably set and changed by changing the air duct before the air enters between the sawn timber layers, since in this way a very effective influence on the flow velocity between the timber layers can be achieved even with a large stack height. If necessary, the amount and / or pressure of the air can of course also be varied between the layers of lumber before entering.
  • the measured values of wood moisture and / or air speed are recorded at points which lie at different heights above the floor of the drying room. In the case of a greater depth of the drying space, it will generally also be necessary to also record the measured values at different depths, that is to say at different horizontal distances perpendicular to the direction of flow through the stack or stacks. There are limit values for the speed of a continuous air flow through the wood piles, which are usually observed in order not to jeopardize a good drying result and to achieve economical drying.
  • an upper limit is determined by the type, thickness, moisture and moisture gradient as well as by the chamber climate. The feared formwork may result in this limit being exceeded for a longer period of time if the moisture gradient across the board cross-section (the moisture gradient) becomes too large when the layers of wood near the surface dry quickly. If shuttering has occurred, not only is the further drying progress slowed considerably; there is also a risk of the wood being destroyed by cracking.
  • the lower limit of the continuous air speed depends on the length of the airway through the stacks. If the speed is too low, the air will reach its moisture equilibrium with the wood surface before the stack exits, and above the fiber saturation (e.g. always with freshly sawn wood) its full saturation, so that it cannot absorb any more moisture from the wood the rest of the way through the stack. As a result, an increasing wood moisture profile occurs along the airway through the stacks in the course of drying, in the case of reversing operation symmetrically to the center of the stack.
  • a high speed, concentrated air stream is sequentially directed to all areas of the stack entrance.
  • the concentration is achieved by a suitable position of the fans and / or air steering devices. Since at high speed the dwell time of certain air volumes within the stack is only short, they cannot get close to the moisture balance with the wood or its saturation moisture. Due to the relatively sluggish moisture transport of wood, shuttering cannot occur if the phases of high speed do not last too long.
  • the temporal mean value of the air speed which is decisive for the drying progress, can easily be reduced by selecting the duration of the high speed phases for individual stacking areas to be small enough compared to the duration of the low speed.
  • the invention is also based on the object of providing a drying device for carrying out the method according to the invention. This object is achieved by a drying device with the features of claim 6.
  • the flow directing device has adjustable air guiding surfaces, because by means of such air guiding surfaces the required air quantities can be supplied to the different parts of the stack or the different wood parts in a simple manner regardless of how large the remaining air quantities are.
  • the position of the fan or fans influences the air distribution to the individual gaps between the wooden layers, mah can also influence the speed of the individual air flows by adjusting, for example pivoting, the fans. As a rule, however, adjustability of the fans will only be sufficient in connection with air guiding surfaces.
  • the air guiding surfaces and, if adjustable, the fans can have a manual drive.
  • servomotors are preferably provided in order to be able to carry out the adjustment via a control device or a regulating device.
  • the air guiding surfaces designed as deflection elements are advantageously arranged on at least one of the two ends of this flow channel. With their help, the deflection can then take place in such a way that the required air streams are applied to the inlet openings of the spaces between the wooden layers.
  • air guiding surfaces designed as deflection elements can be provided at different heights on the air inlet and outlet sides of the lumber stack.
  • These deflection elements can be arranged in a holder both pivotable about a horizontal axis and adjustable in the vertical direction.
  • One can then sort of divide the entire stack height into several sections, within which the air flows can be adjusted or regulated independently of one another. It may therefore be desirable to be able to adjust and position the deflection elements independently of one another.
  • These positions can be determined, for example, as a function of the wood moisture and the wood moisture differences derived therefrom, taking into account the height positions of the individual measuring points, by means of a process computer and converted into the necessary control commands.
  • feedback potentiometers on the servomotors can record the current position.
  • the flow control can also be selected so that stack parts are at least partially no longer supplied with the circulating air.
  • each fan is preferably adjustable independently of the others about a vertical axis, so that the air flows can be directed to one or more areas along the chamber depth with a suitable rotation. If maximum rotation angles of more than 180 ° (eg 270 °) are selected, a reversal of the air direction can also be achieved with fans that are only designed for one direction of rotation and are therefore about 1 - 20% more efficient than reversible fans.
  • each fan can preferably be adjusted independently of the others about a horizontal axis in order to direct the air flows onto selectable horizontal wood layers when suitably positioned .
  • wood moisture compensation can also be achieved with different wood moisture levels in the area of the air inlet and the air outlet of the channels formed by the wood layers by reversing times of different lengths.
  • air guiding surfaces on both sides of the drying room are advisable.
  • a drying chamber 1 for receiving at least one wood stack 2, which consists of the lumber 3 to be dried and the stacking strips arranged between two adjacent layers of lumber, has a cubic shape in the exemplary embodiment and is provided on one end face with a gate, not shown, which during the drying process closes the drying chamber 1 tightly.
  • the wood stacks 2 are arranged in the drying room 1 next to one another and possibly one behind the other, so that the stacking strips 4 extend in the transverse direction of the drying chamber 1 and a sufficiently wide space 6 remains free between the two side walls 5 of the drying chamber and the wood stacks 2.
  • a partition 8 which runs parallel to the upper boundary wall 7 and which extends over the entire depth of the drying chamber 1, but ends at a distance from the two side walls 5 which is equal to the width of the rooms 6 is.
  • the partition 8 separates from the stack 2 receiving part of the drying chamber 1 from a flow channel 9, which is connected at both ends to the rooms 6 and in the exemplary embodiment evenly distributed over the depth of the drying room 1 contains two axial fans 10, which by one vertical axis 10 'are adjustable. One not shown If necessary, the adjustment motor effects the adjustment.
  • a heating register 11 is arranged in the longitudinal direction of the flow duct 9 at a distance from the axial fans 10.
  • Supply and exhaust air flaps 12 in the upper boundary wall 7 of the drying chamber 1 enable air to enter and exit to reduce the air humidity. Of course, the air can also be conditioned using a dehumidifier.
  • adjustable air guiding surfaces 13 are arranged in the two upper corner areas of the drying chamber 1, in which the rooms 6 connect to the two ends of the flow channel 9 and in which the air is deflected by 90 °. These air guiding surfaces 13 have a rectangular shape and are curved in the transverse direction in such a way that they form a channel open towards the interior of the drying chamber 1.
  • Each air guide surface 13, which consists for example of an aluminum sheet, is supported by a horizontally arranged axis, to which the longitudinal sides of the air guide surfaces 13 run parallel. The adjustment of the air guide surfaces 13 about this axis is carried out by means of an electric servomotor 14 each. As shown in FIG.
  • the arrangement of the air guide surfaces 13 is selected such that they are in the space between the end of the partition 8 and that of the upper boundary wall 7 and
  • the side wall 5 formed corner are arranged and have differently sized distances from the end of the partition 8, which carries on the side facing the flow channel 9 a flow guide body 15 on its opposite end a flowlet body 15 'of the same design.
  • Additional air guiding surfaces 16 which each consist of a flat, rectangular sheet-metal strip in the exemplary embodiment, are, as shown in FIG. 1, arranged in both rooms 6 at different heights above the floor, with distances from the side wall 5 which increase towards the top.
  • These air baffles 16 are each carried by a horizontal shaft, to which the long sides of the air baffles 16 run parallel.
  • These rotatably mounted shafts are each coupled to an electric servomotor 17.
  • the air guiding surfaces 13 and 16 do not extend over their entire depth because of the great depth of the drying chamber 1. Rather, two identical air guiding surfaces, each with its own servomotor, are arranged side by side in order to be able to influence the air flow differently via the chamber depth.
  • Spray nozzles 18 on the side walls 5 of the drying chamber 1 enable the air to be humidified.
  • moisture sensors 19 are connected via connecting lines (not shown) to an electronic control circuit 20 which is arranged outside the drying chamber 1 in the exemplary embodiment and from which the entire control takes place. Therefore, not only a converter 21 is connected to the control circuit 20, by means of which the speed of the drive motors of the axial fans 10 can be set continuously and the direction of rotation can be predetermined.
  • the control circuit 20 also controls the spray nozzles 18 and the servomotors 14 and 17 as well as the heating register 11 and the motors (not shown) for adjusting the swivel position of the axial fans 10.
  • the control circuit 20 determines the optimal air velocity of the air flows between the individual sawn timber layers. Accordingly, the position of the air guide surfaces 13 and 16 is predetermined and the speed of the axial fans 10 is determined. On the basis of the measured values supplied by the moisture sensors 19, the air speed is kept at a predetermined setpoint according to a program, possibly by adjusting the air guide surfaces 13 and / or 16 and changing the speed of the axial fans 10 and / or their swivel position. This program can also include a flow reversal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Trocknen von Schnittholz, das in einem Trocknungsraum unter Zwischenlage von Stapelleisten gestapelt ist, mit zwischen den Schnittholzlagen hindurchgeführter Luft, wobei mit wenigstens einem Ventilator erzeugte Luftströme mit Hilfe von Strömungslenkeinrichtungen in zeitlicher Folge auf unterschiedliche Teilbereiche der Stapeleintrittsebene gerichtet werden. Ferner betrifft die Erfindung eine Vorrichtung zur Durchführung eines solchen Verfahrens.
  • Es ist bekannt, für eine Trockenkammer die Luftgeschwindigkeit innerhalb der Holzstapel aus Kammergeometrie, Förderleistung der Ventilatoren, Strömungswiderstand der Heizregister, Größe und Anordnung der Holzstapel, sowie Stapelfaktor näherungsweise zu berechnen und während der Trocknung je nach Holzart, Holzstärke und Holzfeuchte sowie gewünschter Qualität durch die Ventilatordrehzahl auf geeignete Werte einzustellen. Bei dieser Berechnung bleiben aber eine Reihe von Parametern, beispielsweise die Genauigkeit der Ausstapelung, sogenannte Luftkurzschlüsse, die Oberflächenbeschaffenheit der Hölzer, Veränderungen der Holzlagen durch Schwindung, ungeeignete Stapelleisten und dergleichen außer Betracht, weshalb die Strömungsgeschwindigkeiten zwischen den einzelnen Holzschnittlagen erheblich vom gewünschten Wert abweichen können. Hinzu kommt, daß mit zunehmender Gesamtstapelhöhe die Unterschiede in der Strömungsgeschwindigkeit der einzelnen zwischen den Holzlagen hindurchtretenden Teilströme stark zunehmen. Dies führt dazu, daß die einzelnen Holzpartien unterschiedlich schnell trocknen. Je nach dem, ob Meßstellen in besser oder in schlechter durchlüfteten Bereichen als regelungsführend für den Trocknungsablauf gewählt werden, kann es Ausschuß durch zu hohe Holzfeuchte, Verfärbungen und Schimmelbildung geben oder durch übertrocknete Ware, wobei mit verlängerter Trocknungszeit auch die Kosten ansteigen. Wenn außerdem, wie vielfach unvermeidbar, Holzchargen mit unterschiedlicher Anfangsfeuchte eingebracht werden, kann es zu zusätzlichen Trocknungsschäden wie Verschalungen, Verwerfungen und Rissen kommen, insbesondere, wenn z.B. feuchtere Chargen stärker durchlüftet sind als trockenere, regelungsführende Chargen.
  • Bessere Trocknungsergebnisse und insbesondere eine schnellere Trocknung lassen sich mit einem bekannten Verfahren der eingangs genannten Art (US-A-3 386 186) erreichen, bei dem die Stapeleintrittsebene mit einem Luftstrom konstanter Konzentration beblasen wird, der periodisch über die gesamte Stapeleintrittsebene hin und her geführt wird. Der Luftstrom wird hierbei von einem Ventilator erzeugt, der unverstellbar in einem oberhalb eines Trocknungsraumes vorgesehenen Strömungskanal angeordnet ist. Die Strömungslenkeinrichtungen, welche am Übergang von diesem Strömungskanal zu einem Raum angeordnet sind, dessen eine Begrenzungsfläche durch die Stapeleintrittsebene gebildet ist, bestehen aus gleich ausgebildeten, in gleichen Abständen horizontal angeordneten Strömungslenkelementen, die je um eine horizontale Achse schwenkbar sind. Die Strömungslenkelemente haben daher die Wirkung eines Strömungsgleichrichters, der einen gerichteten Luftstrom schräg von oben her gegen die Stapeleintrittsebene richtet. Mittels eines Kurbelantriebes werden alle Strömungslenkelemente simultan derart hin und her geschwenkt, daß der von Strömungslenkelementen gerichtete Luftstrom periodisch die Stapeleintrittsebene zwischen dem oberen und unteren Ende überstreicht.
  • Da ein derartiges Trocknungsverfahren nur dann zufriedenstellend ist, wenn in allen Teilbereichen des Stapels gleiche Bedingungen vorliegen, dies in der Praxis jedoch vielfach nicht der Fall ist, liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zum Trocknen von Schnittholz anzugeben, mit dem nicht nur die bekannten Trocknungsmängel vermieden werden können, sondern das die Möglichkeit schafft, auch verschiedenartige Hölzer mit Abweichungen in Stärke und/oder Trocknungseigenschaften gleichzeitig in einer Kammer wirtschaftlicher und mit besserer Qualität trocknen zu können, als es mit den bekannten Verfahren möglich ist. Diese Aufgabe löst ein Verfahren mit den Merkmalen des Anspruches 1.
  • Dadurch, daß in jedem Teilbereich der Stapeleintrittsebene unabhängig von den anderen Teilbereichen eine veränderbare Luftstromkonzentration eingestellt wird, kann man auch dann, wenn in den einzelnen Teilbereichen des Stapels unterschiedliche Strömungsgeschwindigkeiten benötigt werden, in dem zu jedem Teilbereich gehörenden Bereich der Stapeleintrittsebene die für die optimale Strömungsgeschwindigkeit notwendige Luftstromkonzentration erzeugen.
  • Es ist in der Regel unzweckmäßig, ständig eine bestimmte Luftkonzentration beizubehalten, weil man bessere Trocknungsergebnisse erhält, wenn im Wechsel Perioden hoher Luftgeschwindigkeit auf solche niedriger Luftgeschwindigkeit folgen. Deshalb erzielt man besonders gute Ergebnisse, wenn nacheinander in den einzelnen Teilbereichen der Stapeleintrittsebene die erforderlichen Luftstromkonzentrationen bewirkt werden. Dank der Einstellbarkeit der Luftstromkonzentration lassen sich diese Anforderungen mit dem erfindungsgemäßen Verfahren ohne weiteres erfüllen. Die Veränderung der Luftstromkonzentration in den einzelnen Teilbereichen der Stapeleintrittsebene hat auch den Vorteil, daß man mit einem geringeren Luftstromvolumen und damit mit einer geringeren Ventilatorleistung auskommt.
  • Bei einer bevorzugten Ausführungsform wird das Ausmaß der Luftstromkonzentration für jeden Teilbereich der Stapeleintrittsebene in Abhängigkeit von Meßwerten der Holzfeuchte und/oder der Feuchtegradienten im Holz eingestellt. Dadurch, daß man die Luftstromkonzentration in Abhängigkeit von Meßwerten einstellt, welche für den Strömungszustand mittelbar oder unmittelbar kennzeichnend sind, nämlich der Holzfeuchte, des Feuchtegradienten und/oder der Luftgeschwindigkeit, kann man die Abweichung der Strömungsgeschwindigkeit in den von den Schnittholzlagen gebildeten Kanälen vom Sollwert erheblich reduzieren und dadurch entweder eine gleichmäßigere Trocknung erreichen oder die Trocknungszeiten unterschiedlicher Partien aneinander angleichen. Ferner kann man, wenn im Verlauf der Trocknung unzulässige Holzfeuchtedifferenzen auftreten, die eine zu große Endfeuchtestreuung erwarten lassen, die Strömungsgeschwindigkeit korrigieren. Es ist sogar möglich, ständig aufgrund der als Istwert dienenden Meßwerte, einen Istwert/Sollwert-Vergleich durchzuführen und dementsprechend die Strömungsgeschwindigkeit zu regeln. Daher läßt sich mit dem erfindungsgemäßen Verfahren eine gleichmäßige Endfeuchte bei kürzest möglicher Trockenzeit und geringstmöglichem Energieeinsatz erreichen.
    Vorzugsweise wird das erforderliche Luftgeschwindigkeitsprofil durch eine Änderung der Luftführung vor dem Eintritt der Luft zwischen die Schnittholzlagen eingestellt und verändert, da auf diese Weise auch bei großer Stapelhöhe mit relativ geringem Aufwand eine sehr effektive Beeinflussung der Strömungsgeschwindigkeit zwischen den Holzlagen erreichbar ist. Sofern erforderlich, kann selbstverständlich auch Menge und/oder Druck der Luft vor dem Eintritt zwischen die Schnittholzlagen variiert werden.
  • Um mit möglichst wenigen Meßwerten auszukommen, werden bei einer bevorzugten Ausführungsform die Meßwerte von Holzfeuchte und/oder Luftgeschwindigkeit an Stellen erfaßt, die in unterschiedlicher Höhe über dem Boden des Trocknungsraums liegen. Bei größerer Tiefe des Trocknungsraumes wird es außerdem in der Regel erforderlich sein, die Meßwerte außerdem in unterschiedlichen Tiefen, also in unterschiedlichen horizontalen Abständen senkrecht zur Strömungsrichtung durch den oder die Stapel zu erfassen. Für die Geschwindigkeit einer kontinuierlichen Luftströmung durch die Holzstapel gibt es Grenzwerte, die üblicherweise eingehalten werden, um ein gutes Trocknungsergebnis nicht zu gefährden und eine wirtschaftliche Trocknung zu erreichen.
  • Eine obere Grenze wird neben wirtschaftlichen Gesichtspunkten (Stromkosten, Investitionshöhe) durch Holzart, -stärke, -feuchte und -feuchtegefälle, sowie durch das Kammerklima bestimmt. Eine länger andauernde Überschreitung dieser Grenze kann die gefürchtete Verschalung zur Folge haben, wenn bei raschem Abtrocknen der oberflächennahen Holzschichten das Feuchtegefälle über den Brettquerschnitt (der Feuchtegradient) zu groß wird. Durch eine eingetretene Verschalung wird nicht nur der weitere Trocknungsfortschritt erheblich verlangsamt; es besteht außerdem die Gefahr der Zerstörung des Holzes durch Rißbildung.
  • Die untere Grenze der kontinuierlichen Luftgeschwindigkeit hängt von der Länge des Luftweges durch die Stapel ab. Bei zu geringer Geschwindigkeit erreicht die Luft bereits vor Stapelaustritt ihr Feuchtegleichgewicht mit der Holzoberfläche, und oberhalb der Fasersättigung (z.B. stets bei sägefrischem Holz) ihre vollständige Sättigung, so daß sie auf dem restlichen Weg durch die Stapel keine weitere Feuchte aus dem Holz aufnehmen kann. Als Folge stellt sich im Verlauf der Trocknung ein ansteigendes Holzfeuchteprofil längs des Luftweges durch die Stapel ein, bei Reversierbetrieb symmetrisch zur Stapelmitte.
  • Dieser unerwünschte Effekt macht es besonders bei großen Trockenkammern mit langem Luftweg durch die Stapel erforderlich, die Stapel mit einer höheren, kostensteigernden Strömungsgeschwindigkeit zu versorgen, als es für den gewünschten wirtschaftlichen Trocknungsfortschritt an sich notwendig wäre. Inbesondere wird diese hohe Luftgeschwindigkeit nur in dem Trocknungsabschnitt oberhalb des Fasersättigungsbereichs benötigt, so daß bei darunterliegenden Holzfeuchten unnötige elektrische Energie aufgrund der dafür überdimensionierten Ventilatorleistung verschwendet würde. Dieser Diskrepanz versucht man heute durch Einsatz polumschaltbarer Motore oder Verwendung von Frequenzumrichtern zu begegnen. Neben anderen Nachteilen bleiben aber hohe Investitionskosten, die sich noch weiter dadurch erhöhen können, daß aufgrund der erforderlichen sehr hohen Ventilatorleistung am Anfang der Trocknung der Ventilatorraum entsprechend größer gebaut werdn muß, um die erforderliche Ventilatorenzahl überhaupt installieren zu können.
  • Diese Nachteile lassen sich ebenfalls mit den Merkmalen des Anspruches 1 vermeiden, ohne die Trocknungs- und Investitionskosten durch zu hohe Ventilatorleistung zu steigern.
  • Ein konzentrierter Luftstrom mit hoher Geschwindigkeit wird nacheinander auf alle Bereiche des Stapeleintritts gerichtet. Dabei wird die Konzentrierung durch eine geeignete Stellung der Ventilatoren und/oder Luftlenkeinrichtungen erreicht. Da bei hoher Geschwindigkeit die Verweildauer bestimmter Luftvolumina innerhalb der Stapel nur gering ist, können sie nicht in die Nähe des Feuchtigkeitsgleichgewichtes mit dem Holz bzw. ihrer Sättigungsfeuchte gelangen. Eine Verschalung kann wegen des relativ trägen Feuchtetransportes von Holz nicht eintreten, wenn die Phasen hoher Geschwindigkeit nicht zu lange andauern. Der für den Trocknungsfortschritt entscheidende zeitliche Mittelwert der Luftgeschwindigkeit läßt sich problemlos dadurch absenken, daß die Dauer der Phasen hoher Geschwindigkeit für einzelne Stapelbereiche klein genug gegenüber der Dauer niedriger Geschwindigkeit gewählt wird.
  • Bei hinreichend hoher Konzentrierung des Gesamtluftstroms kann sogar auf Luftrichtungsumkehr verzichtet werden, wodurch sich Luftlenkeinrichtungen an einem der beiden Stapelenden erübrigen und die gesamte Trocknungsregelung vereinfacht wird.
  • Damit auch mit diesem Verfahren unterschiedliche Holzchargen gleichzeitig in einer Kammer wirtschaftlich getrocknet werden können, wird gemäß Anspruch 5 die Dauer, während der ein bestimmter Stapelbereich dem konzentrierten Luftstrom ausgesetzt wird, in Abhängigkeit von Feuchte und/oder Feuchtegradient des Holzes in diesem Bereich variiert.
  • Der Erfindung liegt ferner die Aufgabe zugrunde, eine Trocknungsvorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zu schaffen. Diese Aufgabe löst eine Trockungsvorrichtung mit den Merkmalen des Anspruches 6.
  • Bei einer bevorzugten Ausführungsform weist die Strömungslenkeinrichtung verstellbare Luftleitflächen auf, weil mittels solcher Luftleitflächen in einfacher Weise den verschiedenen Teilen der Stapel oder den unterschiedlichen Holzpartien die erforderlichen Luftmengen unabhängig davon zugeführt werden können, wie groß die übrigen Luftmengen sind. Zwar kann mah zumindest dann, wenn die Stellung des Ventilators oder der Ventilatoren die Luftverteilung auf die einzelnen Spalte zwischen den Holzlagen beeinflußt, auch durch eine Verstellung, beispielsweise Verschwenkung, der Ventilatoren zu einer Beeinflussung der Geschwindigkeit der einzelnen Luftströme kommen. In der Regel wird jedoch eine Verstellbarkeit der Ventilatoren nur in Verbindung mit Luftleitflächen ausreichend sein.
  • Die Luftleitflächen und, falls verstellbar, die Ventilatoren, können einen manuellen Antrieb aufweisen. Vorzugsweise sind jedoch Stellmotoren vorgesehen, um die Verstellung über eine Steuereinrichtung oder eine Regeleinrichtung ausführen zu können.
  • Ist, wie vielfach der Fall, oberhalb des das Schnittholz aufnehmenden Teils des Trockenraumes ein horizontaler Strömungskanal vorgesehen, in dem sich der Ventilator oder die Ventilatoren befinden, dann sind vorteilhafterweise an wenigstens einem der beiden Enden dieses Strömungskanals die als Umlenkelemente ausgebildeten Luftleitflächen angeordnet. Es kann dann mit ihrer Hilfe die Umlenkung so erfolgen, daß die Eintrittsöffnungen der zwischen den Holzlagen vorhandenen Zwischenräume mit den erforderlichen Luftströmen beaufschlagt werden.
  • Zusätzlich zu diesen Luftleitflächen und vor allem dann, wenn diese nicht verstellbar sind, kann man als Umlenkelemente ausgebildete Luftleitflächen in unterschiedlichen Höhen auf der Luftein- und austrittsseite der Schnittholzstapel vorsehen. Diese Umlenkelemente können sowohl um eine horizontale Achse schwenkbar als auch in vertikaler Richtung verstellbar in einer Halterung angeordnet sein. Man kann dann die gesamte Stapelhöhe gewissermaßen in mehrere Abschnitte unterteilen, innerhalb deren die Luftströme unabhängig voneinander eingestellt oder geregelt werden können. Es kann deshalb wünschenswert sein, die Umlenkelemente auch unabhängig voneinander einstellen und positionieren zu können. Diese Positionen können beispielsweise in Abhängigkeit von den Holzfeuchten und den davon abgeleiteten Holzfeuchtedifferenzen unter Berücksichtigung der Höhenpositionen der einzelnen Meßstellen mittels eines Prozessrechners erfaßt und in die erforderlichen Steuerbefehle umgesetzt werden. Dabei können beispielsweise Rückführpotentiometer an den Stellmotoren die momentane Position erfassen. Die Strömungslenkung kann dabei auch so gewählt werden, daß Stapelteile zumindest teilweise überhaupt nicht mehr mit der zirkulierenden Umluft versorgt werden.
  • Außer der Beeinflussung der Strömungsgeschwindigkeit in den in vertikaler Richtung übereinander liegenden Strömungskanälen kann es wünschenswert oder notwendig sein, die Luftverteilung quer zur Strömungsrichtung in den Strömungskanälen, also in Richtung der Kammertiefe, zu beeinflussen, um Holzfeuchtedifferenzen in Kammertiefe auszugleichen oder in Kammertiefe nebeneinander angeordnete Stapel unterschiedlich mit Luft zu beaufschlagen. Hierzu brauchen nur wenigstens zwei der genannten Umlenkelemente in Richtung der Kammertiefe nebeneinander angeordnet zu sein, um auf die Luftströmung einwirken zu können. Ein weitere Lösung ist die Verstellbarkeit der vor dem Stapeleintritt liegenden Umlenkelemente um eine senkrechte oder um zwei unterschiedliche Drehrichtungen, vorzugsweise senkrecht zueinander
  • Wenn die Ventilatoren in einem durch eine Zwischendecke abgetrennten Kanal oberhalb der Holzstapel angeordnet sind, ist vorzugsweise jeder Ventilator unabhängig von den anderen um eine vertikale Achse verstellbar, damit bei geeigneter Drehung die Luftströmungen auf einen oder mehrere Bereiche längs der Kammertiefe gerichtet werden können.
    Sofern maximale Drehwinkel von mehr als 180° (z.B. 270°) gewählt werden, läßt sich zusätzlich eine Umkehrung der Luftrichtung auch mit solchen Ventilatoren erreichen, die nur für eine Drehrichtung ausgelegt sind und dadurch einem um ca. 1 - 20 % höheren Wirkungsgrad aufweisen als reversierbare Ventilatoren.
  • Wenn der oder die Ventilatoren seitlich neben dem Holzstapel angeordnet ist/sind, also bei mindestens zwei Ventilatoren diese übereinander angeordnet sind, ist vorzugsweise jeder Ventilator unabhängig von den anderen um eine horizontale Achse verstellbar, um bei geeigneter Positionierung die Luftströmungen auf auswählbare horizontale Holzlagen zu richten.
  • Ist eine Umkehr der Strömungsrichtung vorgesehen, kann man auch durch unterschiedlich lange Reversierzeiten einen Holzfeuchteausgleich bei abweichenden Holzfeuchten im Bereich des Lufteintritts und des Luftaustritts der durch die Holzlagen gebildeten Kanäle erreichen. Im Falle der Umkehrbarkeit der Strömungsrichtung sind Luftleitflächen auf beiden Seiten des Trocknungsraumes zweckmäßig.
  • Im folgenden ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungbeispiels im einzelnen erläutert.
  • Es zeigen
  • Fig. 1
    einen schematisch dargestellten Querschnitt des Ausführungsbeispiels,
    Fig. 2
    einen schematisch und unvollständig dargestellten Längsschnitt.
  • In einer Trocknungskammer 1 zur Aufnahme wenigstens eines Holzstapels 2, der aus dem zu trocknenden Schnittholz 3 und den zwischen zwei benachbarten Schnittholzlagen angeordneten Stapelleisten besteht, hat im Ausführungsbeispiel eine kubische Form und ist an einer Stirnseite mit einem nicht dargestellten Tor versehen, das während der Trocknungsvorganges die Trocknungskammer 1 dicht verschließt. Die Holzstapel 2 werden so im Trocknungsraum 1 nebeneinander und ggf. hintereinander angeordnet, daß sich die Stapelleisten 4 in Querrichtung der Trocknungskammer 1 erstrecken und zwischen den beiden Seitenwänden 5 der Trocknungskammer und den Holzstapeln 2 ein ausreichend breiter Raum 6 freibleibt.
  • Im Abstand unterhalb der oberen Begrenzungswand 7 der Trocknungskammer 1 ist eine zur obere Begrenzungswand 7 parallel verlaufende Trennwand 8 angeordnet, welche sich über die gesamte Tiefe der Trocknungskammer 1 erstreckt, jedoch in einem Abstand von den beiden Seitenwänden 5 endet, welcher gleich der Breite der Räume 6 ist. Die Trennwand 8 trennt von dem die Stapel 2 aufnehmenden Teil der Trocknungskammer 1 einen Strömungskanal 9 ab, der an seinen beiden Enden mit den Räumen 6 in Verbindung steht und im Ausführungsbeispiel gleichmäßig über die Tiefe des Trockenraumes 1 verteilt zwei Axialventilatoren 10 enthält, die um eine vertikale Achse 10' verstellbar sind. Je ein nicht dargestellter Verstellmotor bewirkt im Bedarfsfalle die Verstellung. In Längsrichtung des Strömungskanals 9 im Abstand von den Axialventilatoren 10 ist ein Heizregister 11 angeordnet. Zuluft- und Abluftklappen 12 in der oberen Begrenzungswand 7 der Trocknungskammer 1 ermöglichen einen Luftaus- und -eintritt zur Verminderung der Luftfeuchtigkeit. Selbstverständlich kann die Luft auch mittels einer Entfeuchtungsvorrichtung konditioniert werden.
  • In den beiden oberen Eckbereichen der Trocknungskammer 1, in denen die Räume 6 an die beiden Enden des Strömungskanals 9 anschließen und in denen die Luft eine Umlenkung um 90° erfährt, sind verstellbare Luftleitflächen 13 angeordnet. Diese Luftleitflächen 13 haben eine rechteckförmige Form und sind in Querrichtung derart gekrümmt, daß sie eine gegen das Innere der Trocknungskammer 1 hin offene Rinne bilden. Jede Luftleitfläche 13, die beispielsweise aus einem Aluminiumblech besteht, wird von einer horizontal angeordneten Achse getragen, zu der die Längsseiten der Luftleitflächen 13 parallel verlaufen. Die Verstellung der Luftleitflächen 13 um diese Achse erfolgt mittels je eines elektrischen Stellmotors 14. Wie Fig. 1 zeigt, ist die Anordnung der Luftleitflächen 13 so gewählt, daß sie in dem Raum zwischen dem Ende der Trennwand 8 und der von der oberen Begrenzungswand 7 und der Seitenwand 5 gebildeten Ecke angeordnet sind und unterschiedlich große Abstände von dem Ende der Trennwand 8 haben, das auf der dem Strömungskanal 9 zugekehrten Seite einen Strömungsleitkörper 15 auf seinem entgegengesetzten Ende einen gleich ausgebildeten Strömungsletkörper 15' trägt.
  • Zusätzliche Luftleitflächen 16, welche im Ausführungsbeispiel je aus einem ebenen, rechteckförmigen Blechstreifen bestehen, sind, wie Fig. 1 zeigt, in beiden Räumen 6 in unterschiedlicher Höhe über dem Boden angeordnet und zwar mit Abständen von der Seitenwand 5, die nach oben hin zunehmen. Auch diese Luftleitbelche 16 werden von je einer horizontalen Welle getragen, zu der die Längsseiten der Luftleitflächen 16 parallel verlaufen. Diese drehbar gelagerten Wellen sind ebenfalls mit je einem elektrischen Stellmotor 17 gekoppelt.
  • Wie Fig. 2 zeigt, erstrecken sich im Ausführungsbeispiel die Luftleitflächen 13 und 16 wegen der großen Tiefe der Trocknungskammer 1 nicht über deren gesamte Tiefe. Vielmehr sind jeweils zwei gleich ausgebildete Luftleitflächen, die je einen eigenen Stellmotor haben, nebeneinander angeordnet, um über die Kammertiefe die Luftströmung unterschiedlich beeinflussen zu können.
  • Sprühdüsen 18 an den Seitenwänden 5 der Trocknungskammer 1 ermöglichen eine Befeuchtung der Luft.
  • In unterschiedlichen Höhen der Holzstapel 2 werden einzelne Holzlagen mit einem Feuchtesensor 19 versehen, der ein analoges Meßsignal liefert. Diese Feuchtesensoren 19 sind über nicht dargestellte Verbindungsleitungen mit einer im Ausführungsbeispiel außerhalb der Trocknungskammer 1 angeordneten elektronischen Steuerschaltung 20 verbunden, von welcher aus die gesamte Steuerung erfolgt. Daher ist an die Steuerschaltung 20 nicht nur ein Umrichter 21 angeschlossen, mittels dessen die Drehzahl der Antriebsmotoren der Axialventilatoren 10 stufenlos eingestellt und die Drehrichtung vorgegeben werden kann. Von der Steuerschaltung 20 aus erfolgt auch die Steuerung der Sprühdüsen 18 und der Stellmotoren 14 und 17 sowie die Steuerung des Heizregisters 11 und der nicht dargestellten Motoren zur Einstellung der Schwenklage der Axialventilatoren 10.
  • Aufgrund der Daten über das Schnittholz 3, das zur Trocknung in den Trockenraum 1 eingebracht wird, bestimmt die Steuerschaltung 20 die optimale Luftgeschwindigkeit der Luftströme zwischen den einzelnen Schnittholzlagen. Dementsprechend wird die Stellung der Luftleitflächen 13 und 16 vorgegeben sowie die Drehzahl der Axialventilatoren 10 bestimmt. Aufgrund der von den Feuchtesensoren 19 gelieferten Meßwerte wird die Luftgeschwindigkeit, ggf. durch eine Verstellung der Luftleitflächen 13 und/oder 16 und eine Änderung der Drehzahl der Axialventilatoren 10 und/oder deren Schwenklage, entsprechend einem Programm auf einem vorgegebenen Sollwert gehalten. Dieses Programm kann auch eine Umkehrung der Strömungsrichtung beinhalten.

Claims (11)

  1. Verfahren zum Trocknen von Schnittholz, das in einem Trocknungsraum unter Zwischenlage von Stapelleisten gestapelt ist, mit zwischen den Schnittholzlagen hindurchgeführter Luft, wobei mit wenigstens einem Ventilator erzeugte Luftströme mit Hilfe von Strömungslenkeinrichtungen in zeitlicher Folge auf unterschiedliche Teilbereiche der Stapeleintrittsebene gerichtet werden, dadurch gekennzeichnet, daß in jedem Teilbereich der Stapeleintrittsebene unabhängig von den anderen Teilbereichen eine veränderbare Luftstromkonzentration eingestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Ausmaß der Luftstromkonzentration für jeden Teilbereich in Abhängigkeit von Meßwerten der Holzfeuchte und/oder der Feuchtegradienten im Holz eingestellt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß in dem zu jedem Teilbereich der Stapeleintrittsebene gehörenden Stapelteil an mindestens zwei Stellen gemessen wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zusätzlich die Luftgeschwindigkeit an mindestens einer den Holzfeuchte- und/oder Feuchtegradientenmeßstellen direkt benachbarten Stelle ermittelt und dieser Meßwert für die Einstellung der Luftstromkonzentration berücksichtigt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Dauer der Luftstromkonzentration in einer oder mehreren Teilbereichen der Stapeleintrittsebene in Abhängigkeit von der Feuchte und/oder des Feuchtegradienten des Holzes in dem entsprechenden Teilbereich eingestellt wird.
  6. Trocknungsvorrichtung zur Durchführung des Verfahrens gemäß Anspruch 1 mit einem Trocknungsraum (6), mindestens einem Ventilator (10) zur Erzeugung einer Luftströmung zwischen den Schnittholzlagen (3) und einer Strömungslenkeinrichtung (13, 14, 15, 16, 17) mit um mindestens eine Achse drehbar gelagerten Strömungslenkelementen (13, 16), dadurch gekennzeichnet, daß die einzelnen Strömungslenkelemente (13, 16) unabhängig voneinander einstellbar sind.
  7. Trocknungsvorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß mindestens zwei Meßfühler (19) für die Holzfeuchte, den Holzfeuchtegradienten und/oder die Strömungsgeschwindigkeit der Luft voneinander räumlich getrennt im Bereich des oder der Holzstapel (2) angeordnet sind und die Strömungslenkelemente (13, 16) in Abhängigkeit von den mittels der Fühler (19) gewonnenen Meßwerte einstellbar sind.
  8. Trocknungseinrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß durch Strömungslenkelemente gebildete Luftleitflächen (16) in unterschiedlicher Höhe auf der Lufteintritts- und/oder Luftaustrittsseite des Schnittholzstapels (2) angeordnet sind.
  9. Trocknungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die Luftleitflächen (16) höhenverstellbar angeordnet sind.
  10. Trocknungsvorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, daß jedes Strömungslenkelement (13, 16) einen Stellmotor (14, 17) aufweist.
  11. Trocknungsvorrichtung nach einem der Ansprüche 6 bis 10, gekennzeichnet durch eine vorzugsweise mittels eines Motors verstellbare Anordnung des Ventilators (10) in einem vom Trocknungsraum (6) getrennten Strömungskanal (9).
EP19880106746 1987-05-26 1988-04-27 Vorrichtung zum Trocknen von Schnittholz Revoked EP0292717B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88106746T ATE91776T1 (de) 1987-05-26 1988-04-27 Vorrichtung zum trocknen von schnittholz.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873717659 DE3717659A1 (de) 1987-05-26 1987-05-26 Verfahren und vorrichtung zum trocknen von schnittholz
DE3717659 1987-05-26

Publications (3)

Publication Number Publication Date
EP0292717A2 EP0292717A2 (de) 1988-11-30
EP0292717A3 EP0292717A3 (de) 1991-04-17
EP0292717B1 true EP0292717B1 (de) 1993-07-21

Family

ID=6328410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880106746 Revoked EP0292717B1 (de) 1987-05-26 1988-04-27 Vorrichtung zum Trocknen von Schnittholz

Country Status (6)

Country Link
US (1) US4862599A (de)
EP (1) EP0292717B1 (de)
AT (1) ATE91776T1 (de)
CA (1) CA1337153C (de)
DE (2) DE3717659A1 (de)
ES (1) ES2041729T3 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030501B4 (de) * 2005-06-28 2009-10-29 Brunner, Reinhard, Dipl.-Ing. Trocknungsvorrichtung, insbesondere zum Trocknen von Schnittholz
DE102008045829A1 (de) 2008-09-05 2010-03-11 Brunner, Reinhard, Dipl.-Ing. Trocknungsvorrichtung
DE102009014853A1 (de) 2009-03-30 2010-10-07 Brunner, Reinhard, Dipl.-Ing. Trocknungsvorrichtung
WO2011018150A2 (de) 2009-08-14 2011-02-17 Reinhard Brunner Verfahren zum trocknen von zu trocknendem gut
DE102010054493A1 (de) 2010-12-14 2012-06-14 Hildebrand Holztechnik Gmbh Trocknungsvorrichtung
DE102015110750A1 (de) 2014-07-07 2016-01-07 Hildebrand Holztechnik Gmbh Trocknungsvorrichtung
EP3190370A1 (de) 2016-01-05 2017-07-12 Hildebrand Holztechnik GmbH Trocknungsvorrichtung
DE102022120887A1 (de) 2022-05-03 2023-11-09 Reinhard Brunner Kanal-Trocknungsvorrichtung
DE102022130433A1 (de) 2022-05-09 2023-11-09 Reinhard Brunner Kanal-Trocknungsvorrichtung
WO2023213683A1 (de) 2022-05-03 2023-11-09 Reinhard Brunner Kanal-trocknungsvorrichtung
EP4276398A1 (de) 2022-05-09 2023-11-15 Reinhard Brunner Kanal-trocknungsvorrichtung

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1000897B (el) * 1990-01-16 1993-03-16 Michalis Tsamparlis Υβριδικο ξηραντηριο φρουτων και λαχανικων.
US5107607A (en) * 1990-01-22 1992-04-28 Mason Howard C Kiln for drying lumber
FR2660424A1 (fr) * 1990-04-03 1991-10-04 Electricite De France Procede et installation pour le sechage a grand debit de bois massif humide.
US5195251A (en) * 1992-02-19 1993-03-23 Gyurcsek Frank T Drying kiln
NL9201049A (nl) * 1992-06-12 1994-01-03 Arnold Brookhuis Textiel Techn Werkwijze en systeem voor het drogen van hout.
DE4323709C2 (de) * 1993-07-15 1996-06-13 Wagner Max Novokeram Verfahren und Vorrichtung zum Trocknen
SE9302993L (sv) * 1993-09-15 1995-03-13 Sunds Defibrator Ind Ab Framställning av fiberboard
DE19522028C2 (de) * 1995-06-17 1999-12-16 Reinhard Brunner Verfahren und eine Vorrichtung zum Trocknen von Schnittholz bei Unterdruck
US5775003A (en) * 1996-05-24 1998-07-07 U.S. Natural Resources, Inc. Portable sensor for dry kiln sampling
US5915811A (en) * 1996-09-30 1999-06-29 The Board Of Trustees Of The University Of Arkansas Solar drying process and apparatus
US5992048A (en) * 1996-09-30 1999-11-30 The Board Of Trustees Of University Of Arkansas Solar drying process and apparatus
SE512787C2 (sv) * 1997-10-03 2000-05-15 Abb Ab Metod, reglerparadigm och anordning för att vid torkning styra och övervaka processvariablerna för en processgas vilken strömmar genom en för torkningen använd kammare
FR2770441B1 (fr) * 1997-10-30 2000-02-11 Bernard Dedieu Procede de sechage des bois de sciage et dispositif permettant la mise en oeuvre du procede
US6675495B2 (en) 1997-10-30 2004-01-13 Valeurs Bois Industrie Method for drying saw timber and device for implementing said method
FI974466A0 (fi) * 1997-12-09 1997-12-09 Stellac Oy Foerfarande foer reglering av gascirkulation
IT1310555B1 (it) * 1999-04-02 2002-02-18 Gisulfo Baccini Apparecchiatura per la produzione di circuiti elettronici
FR2805769B1 (fr) * 2000-03-01 2002-05-31 Realisation De Travaux Electr Procede de sechage de bois et dispositif pour sa mise en oeuvre
US6467190B2 (en) 2000-03-22 2002-10-22 George R. Gulp Drying kiln
US6219937B1 (en) 2000-03-30 2001-04-24 George R. Culp Reheaters for kilns, reheater-like structures, and associated methods
US6397488B1 (en) 2000-06-15 2002-06-04 Hewlett-Packard Company Apparatus and method for drying printing composition on a print medium
US6370792B1 (en) 2000-09-01 2002-04-16 George R. Culp Structure and methods for introducing heated ari into a kiln chamber
US6805112B2 (en) * 2001-06-27 2004-10-19 James T. Cole Convection oven having multiple airflow patterns
FR2846269B1 (fr) * 2002-10-28 2004-12-24 Jean Laurencot Procede pour traiter une charge de matiere ligneuse composee d'elements empiles, notamment une charge de bois, par traitement thermique a haute temperature
US6954994B1 (en) * 2004-06-30 2005-10-18 Hewlett-Packard Development Company, L.P. Moisture removal mechanism
WO2006025328A1 (ja) * 2004-08-31 2006-03-09 Kakuno Seisakusho Co., Ltd. 減圧式乾燥機及びそれを用いた木材の乾燥方法
US7963048B2 (en) * 2005-05-23 2011-06-21 Pollard Levi A Dual path kiln
CN1936534B (zh) * 2005-12-31 2010-08-25 天津开发区利达科技发展有限公司 岩样干燥设备及其干燥箱构造
DE102006053274A1 (de) * 2006-11-06 2008-05-08 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Ermitteln der Ladungsmenge in einem Wäschetrockner und Wäschetrockner
US8201501B2 (en) 2009-09-04 2012-06-19 Tinsley Douglas M Dual path kiln improvement
US10619921B2 (en) 2018-01-29 2020-04-14 Norev Dpk, Llc Dual path kiln and method of operating a dual path kiln to continuously dry lumber

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1096725A (de) * 1955-06-23
DE508465C (de) * 1930-09-29 Fritz Haas Horden- oder Etagentrockner mit Luftzufuehrung durch seitliche Jalousiewandungen
US1601966A (en) * 1921-01-04 1926-10-05 Ind Dryer Corp Art of drying
US1546180A (en) * 1923-11-20 1925-07-14 Richard N Osborn Drying kiln
US1736213A (en) * 1928-08-22 1929-11-19 Northwest Blower Kiln Company Method of and means for drying lumber
US1829139A (en) * 1929-05-31 1931-10-27 Hiram L Henderson Dry kiln
FR699030A (fr) * 1930-07-17 1931-02-09 Procédé et appareil de séchage d'objets au moyen de courants se déplaçant dans le local
DE628786C (de) * 1933-12-30 1936-04-16 Charles Goodall Trockenanlage fuer Holz und andere Stoffe
FR1096717A (fr) * 1953-12-28 1955-06-23 Procédé de séchage à flux variable inversé et séchoirs pour sa mise en oeuvre
US3386186A (en) 1965-02-02 1968-06-04 Robert Hildebrand Maschb G M B Apparatus for conducting a gaseous drying medium
DE1604935A1 (de) * 1966-12-02 1971-01-14 Robert Hildebrand Trockenkammer,insbesondere fuer das Trocknen von Schnittholz
CH459886A (de) * 1967-03-22 1968-07-15 Keller Spezialtechnik Gmbh Als Kammertrockner ausgebildete Vorrichtung zum Trocknen keramischer Formlinge
US3744144A (en) * 1971-04-23 1973-07-10 H Weis Automated controls for lumber drying kiln
IT1071276B (it) * 1976-05-12 1985-04-02 Pagnozzi Ernesto Guglielmo Perfezionamenti nei procedimenti e negli impianti di essiccazione del legname..particolarmente negli impianti che impiegano il vuoto
US4356641A (en) * 1980-12-15 1982-11-02 Armstrong World Industries Kiln control system
DE3340489A1 (de) * 1983-11-09 1985-08-14 Lignomat GmbH, 7148 Remseck Verfahren zum trocknen von schnittholz

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030501B4 (de) * 2005-06-28 2009-10-29 Brunner, Reinhard, Dipl.-Ing. Trocknungsvorrichtung, insbesondere zum Trocknen von Schnittholz
DE102008045829A1 (de) 2008-09-05 2010-03-11 Brunner, Reinhard, Dipl.-Ing. Trocknungsvorrichtung
DE102009014853A1 (de) 2009-03-30 2010-10-07 Brunner, Reinhard, Dipl.-Ing. Trocknungsvorrichtung
WO2011018150A2 (de) 2009-08-14 2011-02-17 Reinhard Brunner Verfahren zum trocknen von zu trocknendem gut
DE102009037337A1 (de) 2009-08-14 2011-08-04 Brunner, Reinhard, Dipl.-Ing., 30989 Verfahren zum Trocknen von zu trocknendem Gut
DE102010054493B4 (de) * 2010-12-14 2017-06-01 Hildebrand Holztechnik Gmbh Trocknungsvorrichtung
DE102010054493A1 (de) 2010-12-14 2012-06-14 Hildebrand Holztechnik Gmbh Trocknungsvorrichtung
EP2466238A2 (de) 2010-12-14 2012-06-20 Hildebrand Holztechnik GmbH Trocknungsvorrichtung
EP2466238A3 (de) * 2010-12-14 2014-11-26 Hildebrand Holztechnik GmbH Trocknungsvorrichtung
DE102015110750A1 (de) 2014-07-07 2016-01-07 Hildebrand Holztechnik Gmbh Trocknungsvorrichtung
EP2966389A1 (de) 2014-07-07 2016-01-13 Hildebrand Holztechnik GmbH Trocknungsvorrichtung
DE102015110750B4 (de) 2014-07-07 2021-12-09 Hildebrand Holztechnik Gmbh Trocknungsvorrichtung
EP3190370A1 (de) 2016-01-05 2017-07-12 Hildebrand Holztechnik GmbH Trocknungsvorrichtung
DE102022120887A1 (de) 2022-05-03 2023-11-09 Reinhard Brunner Kanal-Trocknungsvorrichtung
WO2023213683A1 (de) 2022-05-03 2023-11-09 Reinhard Brunner Kanal-trocknungsvorrichtung
DE102022120887B4 (de) 2022-05-03 2025-01-02 Reinhard Brunner Kanal-Trocknungsvorrichtung
DE102022130433A1 (de) 2022-05-09 2023-11-09 Reinhard Brunner Kanal-Trocknungsvorrichtung
EP4276398A1 (de) 2022-05-09 2023-11-15 Reinhard Brunner Kanal-trocknungsvorrichtung
DE102022130433B4 (de) 2022-05-09 2024-09-05 Reinhard Brunner Kanal-Trocknungsvorrichtung

Also Published As

Publication number Publication date
EP0292717A2 (de) 1988-11-30
EP0292717A3 (de) 1991-04-17
US4862599A (en) 1989-09-05
DE3717659C2 (de) 1990-03-08
DE3717659A1 (de) 1988-12-15
ATE91776T1 (de) 1993-08-15
ES2041729T3 (es) 1993-12-01
DE3882436D1 (de) 1993-08-26
CA1337153C (en) 1995-10-03

Similar Documents

Publication Publication Date Title
EP0292717B1 (de) Vorrichtung zum Trocknen von Schnittholz
EP0834048B1 (de) Verfahren und vorrichtung zum trocknen von schnittholz bei unterdruck
DE1729259C3 (de) Verfahren und Vorrichtung zum Trocknen von Holz
EP0142071B1 (de) Verfahren zum Trocknen von Schnittholz
DE29700769U1 (de) Trockner für Gipskartonplatten
EP0907476B1 (de) Belüftungsdüse
EP0024475B1 (de) Verfahren und Vorrichtung zur Steuerung der Belüftung für ein Trockengut in einem Tunneltrockner
DE3941134C2 (de)
DE2528565B2 (de) Trocknungsanlage, insbesondere Trocknungskanal
EP0750529B1 (de) Bearbeitungskabine und verfahren zum belüften einer bearbeitungskabine
DE3336998C2 (de) Verfahren zur Ventilation in Trockenpartien mit geschlossenem Gehäuse von Papiermaschinen
WO2022017646A1 (de) Trockner zum trocknen eines plattenförmigen guts
EP0152078B1 (de) Verfahren zum Trocknen von Malz in einer Vertikaldarre
DE69221740T2 (de) Verfahren zum Trocknen von perforierten Ziegelsteinen und Vorrichtung zum Durchführen des Verfahrens.
EP0586784A1 (de) Vorrichtung zur Erzeugung eines Luftstromsystems für die Behandlung von durchlaufendem bahnförmigem Gut
DE69603391T2 (de) Trockner für Tonwaren
AT403734B (de) Anordnung von axialventilatoren für holztrocknungsanlagen
EP1929886B1 (de) Behandlungsanlage für Lebensmittel, insbesondere für Rohwurst und Rohpökelwaren
DE2252976A1 (de) Trocknungstunnel zum trocknen von rohlingen aus keramischem werkstoff
DE3817972C2 (de)
DE4428001C2 (de) Vakuumtrockner für Schnitthölzer und Verfahren zum Trocknen von Holz
DE8707519U1 (de) Vorrichtung zum Trocknen von Schnittholz
DE559411C (de) Luftverteilungsgitter fuer Trocken- und Befeuchtungsanlagen
EP4155244B1 (de) Windstreuvorrichtung und streugutanlage
DE1962089C2 (de) Mehrfachtogiefianlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

17P Request for examination filed

Effective date: 19910502

17Q First examination report despatched

Effective date: 19920114

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930721

Ref country code: NL

Effective date: 19930721

Ref country code: BE

Effective date: 19930721

REF Corresponds to:

Ref document number: 91776

Country of ref document: AT

Date of ref document: 19930815

Kind code of ref document: T

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BRUNNER TROCKENTECHNIK GMBH

REF Corresponds to:

Ref document number: 3882436

Country of ref document: DE

Date of ref document: 19930826

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930809

ITF It: translation for a ep patent filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19931022

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041729

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: DR. VIKTOR VANICEK GMBH

Effective date: 19940421

R26 Opposition filed (corrected)

Opponent name: DR. VIKTOR VANICEK GMBH

Effective date: 19940421

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970404

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970409

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970414

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970430

Year of fee payment: 10

Ref country code: AT

Payment date: 19970430

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970506

Year of fee payment: 10

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19980113

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 980113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO