[go: up one dir, main page]

EP0291416A1 - Procédé pour la réduction d'une solution comprenant du titane et du fer - Google Patents

Procédé pour la réduction d'une solution comprenant du titane et du fer Download PDF

Info

Publication number
EP0291416A1
EP0291416A1 EP88401168A EP88401168A EP0291416A1 EP 0291416 A1 EP0291416 A1 EP 0291416A1 EP 88401168 A EP88401168 A EP 88401168A EP 88401168 A EP88401168 A EP 88401168A EP 0291416 A1 EP0291416 A1 EP 0291416A1
Authority
EP
European Patent Office
Prior art keywords
solution
cathode
cell
titanium
cathode compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88401168A
Other languages
German (de)
English (en)
Other versions
EP0291416B1 (fr
Inventor
Jean Bachot
Olivier Le Roux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Publication of EP0291416A1 publication Critical patent/EP0291416A1/fr
Application granted granted Critical
Publication of EP0291416B1 publication Critical patent/EP0291416B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals

Definitions

  • the present invention relates to an electrolysis cell and a method for the reduction of a solution comprising titanium and iron and in particular of a solution resulting from a sulfuric attack of ilmenite.
  • titanium dioxide involves an attack by a sulfuric acid solution of a titaniferous ore of the ilmenite, anatase or rutile type. After this attack, a solution is obtained which contains titanyl sulfate and especially ferric and ferrous iron sulfates.
  • This method has various drawbacks. In particular, it is discontinuous. On the other hand, it requires a subsequent separation of large quantities of iron giving in particular ferrous sulphate waste.
  • the main object of the invention is therefore an electrolysis cell making it possible to work with a high current density and efficiency.
  • a second object of the invention is a method usable with such a cell.
  • the electrolysis cell for the reduction of a solution comprising titanium and iron ions is of the type comprising an anode compartment, a cathode compartment and an ion exchange membrane separating the two compartments and it is characterized in what the membrane is a cationic membrane.
  • the method according to the invention is characterized in that said solution is circulated in the cathode compartment of the cell described above.
  • This cell has two compartments, an anode, a cathode separated by an ion exchange membrane.
  • this membrane is of the cationic type, in particular with strong acid groups of the sulfonic type, for example.
  • a membrane of this species mention may be made, for example, of those sold under the brands NAFION and SELEMION.
  • a cationic membrane brings about a certain number of advantages linked to the very qualities of this type of membrane. In fact, their superior strength to that of anionics makes the cell less fragile. It is also possible to operate with higher current intensities.
  • the cathode can be based on different materials.
  • a copper-based cathode is used, this type of cathode offering the highest faradaic yields thanks to the excellent mass transfer obtained on this material.
  • cathode based on at least one material chosen from the group comprising lead, titanium, special steels.
  • lead or titanium cathodes alone, or lead on a suitable substrate, for example lead on titanium or lead on copper, or even titanium coated with at least one precious metal.
  • precious metals mention may be made of platinum, iridium, palladium and, for example, a 0.2% palladium titanium cathode can be used.
  • anode As regards the anode, the nature of this is not critical insofar as it exhibits sufficient chemical resistance during the oxidation of water in an acid medium.
  • titanium coated with precious metals or with oxides of precious metals as defined above is used.
  • the electrodes can be in different forms, for example planar, perforated, deployed.
  • the membrane can be placed in abutment on the anode.
  • Turbulence promoters can be placed in the compartments of the cell.
  • This process essentially consists in circulating in the cathode compartment of the cell which has just been described the solution to be treated.
  • Titanium is essentially present in the form of titanium IV, the FeII / FeIII ratio can be variable.
  • This solution may also contain H+ ions and anions of the sulfate type.
  • the process for preparing titanium dioxide essentially comprises the following stages.
  • the first stage consists of an attack on the titaniferous ore with a sulfuric acid solution.
  • the etching solution thus obtained is reduced in a second step and then clarified in a third, steps 2 and 3 can be reversed.
  • a fourth step consists in crystallizing and then in separating part of the ferrous sulfate in solution.
  • the solution thus obtained undergoes a concentration in a fifth step then, in a last and sixth step, the titanyl sulfate is hydrolyzed and the titanium hydroxide is separated, which will then be calcined.
  • the cell and the method of the invention apply very particularly to the reduction of the solution from the first aforementioned step, that is to say of the sulfuric attack on the titaniferous ore of the ilmenite type in particular.
  • the process reduction step (second step) is carried out entirely by electrolytic means.
  • the solution circulating in the cathode compartment can be recycled there at the outlet thereof.
  • the solution to be treated is separated into a first and a second part, the second part is treated by passing through the cathode compartment of the aforementioned cell, the solution thus treated is stored in a reserve. and the solution resulting from this reservation is combined with the aforementioned first part.
  • the solution to be treated arrives at 1, a first main part 2 continues in the process while a second part 3 will undergo the electrolytic treatment.
  • the stream 3 is divided into two parts 4 and 5 and feeds the cathode compartments of the two cells 6 and 7 according to the invention mounted in parallel.
  • the two parts of this same flow are combined at the outlet at 8 and open into a reserve 9.
  • Lines 12 and 11 allow at least part of the solution from the reserve 9 to be recycled into the cathode compartment (s) of at least one of cells 6 and 7.
  • Such a system with reserve and two cells makes it possible to have greater stability of operation of the cells even in the event instability of the FeII / FeIII ratio of the main flux. It is also possible, thanks to this system, to treat only part of the main flow insofar as the reduction of titanium has been carried out quite far, for example of the order of 100 g / l.
  • An electrolysis cell having the characteristics and under the conditions given below is used: - cationic membrane: NAFION 423. - anode: expanded titanium coated with platinum-iridium. - cathode: expanded copper. - current density: 30 A / dm2.
  • a catholyte of the following composition is obtained at the exit from the cathode compartment: Ti4+ 104 g / l, Fe2+ 48 g / l, Ti3+ 16 g / l
  • the cathodic faradic yield is 99%.
  • the operating conditions are as follows:
  • - cationic membrane NAFION 423.
  • - anode expanded titanium coated with iridium platinum, - cathode: perforated palladium titanium, - current density: 20 A / dm2.
  • a catholyte of composition is obtained at the outlet of the cathode compartment: Ti4+ 113 g / l, Fe2+ 51 g / l, Ti3+ 7 g / l with a faradic cathodic yield of 99%.
  • the operating conditions of the cell are as follows: - inlet catholyte Ti4+ 120 g / l Fe2+ 46 g / l Fe3+ 3 g / l, H2SO4 270 g / l. - catholyte circulation speed: 30 cm / s. - cell temperature: 65 ° C, - cationic membrane: NAFION 423. - current density: 30 A / dm2. - anolyte H2SO4 O, 5 N for tests 1 and 2, solution of a ferrous salt: Fe2+ 40 g / l for test 3. - anode: expanded titanium coated with iridium platinum for tests 1 and 2. - graphite for test 3.
  • This example shows the possibility of obtaining with the cell of the invention solutions highly concentrated in Ti3+.
  • the operating conditions of the cell are as follows: - anolyte: H2SO4 O, 5 N. - inlet catholyte Ti4+ 120 g / l Fe2+ 45.7 g / l Fe3+ 3.4 g / l, H2SO4 270 g / l. - catholyte circulation speed: 60 cm / s, - anolyte circulation speed: 0.5 cm / s, - cell temperature: 65 ° C, - cationic membrane: NAFION 423. - anode: expanded titanium coated with platinum-iridium, - cathode: perforated copper, - current density: 17 A / dm2.
  • a catholyte of the following composition is obtained at the outlet: Ti4+ 46.4 g / l Fe2+ 49.1 g / l Ti 3+ 73.6 g / l.
  • the cathodic faradic yield is 97.5%.
  • An electrolysis cell having the characteristics and under the conditions given below is used: - cationic membrane: NAFION 423, - anode: expanded titanium coated with platinum-iridium, - cathode: lead, - current density: 20 A / dm2.
  • a catholyte of the following composition is obtained at the exit from the cathode compartment: Ti4 104 g / l, Fe2+ 48 g / l, Ti3+ 8 g / l.
  • the cathodic faradic yield is 80%.
  • An electrolysis cell having the characteristics and under the conditions given below is used: - cationic membrane: NAFION 423, - anode: expanded titanium coated with platinum-iridium, - cathode: expanded titanium + lead, - current density: 30 A / dm2.
  • a catholyte of the following composition is obtained at the exit from the cathode compartment: Ti4+ 120 g / l, Fe2+ 48 g / l, Ti3+ 9 g / l.
  • the faradaic yield is 90%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

L'invention concerne une cellule pour l'électrolyse d'une solution issue de l'attaque sulfurique de l'ilménite.
La solution à traiter passe dans le compartiment cathodique d'une ou deux cellules qui sont équipées d'une membrane échangeuse d'ions de type cationique.

Description

  • La présente invention concerne une cellule d'électrolyse et un procédé pour la réduction d'une solution comprenant du titane et du fer et en particulier d'une solution issue d'une attaque sulfurique de l'ilménite.
  • On sait que la production du dioxyde de titane comporte une attaque par une solution d'acide sulfurique d'un minerai titanifère du type ilménite, anatase ou rutile. On obtient après cette attaque une solution qui contient du sulfate de titanyle et des sulfates de fer ferrique et ferreux notamment.
  • Or, cette solution doit être réduite pour transformer les ions ferriques en ions ferreux, la présence des ions ferriques devant être évitée lors de l'étape ultérieure d'hydrolyse du sulfate de titanyle.
  • On connait plusieurs méthodes pour cette réduction du fer ferrique. Industriellement elle est réalisée par des ferrailles "iron scrap".
  • Cette méthode présente différents inconvénients. En particulier, elle est discontinue. D'autre part, elle nécessite une séparation ultérieure de grandes quantités de fer donnant notamment des déchets de sulfate ferreux.
  • Des réductions électrochimiques ont été proposées. Une de ces méthodes est notamment décrite dans le brevet français N° 2.363.642.
  • Toutefois, les différents types d'électrolyseurs étudiés jusqu'à présent ne permettent pas d'obtenir de bons rendements énergétiques à densités de courant fortes c'est-à-dire d'au moins 10 A/dm2.
  • L'objet principal de l'invention est donc une cellule d'électrolyse permettant de travailler avec une densité de courant et un rendement élevés.
  • Un second objet de l'invention est un procédé utilisable avec une telle cellule.
  • Selon l'invention, la cellule d'électrolyse pour la réduction d'une solution comprenant des ions titane et fer est du type comportant un compartiment anodique, un compartiment cathodique et une membrane échangeuse d'ions séparant les deux compartiments et elle est caractérisée en ce que la membrane est une membrane cationique.
  • Le procédé selon l'invention est caractérisé en ce qu'on fait circuler ladite solution dans le compartiment cathodique de la cellule décrite ci-dessus.
  • D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre et du dessin annexé dans lequel la figure unique est une représentation schématique d'une mise en oeuvre de cellules selon l'invention.
  • La cellule de l'invention va être décrite maintenant plus précisément.
  • Cette cellule comporte deux compartiments un anodique, un cathodique séparés par une membrane échangeuse d'ions.
  • Selon la caractéristique principale de l'invention, cette membrane est du type cationique notamment avec groupes acides forts du type par exemple sulfonique. Comme membrane de cette espèce on peut citer par exemple celles vendues sous les marques NAFION et SELEMION.
  • L'utilisation d'une membrane cationique entraîne un certain nombre d'avantages liés aux qualités mêmes de ce type de membrane. En effet leur solidité supérieure à celles des anioniques rend la cellule moins fragile. Il est aussi possible d'opérer avec des intensités de courant plus élevées.
  • En ce qui concerne les électrodes, la cathode peut être à base de différents matériaux.
  • Selon un mode préféré de réalisation de l'invention, on utilise une cathode à base de cuivre, ce type de cathode offrant les plus hauts rendements faradiques grâce à l'excellent transfert de masse obtenu sur ce matériau.
  • Toutefois, il est aussi possible d'employer une cathode à base d'au moins un matériau choisi dans le groupe comprenant le plomb, le titane, les aciers spéciaux.
  • Dans ce dernier cas, plus particulièrement on peut utiliser soit des cathodes en plomb ou en titane seul, soit en plomb sur un substrat convenable par exemple plomb sur titane ou plomb sur cuivre soit encore en titane revêtu d'au moins un métal précieux.
  • Comme métaux précieux, on peut citer le platine, l'iridium, le palladium et utiliser par exemple une cathode en titane palladié à 0,2%.
  • Comme aciers spéciaux on peut mentionner ceux du type Uranus B 6 et Incoloy 825 c'est-à-dire les aciers comprenant du chrome, du nickel et du molybdène, la teneur en molybdène ne devant toutefois généralement pas dépasser 15% environ.
  • En ce qui concerne l'anode, la nature de celle-ci n'est pas critique dans la mesure où elle présente une tenue chimique suffisante lors de l'oxydation de l'eau en milieu acide. En général, on utilise le titane revêtu de métaux précieux ou d'oxydes de métaux précieux tels que définis ci-dessus.
  • Les électrodes peuvent se présenter sous différentes formes par exemple plane, trouée, déployée.
  • La membrane peut être disposée en appui sur l'anode. Des promoteurs de turbulence peuvent être disposés dans les compartiments de la cellule.
  • On va maintenant décrire plus en détail le procédé pour la mise en oeuvre de la cellule d'electrolyse.
  • Ce procédé consiste essentiellement à faire circuler dans le compartiment cathodique de la cellule qui vient d'être décrite la solution à traiter.
  • Cette solution comprend des ions titane et fer. Le titane est essentiellement présent sous forme de titane IV, le rapport FeII/FeIII pouvant être variable.
  • Cette solution peut contenir aussi des ions H⁺ et des anions du type sulfate.
  • On rappelle que le procédé de préparation du dioxyde de titane comporte essentiellement les étapes suivantes.
  • La première étape consiste en une attaque du minerai titanifère par une solution d'acide sulfurique. La solution d'attaque ainsi obtenue est réduite dans une deuxième étape puis clarifiée dans une troisième, les étapes 2 et 3 pouvant être inversée. Une quatrième étape consiste à cristalliser puis à séparer une partie du sulfate ferreux en solution. La solution ainsi obtenue subit une concentration dans une cinquième étape puis, dans une dernière et sixième étape on procède à l'hydrolyse du sulfate de titanyle et la séparation de l'hydroxyde de titane qui sera ensuite calciné.
  • La cellule et le procédé de l'invention s'appliquent tout particulièrement à la réduction de la solution provenant de la première étape précitée c'est-à-dire de l'attaque sulfurique du minerai titanifère du type ilménite notamment.
  • Dans un tel cas bien entendu l'étape de réduction du procédé (deuxième étape) est effectuée entièrement par voie électrolytique.
  • Toutefois, il est aussi possible d'effectuer la réduction en un point quelconque du procédé de préparation du TiO₂ entre l'attaque et l'hydrolyse et en particulier immédiatement avant l'hydrolyse.
  • Dans le compartiment anodique on pourra faire circuler soit de l'eau acidifiée par exemple une solution 0,5 N d'H₂SO₄ soit une solution de sel ferreux.
  • Bien entendu la solution circulant dans le compartiment cathodique peut y être recyclée à la sortie de celui-ci.
  • Il est aussi possible de faire circuler la solution dans les compartiments cathodiques de deux cellules montées en parallèle. Une telle installation permet d'assurer une marche constante de l'unité de production même en cas de défaillance d'une des cellules.
  • Selon un mode de réalisation particulier de l'invention, on sépare la solution à traiter en une première et une deuxième partie, on traite la seconde partie par passage dans le compartiment cathodique de la cellule précitée, on stocke la solution ainsi traitée dans une réserve et on réunit la solution issue de cette réserve à la première partie précitée.
  • La figure illustre ce mode de réalisation.
  • La solution à traiter arrive en 1, une première partie principale 2 continue dans le procédé tandis qu'une deuxième partie 3 va subir le traitement électrolytique.
  • Le flux 3 est divisé en deux parties 4 et 5 et alimente les compartiments cathodiques des deux cellules 6 et 7 selon l'invention montées en parallèle. Les deux parties de ce même flux sont réunies à la sortie en 8 et débouchent dans une réserve 9.
  • Par une conduite 10 on rejoint le flux 2.
  • Des conduites 12 et 11 permettent de recycler au moins une partie de la solution issue de la réserve 9 dans le ou les compartiments cathodiques d'au moins une des cellules 6 et 7.
  • Un tel système avec réserve et deux cellules permet d'avoir une stabilité plus grand de fonctionnement des cellules même en cas d'instabilité du rapport FeII/FeIII du flux principal. On peut aussi grâce à ce système ne traiter qu'une partie du flux principal dans la mesure où l'on a conduit assez loin la réduction du titane par exemple de l'ordre de 100 g/l.
  • Des exemples concrets vont maintenant être donnés.
  • EXEMPLE 1
  • On utilise une cellule d'électrolyse ayant les caractéristiques et dans les conditions données ci-dessous :
        - membrane cationique : NAFION 423.
        - anode : titande déployé revêtu de platine-iridium.
        - cathode : cuivre déployé.
        - densité de courant : 30 A/dm².
  • Par ailleurs, on y fait circuler les milieux ci-dessous :
        - anolyte H₂SO₄ 0,5 N
        - catholyte à l'entrée : Ti⁴⁺ 120 g/l, Fe²⁺ 45 g/l, Fe³⁺ 3 g/l, H₂SO₄270 g/l.
  • Pour une vitesse de circulation du catholyte de 10 cm/s et de l'anolyte de 0,5 cm/s avec une température de la cellule de 65°C, on obtient à la sortie du compartiment cathodique un catholyte de composition suivante :
        Ti⁴⁺ 104 g/l, Fe²⁺ 48 g/l, Ti³⁺ 16 g/l
  • Le rendement faradique cathodique est de 99 %.
  • EXEMPLE 2
  • Les conditions de fonctionnement sont les suivantes :
  • On utilise une cellule d'électrolyse ayant les caractéristiques et dans les conditions ci-dessous :
        - membrane cationique : NAFION 423.
        - anode : titane déployé revêtu de platine iridium,
        - cathode : titane palladié troué,
        - densité de courant : 20 A/dm².
  • Par ailleurs, on y fait circuler les milieux ci-dessous :
        - anolyte H₂SO₄ O,5 N
        - catholyte à l'entrée Ti⁴⁺ 120 g/l, Fe²⁺ 47 g/l, Fe³⁺ 4 g/l, H₂SO₄ 270 g/l.
  • Pour une vitesse de circulation de l'anolyte de 0,5 cm/s et du catholyte de 10 cm/s à une température de la cellule de 65°C, on obtient à la sortie du compartiment cathodique un catholyte de composition :
        Ti⁴⁺ 113 g/l, Fe²⁺ 51 g/l, Ti³⁺ 7 g/l avec un rendement faradique cathodique de 99 %.
  • EXEMPLE 3
  • On utilise dans cet exemple différents types de cathodes selon les essais 1, 2 et 3.
  • Les conditions de fonctionnement de la cellule sont les suivantes :
        - catholyte entrée Ti⁴⁺ 120 g/l Fe²⁺ 46 g/l Fe³⁺ 3 g/l, H₂SO₄ 270 g/l.
        - vitesse de circulation du catholyte : 30 cm/s.
        - température de la cellule : 65°C,
        - membrane cationique : NAFION 423.
        - densité de courant : 30 A/dm².
        - anolyte H₂SO₄ O,5 N pour essais 1 et 2, solution d'un sel ferreux : Fe²⁺ 40 g/l pour essai 3.
        - anode : titane déployé revêtu de platine iridium pour les essais 1 et 2.
        - graphite pour essai 3.
  • Les résultats sont donnés ci-dessous.
    Figure imgb0001
  • EXEMPLE 4
  • Cet exemple montre la possibilité d'obtenir avec la cellule de l'invention des solutions fortement concentrées en Ti³⁺.
  • Les conditions de fonctionnement de la cellule sont les suivantes :
        - anolyte : H₂SO₄ O,5 N.
        - catholyte entrée Ti⁴⁺ 120 g/l Fe²⁺ 45,7 g/l Fe³⁺ 3,4 g/l, H₂SO₄ 270 g/l.
        - vitesse de circulation du catholyte : 60 cm/s,
        - vitesse de circulation de l'anolyte : O,5 cm/s,
        - température de la cellule : 65°C,
        - membrane cationique : NAFION 423.
        - anode : titane déployée revêtu de platine-iridium,
        - cathode : cuivre perforé,
        - densité de courant : 17 A/dm2.
  • On obtient à la sortie un catholyte de composition suivante :
        Ti⁴⁺ 46,4 g/l Fe²⁺ 49,1 g/l Ti ³⁺ 73,6 g/l.
  • Le rendement faradique cathodique est de 97,5 %.
  • EXEMPLE 5
  • On utilise une cellule d'électrolyse ayant les caractéristiques et dans les conditions données ci-dessous :
        - membrane cationique : NAFION 423,
        - anode : titane déployé revêtu de platine-iridium,
        - cathode : plomb,
        - densité de courant : 20 A/dm2.
  • Par ailleurss, on y fait circuler les milieux ci-dessous :
        - anolyte H₂SO₄ 0,5 N
        - catholyte à l'entrée : Ti⁴⁺ 120 g/l, Fe²⁺ 45 g/l, Ti³⁺ 1 g/l H₂SO₄ 270 g/l.
  • Pour une vitesse de circulation du catholyte de 10 cm/s et de l'anolyte de 0,5 cm/s avec une température de la cellule de 65°C, on obtient à la sortie du compartiment cathodique un catholyte de composition suivante :
        Ti⁴ 104 g/l, Fe²⁺ 48 g/l, Ti³⁺ 8 g/l.
  • Le rendement faradique cathodique est de 80 %.
  • EXEMPLE 6
  • On utilise une cellule d'électrolyse ayant les caractéristiques et dans les conditions données ci-dessous :
        - membrane cationique : NAFION 423,
        - anode : titane déployé revêtu de platine-iridium,
        - cathode : titane déployé + plomb,
        - densité de courant : 30 A/dm2.
  • Par ailleurs, on y fait circuler les milieux ci-dessous :
        - anolyte H₂SO₄ 0,5 N
        - catholyte à l'entrée : Ti⁴⁺ 120 g/l, Fe²⁺ 45 g/l, Ti³⁺ 1 g/l H₂SO₄ 270 g/l.
  • Pour une vitesse de circulation du catholyte de 10 cm/s et de l'anolyte de 0,5 cm/s avec une température de la cellule de 65°C, on obtient à la sortie du compartiment cathodique un catholyte de composition suivante :
        Ti⁴⁺ 120 g/l, Fe²⁺ 48 g/l, Ti³⁺ 9 g/l.
  • Le rendement faradique est de 90 %.

Claims (13)

1. Cellule d'électrolyse pour la réduction d'une solution comprenant des ions titane et fer, du type comportant un compartiment anodique, un compartiment cathodique et une membrane échangeuse d'ions séparant les deux compartiments, caractérisé en ce que la membrane est une membrane cationique.
2. Cellule selon la revendication 1, caractérisé en ce que le compartiment cathodique comprend une cathode à base de cuivre.
3. Cellule selon la revendication 1, caractérisé en ce que le compartiment cathodique comprend une cathode à base d'au moins un matériau choisi dans le groupe comprenant le plomb, le titane, les aciers spéciaux.
4. Cellule selon la revendication 3 caractérisée en ce que la cathode est en plomb déposé sur un substrat notamment plomb sur titane ou plomb sur cuivre soit en titane revêtu d'au moins un métal précieux.
5. Procédé pour la réduction électrolytique d'une solution comprenant des ions titane et fer, caractérisé en ce qu'on fait circuler ladite solution dans le compartiment cathodique d'une cellule selon l'une des revendications 1 à 4.
6. Procédé selon la revendication 5, caractérisé en ce que la solution précitée provient de l'attaque sulfurique d'un mineral titanifère du type ilménite notamment.
7. Procédé selon la revendication 5 ou 6, caractérisé en ce qu'on fait circuler dans le compartiment anodique de la cellule précitée de l'eau acidifiée ou une solution de sels ferreux.
8. Procédé selon la revendication 6 ou 7 caractérisé en ce qu'on fait circuler dans le compartiment cathodique la solution précitée immédiatement avant l'étape d'hydrolyse dans un procédé de préparation de dioxyde de titane.
9. Procédé selon l'une des revendications 5 à 8 caractérisé en ce que la solution circulant dans le compartiment cathodique y est en partie recyclée à la sortie de celui-ci.
10. Procédé selon l'une des revendications 5 à 9, caractérisé en ce qu'on fait circuler la solution dans les compartiments cathodiques de deux cellules montées en parallèle.
11. Procédé selon l'une des revendications 5 à 10, caractérisé en ce qu'on sépare la solution précitée en une première et une deuxième partie, on traite la seconde partie par passage dans le compartiment cathodique de la cellule précitée, on stocke la solution ainsi traitée dans une réserve et on réunit la solution issue de cette réserve à la première partie précitée.
12. Procédé selon la revendication 11 caractérisé en ce qu'on recycle au moins une partie de la solution issue de la réserve précitée dans le compartiment cathodique de la cellule.
13. Procédé selon la revendication 11 ou 12 caractérisé en ce qu'on fait circuler la seconde partie précitée dans les compartiments cathodiques de deux cellules montées en parallèle.
EP88401168A 1987-05-15 1988-05-13 Procédé pour la réduction d'une solution comprenant du titane et du fer Expired - Lifetime EP0291416B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8706818 1987-05-15
FR8706818A FR2615204B1 (fr) 1987-05-15 1987-05-15 Cellule d'electrolyse et procede pour la reduction d'une solution comprenant du titane et du fer

Publications (2)

Publication Number Publication Date
EP0291416A1 true EP0291416A1 (fr) 1988-11-17
EP0291416B1 EP0291416B1 (fr) 1991-11-21

Family

ID=9351118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88401168A Expired - Lifetime EP0291416B1 (fr) 1987-05-15 1988-05-13 Procédé pour la réduction d'une solution comprenant du titane et du fer

Country Status (9)

Country Link
US (1) US4919772A (fr)
EP (1) EP0291416B1 (fr)
JP (1) JPS6456890A (fr)
CA (1) CA1328421C (fr)
DE (1) DE3866279D1 (fr)
ES (1) ES2039659T3 (fr)
FI (1) FI86561C (fr)
FR (1) FR2615204B1 (fr)
SU (1) SU1720495A3 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129308A1 (de) * 1991-09-03 1993-03-04 Metallgesellschaft Ag Verfahren zur herstellung einer titan(iii)-sulfatloesung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227032A (en) * 1991-09-24 1993-07-13 The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing oxygen from lunar materials
US9856569B2 (en) 2012-07-03 2018-01-02 Field Upgrading Limited Apparatus and method of producing metal in a nasicon electrolytic cell
US9577257B2 (en) * 2013-09-18 2017-02-21 Guiqing Huang Methods of making low cost electrode active materials for secondary batteries from ilmenite
CN106048641A (zh) * 2016-07-06 2016-10-26 扬州大学 一种成对电化学制备Fe3+和H2的工艺方法
CN105925999B (zh) * 2016-07-06 2018-06-15 扬州大学 一种Fe2+阳极氧化及阴极还原并联产H2的工艺方法
CN113697854A (zh) * 2021-09-16 2021-11-26 山东晟融泰新材料科技有限责任公司 硫酸法钛白电解三价钛工艺
CN113818037B (zh) * 2021-09-16 2024-07-16 山东晟融泰新材料科技有限责任公司 一种硫酸法钛白电解三价钛的电解装置
CN113929132A (zh) * 2021-09-24 2022-01-14 东华工程科技股份有限公司 一种硫酸法钛白粉偏钛酸漂白方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2033926A (en) * 1978-10-13 1980-05-29 Oronzio De Nora Impianti Electrolytic treatment of sulphuric acid ilmenite leach solutions
SU1217927A1 (ru) * 1984-06-22 1986-03-15 Химико-металлургический институт АН КазССР Способ электролитического восстановлени трехвалентного катиона железа

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1017744A (en) * 1972-06-21 1977-09-20 E.R. Squibb And Sons Perhydrofluorenetetrol and perhydrophenanthrenetetrol derivatives
CH610935A5 (en) * 1976-09-03 1979-05-15 Battelle Memorial Institute Electrochemical reactor intended to be incorporated into a plant for the production of titanium dioxide from ilmenite by the sulphate process
JPS5346484A (en) * 1976-10-12 1978-04-26 Tokuyama Soda Co Ltd Electrolytic cell
FR2418773A1 (fr) * 1978-03-02 1979-09-28 Thann & Mulhouse Procede d'utilisation de sulfate ferreux dans la fabrication de bioxyde de titane pigmentaire par la voix sulfurique
US4175014A (en) * 1978-03-06 1979-11-20 Amax Inc. Cathodic dissolution of cobaltic hydroxide
SU996523A1 (ru) * 1981-05-21 1983-02-15 Усть-Каменогорский Строительно-Дорожный Институт Нерастворимый анод дл получени электролизом из водных электролитов металлов
JPS591688A (ja) * 1982-06-28 1984-01-07 Asahi Glass Co Ltd 鉄塩の還元方法
JPS6013087A (ja) * 1983-07-05 1985-01-23 Kawasaki Kasei Chem Ltd 硫酸第一セリウムの電解法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2033926A (en) * 1978-10-13 1980-05-29 Oronzio De Nora Impianti Electrolytic treatment of sulphuric acid ilmenite leach solutions
SU1217927A1 (ru) * 1984-06-22 1986-03-15 Химико-металлургический институт АН КазССР Способ электролитического восстановлени трехвалентного катиона железа

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 100, no. 24, juin 1984, page 505, résumé no. 199888g, Columbus, Ohio, US; & JP-A-59 01 688 (ASAHI GLASS CO., LTD) 07-01-1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129308A1 (de) * 1991-09-03 1993-03-04 Metallgesellschaft Ag Verfahren zur herstellung einer titan(iii)-sulfatloesung
EP0530872A1 (fr) * 1991-09-03 1993-03-10 METALLGESELLSCHAFT Aktiengesellschaft Procédé de production d'une solution de sulfate de titane(III)

Also Published As

Publication number Publication date
FI882264L (fi) 1988-11-16
JPH0220712B2 (fr) 1990-05-10
FR2615204A1 (fr) 1988-11-18
FI882264A0 (fi) 1988-05-13
ES2039659T3 (es) 1993-10-01
EP0291416B1 (fr) 1991-11-21
FR2615204B1 (fr) 1991-06-14
FI86561C (fi) 1992-09-10
CA1328421C (fr) 1994-04-12
US4919772A (en) 1990-04-24
FI86561B (fi) 1992-05-29
JPS6456890A (en) 1989-03-03
SU1720495A3 (ru) 1992-03-15
DE3866279D1 (de) 1992-01-02

Similar Documents

Publication Publication Date Title
JP4955657B2 (ja) ろ過膜を備えたアルカリ電気めっき浴
EP0178958B1 (fr) Procédé d'oxydation électrolytique et ensemble d'électrolyse pour sa mise en oeuvre
JPS60106583A (ja) 沈殿可能な材料と酸及び/又は塩基を含む水性流の処理方法
FR2587370A1 (fr) Procede pour produire une mince tole d'acier etamee et nickelee pour boites de conserves soudees
EP0291416B1 (fr) Procédé pour la réduction d'une solution comprenant du titane et du fer
EP0099793B1 (fr) Bain d'électrolyse à base de chrome trivalent
CA1175777A (fr) Methode d'epuration par electrodyalise
FR2476077A1 (fr) Nouveau procede de preparation de la methionine
US4460438A (en) Process for the electrolytic deposit of chromium
JP2009024186A (ja) クロムめっき液の再生方法及び装置
EP0014111A1 (fr) Procédé de fabrication de composés oxhydrylés de nickel et composés ainsi obtenus
CN111056658A (zh) 一种电泳废水的回用方法
FR2479856A1 (fr) Installation de traitement de surface par depot metallique et procede de regeneration des bains de depot metallique par voie electrolytique
RU2481425C2 (ru) Способ очистки электролитов хромирования
FR2544750A1 (fr) Procede de traitement d'une solution de purge notamment destinee a un procede d'extraction de zinc par voie electrolytique
RU2750654C1 (ru) Способ регенерации нитратно-аммонийного раствора снятия кадмиевых покрытий
RU2127334C1 (ru) Способ полирования меди и сплавов на ее основе
RU2039851C1 (ru) Способ удаления пленки нитрида титана с поверхности изделий из нержавеющей стали
RU2083268C1 (ru) Способ очистки электролита хромирования
US3629078A (en) Method for surface treatment of zinc-plated sheet steel
JP2004346407A (ja) アルミニウム合金の表面処理方法およびめっき方法ならびにアルミニウム合金の表面処理設備およびめっき設備
SU908974A1 (ru) Способ электрохимического сн ти изотопнообогащенной меди
RU2149227C1 (ru) Способ обработки медной и сверхпроводящей проволоки
WO1997027349A1 (fr) Procede de regeneration et appareil d'electrolyse pour la purification electrochimique des bains de chrome hexavalent
JP2707884B2 (ja) 複層電解クロメート処理鋼板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES GB IT

17P Request for examination filed

Effective date: 19881027

17Q First examination report despatched

Effective date: 19900507

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3866279

Country of ref document: DE

Date of ref document: 19920102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039659

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980505

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980615

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990517

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

BERE Be: lapsed

Owner name: S.A. MILLENNIUM INORGANIC CHEMICALS

Effective date: 19990531

BECN Be: change of holder's name

Effective date: 19990112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000516

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050513