[go: up one dir, main page]

EP0271395A1 - Curved-bar probe for an echograph - Google Patents

Curved-bar probe for an echograph Download PDF

Info

Publication number
EP0271395A1
EP0271395A1 EP87402635A EP87402635A EP0271395A1 EP 0271395 A1 EP0271395 A1 EP 0271395A1 EP 87402635 A EP87402635 A EP 87402635A EP 87402635 A EP87402635 A EP 87402635A EP 0271395 A1 EP0271395 A1 EP 0271395A1
Authority
EP
European Patent Office
Prior art keywords
bar
support
probe according
curved
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87402635A
Other languages
German (de)
French (fr)
Inventor
Jean-François Gelly
René Reynier
Patrick Dubut
Charles Maerfeld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
Thomson CGR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CGR filed Critical Thomson CGR
Publication of EP0271395A1 publication Critical patent/EP0271395A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/32Sound-focusing or directing, e.g. scanning characterised by the shape of the source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a curved bar probe for an ultrasound system. It finds more particularly its application in the medical field where ultrasound scanners are used for diagnostic purposes to reveal images of internal tissue structures of human bodies studied. It can nevertheless find its application in all areas of use of ultrasound where curved bars are used.
  • An ultrasound system schematically comprises electrical generator means for producing an electrical signal vibrating at an acoustic frequency.
  • This signal is applied to an element or rather to a strip of piezoelectric transducer elements where it is transformed into a mechanical excitation.
  • the probe emits this mechanical excitation in a medium against which it is placed. Outside the transmission periods, the probe can be used to receive acoustic signals backscattered by the medium and to transform these acoustic signals into electrical signals that can be introduced into reception devices. From the electrical signal thus received, useful information can be extracted, in particular information likely to allow the creation of an image. The appearance of the image depends on how you explore the environment to be examined.
  • the scanning of the medium studied is a scanning by translation.
  • the scanning follows the normal to the tangent to the curve formed by the arrangement of the elements: it is sectoral if this curve is an arc of a circle.
  • curved bar probes are traditionally carried out in the following manner.
  • a support of relatively small thickness, for example 2 to 3 mm, made of a flexible material is used.
  • a bar of a piezoelectric crystal is used which is fixed to this support.
  • a partition is made in this bar so as to divide it into a plurality of piezoelectric elements.
  • the partition is made in such a way that between each element the support is not cut.
  • Each element remains attached to the support.
  • the support is flexible, it suffices to fix it on a suitable curved base to obtain a desired curved bar.
  • European Patent Application No. 84 308 373.4 filed Dec. 3, 1984 such an embodiment is described.
  • the object of the invention is to remedy the drawbacks mentioned by proposing for the support a material which is rigid at room temperature, but which has the particularity of being heat-deformable. This means that if this material is heated, it can be deformed. When it cools, it keeps the shape acquired last: that which was given to it when it was hot. As this heat-deformable material retains the shape that it has been given, it is possible to use it as a receptacle for pouring therein a material to polymerize which will serve as a base. The polymerization preferably takes place at room temperature.
  • the material to be polymerized is preferably the same material as that which serves to make the support. As a result, there is no longer a surface creating parasitic reflections from the rear wave.
  • rigid heat-deformable materials also have the advantage of being able to be easily adapted to acoustic impedance.
  • the present invention relates to a curved strip probe for an ultrasound system, of the type comprising piezoelectric elements fixed on a deformable support, characterized in that the support is made of a rigid heat-deformable material at ambient temperature.
  • FIG. 1 represents a bar of piezoelectric transducer elements mounted on a support according to the invention.
  • This bar 1 essentially comprises a support 2, piezoelectric elements such as 3, these piezoelectric elements being held between the support 2 and acoustic transition blades 4. Between the support 2 and each of the elements 3 there is an electrode 5, and between each of the elements 3 and each of the blades 4 there is an electrode 6.
  • These electrodes are intended to receive an electrical signal at the time of an excitation. They then apply in element 3 a corresponding electric field. Under the effect of this field, the element 3 begins to vibrate and transmits, by the blade 4, the vibraton to a medium to be studied and which is in contact with it (not shown).
  • the electrical continuity of the electrodes 5 and 6 is taken up by blocks such as 7 and 8 placed on either side of each element.
  • Each block of insulating material is covered with two electrically independent metallizations, respectively 9 and 10, in each case in contact with the electrodes 5 and 6. These metallizations allow a simpler connection to the electrodes 5 and 6.
  • the bar 1 is manufactured in the rectilinear state as in the cited state of the art.
  • An elongated support 2 is used to construct it, a bar of material piezoelectric, and an elongated blade: the support and the blade are glued to the bar.
  • strips on both sides of the bar are already fitted with the metallization partition.
  • cuts such as 11 and 12 are made, in general with a saw, to divide the piezoelectric bar into a series of independent piezoelectric elements.
  • the support is only partially started by these cutouts: it ensures the cohesion of all the elements. It is known to avoid risks of crosstalk between adjacent piezoelectric elements to divide each piezoelectric element (separated from each other by deep cutouts 12), by shallow cutouts 11 which cut them in the middle.
  • the essential characteristic of the invention resides in the nature of the material which constitutes the support 2.
  • the bar remains straight and rigid: the material of which it is made is hard. This material, however, has the particularity of softening when heated and taking the shape that is imposed on it at that time.
  • An appropriate curved shape 13 is therefore used, and the shape 13 and the strip 1 are placed in an oven which is brought to an adequate temperature. Under the effect of its own weight, or possibly by exerting an elastic force on its ends 14 and 15, it is possible to cause the bar to bend according to the shape of the shape 13. After a time judged experimentally long enough, the oven is allowed to cool.
  • the bar then has the appearance shown schematically in Figure 2: it is now again rigid but curved.
  • thermoformable curved support is constituted by the acoustic transition blade itself.
  • sawing is carried out from base 2 to a certain height in the blade. In either case, it is subsequently possible, by making saw cuts of appropriate width, to form convex or concave curved bars.
  • the material which can be used for the support 2 and which has the thermoforming properties thus demonstrated is preferably a polymerizable material which has the appearance of a foam before its polymerization.
  • This foam can be syntactic, that is to say comprise a liquid with gas microbubbles, or be non syntactic, that is to say appear in the form of beads which agglomerate with each other during the polymerization.
  • This foam is preferably an epoxy resin or else a polyurethane. It is preferably a cold polymerizable foam.
  • microbeads in particular plastic microbeads.
  • the plastic microbeads are the phenolic microbeads.
  • thermoforming In practice, materials are chosen whose thermoforming is obtained at a temperature of the order of, or greater than 90 ° - 100 °.
  • piezoelectric probes heat up during their use. They are then brought to temperatures which could, if we were not careful, cause fluence unwanted deformations of the bar. For this reason, the thermoforming temperature is chosen at the value indicated. At this temperature, in fact, the probes cannot be used on human bodies, and there is therefore no risk that this temperature will be reached during an experiment.
  • the support 2 is thin. In the invention it has a thickness substantially equal to the elastic support of the cited state of the art. To then reinforce the rigidity of this support, it is secured to a base 16. Then the thermoformed bar is placed at the bottom of a mold, with its concave part upwards, and the same material is poured from above as that who made up the support (but not yet polymerized). Then the base material is polymerized: the mold is shaped so as to give this base, moreover, a form useful for handling the probe. The base is made as soon as possible after the thermal deformation of the bar. For example, this operation is done the next day.
  • thermo-deformable materials As the material which constitutes the base is the same as that which constitutes the support, if these operations are well executed, at the end, it is almost impossible to discern the part, in the support-base, of what belongs to the support or at the base. There is therefore no longer any acoustic reflection surface under the support. Reflections can therefore no longer occur.
  • the advantage of having chosen a cold polymerizable material is easily understood. During the subsequent production of the base, it is not necessary to polymerize this base material to heat the entire strip. This would risk destroying the deformation we gave it previously.
  • the choice of a hot-polymerizable material is however possible: it suffices to pour the base before the end of the thermo-deformation operation, that is to say before cooling.
  • the advantage of thermo-deformable materials is also to be able to accept a wide variety of loading materials. This gives them a great ability to correctly adjust the acoustic impedance.
  • connection of the piezoelectric elements of the strip it is possible to deposit on the apparent lateral metallizations blocks of each element of micro-drops 17 of Indium. Then, on each side of the bar, a printed circuit 18 provided with connection tracks such as 21 and 22 is approached. This circuit bears, opposite the connections to be metallized 19, also provided with micro-drops 20 of Indium. The printed circuits are then placed on the blanks of the strip and, by a reflow operation in an oven, it is possible to obtain the connection of all the elements to the tracks. These tracks conduct the electrical signals, on transmission and on reception, from the generating members and to the receiving members.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Dans l'invention, une sonde à barrette (1) courbe pour échographe est réalisée en utilisant un support mince (2) sur lequel est placé un barreau en cristal piézo-électrique. Le barreau est divisé en une pluralité d'éléments (3) transducteurs piézo-électriques. Le support mince présente la particularité d'être rigide à température ambiante mais d'être thermo-déformable. En lui faisant subir un cycle d'échauffement-refroidissement au cours duquel on lui donne une forme courbe désirée, on obtien à l'issue une barrette rigide de la forme courbe imposée. On peut alors éviter d'avoir à coller ce support sur une base (16). Ceci aurait pour effet de constituer une surface de réflexion arrière aux ondes acoustiques et de créer des parasites néfastes au signal acoustique utile.In the invention, a curved bar probe (1) for an ultrasound scanner is produced using a thin support (2) on which is placed a piezoelectric crystal bar. The bar is divided into a plurality of piezoelectric transducer elements (3). The thin support has the particularity of being rigid at room temperature but of being heat-deformable. By subjecting it to a heating-cooling cycle during which it is given a desired curved shape, one obtains at the end a rigid bar of the imposed curved shape. We can then avoid having to stick this support on a base (16). This would have the effect of constituting a rear reflection surface to the acoustic waves and creating parasites harmful to the useful acoustic signal.

Description

La présente invention a pour objet une sonde à barrette courbe pour échographe. Elle trouve plus particulièrement son application dans le domaine médical où des échographes sont utilisés à des fins de diagnostic pour révéler des images de structures internes tissu­laires de corps humains étudiés. Elle peut trouver néanmoins son application dans tous les domains d'utilisation des ultrasons où on emploie des barrettes courbes.The present invention relates to a curved bar probe for an ultrasound system. It finds more particularly its application in the medical field where ultrasound scanners are used for diagnostic purposes to reveal images of internal tissue structures of human bodies studied. It can nevertheless find its application in all areas of use of ultrasound where curved bars are used.

Un échographe comporte schématiquement des moyens géné­rateurs électriques pour produire un signal électrique vibrant à une fréquence acoustique. Ce signal est appliqué à un élément ou plutôt à une barrette d'éléments piézo-éléctriques transducteurs où il est transformé en une excitation mécanique. La sonde émet cette excitation mécanique dans un milieu contre lequel elle est placée. En dehors des périodes d'émission la sonde peut être utilisée pour recevoir des signaux acoustiques rétrodiffusés par le milieu et pour transformer ces signaux acoustiques en signaux élecriques que l'on peut introduire dans des organes de réception. Du signal électrique ainsi reçu on peut extraire des informations utiles, notamment des informations susceptibles de permettre la création d'une image. L'allure de l'image dépend de la manière dont on explore le milieu à examiner.An ultrasound system schematically comprises electrical generator means for producing an electrical signal vibrating at an acoustic frequency. This signal is applied to an element or rather to a strip of piezoelectric transducer elements where it is transformed into a mechanical excitation. The probe emits this mechanical excitation in a medium against which it is placed. Outside the transmission periods, the probe can be used to receive acoustic signals backscattered by the medium and to transform these acoustic signals into electrical signals that can be introduced into reception devices. From the electrical signal thus received, useful information can be extracted, in particular information likely to allow the creation of an image. The appearance of the image depends on how you explore the environment to be examined.

Parmi les diverses solutions possibles, l'exploration par ba­layage sectoriel est actuellement une des plus performantes. Pour l'obtenir il suffit d'exciter un groupe d'éléments adjacents dans la barrette, avec des retards prédéterminés les uns par rapport aux autres de manière à focaliser l'onde acoustique dans une direction à l'émission (la même organisation des retards est prévue en réception pour privilégier un signal en provenance d'une direction donnée). En modifiant la composition du grope des éléments, en interrompant par exemple l'alimentation d'un élément situé d'un côté du groupe et en mettant en service un autre élément situé de l'autre côté, et en réorganisant les retards pour le nouveau groupe ainsi constitué, on obtient une nouvelle direction de focalisation des signaux acous­tiques. Si tous les éléments piézo-électriques sont alignés les uns avec les autres le long d'une droite, le balayage du milieu étudié est un balayage par translation. Par contre si la barrette d'éléments est courbe le balayage suit la normale à la tangente à la courbe formée par l'arrangement des éléments : il est sectoriel si cette courbe est un arc de cercle.Among the various possible solutions, exploration by sectoral scanning is currently one of the most effective. To obtain it, it suffices to excite a group of adjacent elements in the bar, with predetermined delays relative to each other so as to focus the acoustic wave in a direction on emission (the same organization of delays is planned for reception to favor a signal from a given direction). By modifying the composition of the group of elements, by interrupting for example the supply of an element located on one side of the group and by putting into service another element located on the other side, and by reorganizing the delays for the new group thus formed, a new direction of focusing of the acoustic signals is obtained. If all the piezoelectric elements are aligned with each other along a straight line, the scanning of the medium studied is a scanning by translation. On the other hand, if the array of elements is curved, the scanning follows the normal to the tangent to the curve formed by the arrangement of the elements: it is sectoral if this curve is an arc of a circle.

La réalisation des sondes à barrette courbe est tradition­nellement effectuée de la manière suivante. On utilise un support d'épaisseur relativement faible, par exemple 2 à 3 mm, réalisé en un matériau souple. On utilise ensuite un barreau d'un cristal piézo-­électrique que l'on fixe à ce support. Par des opérations de découpe en particulier avec une scie, on effectue une partition dans ce barreau de manière à le diviser en une pluralité d'éléments piézo-­électriques. La partition est réalisée de telle manière qu'entre chaque élément le support n'est pas coupé. Chaque élément reste fixé au support. Comme le support est souple il suffit alors de le fixer sur une base de forme courbe appropriée pour obtenir une barrette courbe recherchée. Dans une demande de brevet Européen no 84 308 373.4 déposée le 03 DECEMBRE 1984, une telle réali­sation est décrite.The production of curved bar probes is traditionally carried out in the following manner. A support of relatively small thickness, for example 2 to 3 mm, made of a flexible material is used. Then a bar of a piezoelectric crystal is used which is fixed to this support. By cutting operations in particular with a saw, a partition is made in this bar so as to divide it into a plurality of piezoelectric elements. The partition is made in such a way that between each element the support is not cut. Each element remains attached to the support. As the support is flexible, it suffices to fix it on a suitable curved base to obtain a desired curved bar. In European Patent Application No. 84 308 373.4 filed Dec. 3, 1984, such an embodiment is described.

Cette manière de faire présente cependant un inconvénient. En effet du fait de la nature élastique du support, celui-ci ne peut être maintenu courbé qu'en exerçant un effort permanent de main­tien. Comme l'indique le document cité, cet effort peut être obtenu par collage du support sur la base. La face des éléments piézo-­électriques en regard de l'endroit où se propage les ondes acous­tiques utiles est dite face avant, la face opposée à la face avant est dite face arrière. Lors de l'émission, l'onde acoustique émise se propage à priori dans les deux sens : vers l'avant et vers l'arrière. Seule l'onde émise vers l'avant est utile. On s'arrange en consé­quence pour éviter les perturbations dues à l'onde arrière. En particulier on agit sur l'impédance acoustique du support et de la base pour empêcher à l'onde arrière d'être réfléchie vers la barrette. Or ceci ne peut qu'imparfaitement être obtenu à partir du moment où le support comporte une surface de collage sur la base. Cette surface de collage réagit d'autant plus fort que le support est mince pour pouvoir être déformé et donc que cette surface se trouve près de la barrette piézo-électrique proprement dite.However, this way of doing things has a drawback. In fact, due to the elastic nature of the support, it can only be kept curved by exerting a permanent support force. As indicated in the cited document, this effort can be obtained by bonding the support to the base. The face of the piezoelectric elements facing the place where the useful acoustic waves propagate is called the front face, the face opposite to the front face is called the rear face. During the emission, the acoustic wave emitted propagates a priori in both directions: towards the front and towards the rear. Only the wave transmitted forward is useful. We manage accordingly to avoid disturbances due to the rear wave. In particular, the acoustic impedance of the support and of the base to prevent the rear wave from being reflected towards the bar. However, this can only be imperfectly obtained from the moment when the support has a bonding surface on the base. This bonding surface reacts all the more strongly the thinner the support in order to be able to be deformed and therefore that this surface is located near the piezoelectric strip proper.

Malgré les changements de composition de la colle qui sert à solidariser le support sur sa base, comme l'indique le document cité, on n'obtient pas le meilleur résultat. En outre les opérations de collage ne sont jamais parfaites et la solidité de l'ensemble peut en être atteinte. Enfin la nature même des matériaux souples utili­sables dans ce but n'est pas propice au choix, pour le matériau du support, d'une bonne impédance acoustique. Il est connu en effet de jouer sur l'impédance acoustique des matériaux en effectuant des mélanges ou en y incluant des microbilles par exemple en plastique ou en verre. Et les matériaux synthétiques souples se prêtent mal à cette opération.Despite the changes in composition of the glue used to secure the support to its base, as indicated in the cited document, the best result is not obtained. In addition, the bonding operations are never perfect and the solidity of the assembly can be achieved. Finally, the very nature of the flexible materials which can be used for this purpose is not conducive to the choice, for the support material, of a good acoustic impedance. It is known in fact to play on the acoustic impedance of materials by making mixtures or by including microbeads in them, for example plastic or glass. And flexible synthetic materials do not lend themselves well to this operation.

L'invention a pour objet de remédier aux inconvénients cités en proposant pour le support un matériau qui est rigide à tempé­rature ambiante, mais qui présente la particularité d'être thermo-­déformable. Ceci signifie que si ce matériau est chauffé, il peut être déformé. Lors de son refroidissement il garde la forme acquise en dernier : celle qu'on lui a donné alors qu'il était chaud. Comme ce matériau thermo-deformable garde la forme qu'on lui a donné il est possible de l'utiliser comme réceptacle pour y couler un matériau à polymériser qui servira de base. La polymérisation a lieu de pré­férence à température ambiante. Le matériau a polymériser est de préférence le même matériau que celui qui sert à faire le support. Il en résulte qu'il n'existe plus de surface créant des réflexions parasites de l'onde arrière. Enfin les matériaux rigides thermo-­déformables comportent en outre l'avantage de pouvoir être faci­lement adaptés en impédance acoustique.The object of the invention is to remedy the drawbacks mentioned by proposing for the support a material which is rigid at room temperature, but which has the particularity of being heat-deformable. This means that if this material is heated, it can be deformed. When it cools, it keeps the shape acquired last: that which was given to it when it was hot. As this heat-deformable material retains the shape that it has been given, it is possible to use it as a receptacle for pouring therein a material to polymerize which will serve as a base. The polymerization preferably takes place at room temperature. The material to be polymerized is preferably the same material as that which serves to make the support. As a result, there is no longer a surface creating parasitic reflections from the rear wave. Finally, rigid heat-deformable materials also have the advantage of being able to be easily adapted to acoustic impedance.

La présente invention concerne une sonde à barrette courbe pour échographe, du type comportant des éléments piézo-électriques fixés sur un support déformable caractérisée en ce que le support est en un matériau thermo-déformable rigide à tempé­rature ambiante.The present invention relates to a curved strip probe for an ultrasound system, of the type comprising piezoelectric elements fixed on a deformable support, characterized in that the support is made of a rigid heat-deformable material at ambient temperature.

L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Elles ne sont données qu'à titre indicatif et nullement limitatif de l'invention. Sur les figures les mêmes repères désignent les mêmes éléments. Les figures montrent:

  • - figure 1 une barrette d'éléments piézo-électriques montés sur un support conforme à l'invention;
  • - figure 2 l'allure de la barrette précédente après déformation con­sécutive à un cycle d'échauffement suivi d'un refroidissement.
The invention will be better understood on reading the description which follows and on examining the figures which accompany it. They are given only as an indication and in no way limit the invention. In the figures, the same references designate the same elements. The figures show:
  • - Figure 1 a bar of piezoelectric elements mounted on a support according to the invention;
  • - Figure 2 the shape of the previous bar after deformation following a heating cycle followed by cooling.

La figure 1 représente une barrette d'éléments transducteurs piézo-électriques montés sur un support conforme à l'invention. Cette barrette 1 comporte essentiellement un support 2, des élé­ments piézo-électriques tels que 3, ces éléments piézo-électriques étant maintenus entre le support 2 et des lames de transition acoustique 4. Entre le support 2 et chacun des éléments 3 il existe une électrode 5, et entre chacun des éléments 3 et chacune des lames 4 il existe une électrode 6. Ces électrodes sont destinées à recevoir un signal électrique au moment d'une excitation. Elles appliquant alors dans l'élément 3 un champ électrique corres­pondant. Sous l'effet de ce champ, l'élément 3 se met à vibrer et transmet, par la lame 4, la vibraton à un milieu à étudier et qui est à son contact (non représenté). Dans une réalisation préférée la continuité électrique des électrodes 5 et 6 est reprise par des blocs tels que 7 et 8 placés de part et d'autre de chaque élément. Chaque bloc en un matériau isolant est recouvert de deux métallisations électriquement indépendantes, repectivement 9 et 10, dans chaque cas au contact des électrodes 5 et 6. Ces métallisations permettent une liaison plus simple aux électrodes 5 et 6.FIG. 1 represents a bar of piezoelectric transducer elements mounted on a support according to the invention. This bar 1 essentially comprises a support 2, piezoelectric elements such as 3, these piezoelectric elements being held between the support 2 and acoustic transition blades 4. Between the support 2 and each of the elements 3 there is an electrode 5, and between each of the elements 3 and each of the blades 4 there is an electrode 6. These electrodes are intended to receive an electrical signal at the time of an excitation. They then apply in element 3 a corresponding electric field. Under the effect of this field, the element 3 begins to vibrate and transmits, by the blade 4, the vibraton to a medium to be studied and which is in contact with it (not shown). In a preferred embodiment, the electrical continuity of the electrodes 5 and 6 is taken up by blocks such as 7 and 8 placed on either side of each element. Each block of insulating material is covered with two electrically independent metallizations, respectively 9 and 10, in each case in contact with the electrodes 5 and 6. These metallizations allow a simpler connection to the electrodes 5 and 6.

Hormis la présence des blocs 7 et 8, la barrette 1 est fabriquée à l'état rectiligne comme dans l'état de la technique cité. On utilise pour la construire un support alongé 2, un barreau en matériau piézo-électrique, et une lame alongée : le support et la lame sont collés au barreau. Pour le perfectionnement de connexion évoqué, lors du montage, on insère de part et d'autre du barreau des réglettes comportant déjà la partition des métallisations. Quand cet ensemble est constitué, on exécute des découpes telles que 11 et 12, en général à la scie, pour diviser le barreau piézo-électrique en une série d'éléments piézo-électriques independants. Le support n'est entamé qu'en partie par ces découpes : il assure la cohésion de l'ensemble des éléments. Il est connu pour éviter des risques de diaphonie entre des éléments piézo-électriques adjacents de diviser chaque élément piézo-électrique (séparés les uns des autres par des découpes profondes 12), par des découpes moins profondes 11 qui les coupent en leur milieu.Except for the presence of blocks 7 and 8, the bar 1 is manufactured in the rectilinear state as in the cited state of the art. An elongated support 2 is used to construct it, a bar of material piezoelectric, and an elongated blade: the support and the blade are glued to the bar. For the connection improvement mentioned, during assembly, strips on both sides of the bar are already fitted with the metallization partition. When this assembly is formed, cuts such as 11 and 12 are made, in general with a saw, to divide the piezoelectric bar into a series of independent piezoelectric elements. The support is only partially started by these cutouts: it ensures the cohesion of all the elements. It is known to avoid risks of crosstalk between adjacent piezoelectric elements to divide each piezoelectric element (separated from each other by deep cutouts 12), by shallow cutouts 11 which cut them in the middle.

La caractéristique essentielle de l'invention réside dans la nature du matériau qui constitue le support 2. Lorsque l'opération de découpe est terminée, même les découpes 12 les plus profondes ne rompent pas sa rigidité. La barrette reste rectiligne et rigide : le matériau qui la constitue est dur. Ce matériau présent cependant la particularité de s'ammollir quand on le chauffe et de prendre la forme qu'on lui impose à ce moment. On utilise donc une forme courbe appropriée 13, et on place la forme 13 et la barrette 1 dans une étuve que l'on porte à une température adéquate. Sous l'effet de son propre poids, ou éventuellement en exerçant un effort élastique sur ses extrémités 14 et 15, on peut amener la barrette à se courber selon la forme de la forme 13. Au bout d'un temps jugé expéri­mentalement suffisamment long, on laisse l'étuve se refroidir. La barrette a alors l'apparence représentée schématiquement sur la figure 2 : elle est maintenant de nouveau rigide mais courbe.The essential characteristic of the invention resides in the nature of the material which constitutes the support 2. When the cutting operation is finished, even the deepest cuts 12 do not break its rigidity. The bar remains straight and rigid: the material of which it is made is hard. This material, however, has the particularity of softening when heated and taking the shape that is imposed on it at that time. An appropriate curved shape 13 is therefore used, and the shape 13 and the strip 1 are placed in an oven which is brought to an adequate temperature. Under the effect of its own weight, or possibly by exerting an elastic force on its ends 14 and 15, it is possible to cause the bar to bend according to the shape of the shape 13. After a time judged experimentally long enough, the oven is allowed to cool. The bar then has the appearance shown schematically in Figure 2: it is now again rigid but curved.

Dans une variante le support courbe thermo-formable est constitué par la lame de transition acoustique elle-même. Lors de la partition de la barrette, le sciage est exécuté à partir de l'embase 2 jusqu'à une certaine hauteur dans la lame. Dans l'un et l'autre cas il est ultérieurement possible, en effectuant des traits de scie de largeur appropriée, de constituer des barrettes courbes convexes ou concaves.In a variant, the thermoformable curved support is constituted by the acoustic transition blade itself. When dividing the bar, sawing is carried out from base 2 to a certain height in the blade. In either case, it is subsequently possible, by making saw cuts of appropriate width, to form convex or concave curved bars.

Le matériau utilisable pour le support 2 et qui a les propriétés de thermo-formage ainsi mises en évidence est de préférence une matière polymérisable qui a l'allure d'une mousse avant sa poly­mérisation. Cette mousse peut être syntactique, c'est à dire com­porter un liquide avec des microbulles d'un gaz, ou être non syntactique, c'est à dire se présenter sous la forme de billes qui s'agglomèrent les unes aux autres lors de la polymérisation. Cette mousse est de préférence une résine epoxy ou bien un polyuréthane. Elle est de préférence une mousse polymérisable à froid. Pour adapter l'impédance du support, on prévoit de charger la mousse avec des microbilles en particulier des microbilles plastiques. Dans un exemple préféré, les microbilles plastiques sont les microbilles phénoliques. Dans la pratique on choisit des matériaux dont le thermo-formage est obtenu a une température de l'ordre de, ou supérieure à 90° - 100°. En effet il est connu que les sondes piézo-­électriques chauffent lors de leur utilisation. Elles sont alors portées à des températures qui pourraient, si l'on n'y prenait garde, pro­voquer par fluence des déformations non désirées de la barrette. Pour cette raison la température de thermo-formage est choisie à la valeur indiquée. A cette température en effet les sondes sont inexploitables sur des corps humains, et il n'y a donc aucun risque que cette température soit atteinte au course d'une expérimentation.The material which can be used for the support 2 and which has the thermoforming properties thus demonstrated is preferably a polymerizable material which has the appearance of a foam before its polymerization. This foam can be syntactic, that is to say comprise a liquid with gas microbubbles, or be non syntactic, that is to say appear in the form of beads which agglomerate with each other during the polymerization. This foam is preferably an epoxy resin or else a polyurethane. It is preferably a cold polymerizable foam. To adapt the impedance of the support, provision is made to load the foam with microbeads, in particular plastic microbeads. In a preferred example, the plastic microbeads are the phenolic microbeads. In practice, materials are chosen whose thermoforming is obtained at a temperature of the order of, or greater than 90 ° - 100 °. In fact, it is known that piezoelectric probes heat up during their use. They are then brought to temperatures which could, if we were not careful, cause fluence unwanted deformations of the bar. For this reason, the thermoforming temperature is chosen at the value indicated. At this temperature, in fact, the probes cannot be used on human bodies, and there is therefore no risk that this temperature will be reached during an experiment.

Pour permettre son thermo-formage, il est nécessaire, comme dans l'état de la technique que le support 2 soit mince. Dans l'invention il a une épaisseur sensiblement égale au support élastique de l'état de la technique cité. Pour renforcer alors la rigidité de ce support on le solidarise avec une base 16. On place alors la barrette thermo-formée au fond d'un moule, avec sa partie concave vers le haut, et on coule par le dessus un même matériau que celui qui a consitué le support (mais non encore polymérisé). Puis on polymérise le matériau de la base : le moule est conformé de manière à donner à cette base en outre une forme utile à la manipulation de la sonde. La base est réalisée le plus tôt possible après la thermo-deformation de la barrette. Par exemple cette opération est faite le lendemain.To allow its thermoforming, it is necessary, as in the state of the art, that the support 2 is thin. In the invention it has a thickness substantially equal to the elastic support of the cited state of the art. To then reinforce the rigidity of this support, it is secured to a base 16. Then the thermoformed bar is placed at the bottom of a mold, with its concave part upwards, and the same material is poured from above as that who made up the support (but not yet polymerized). Then the base material is polymerized: the mold is shaped so as to give this base, moreover, a form useful for handling the probe. The base is made as soon as possible after the thermal deformation of the bar. For example, this operation is done the next day.

Comme le matériau qui constitue la base est le même que celui qui constitue le support, si ces opérations sont bien exécutées, à l'issue, il est presque impossible de discerner la part, dans le support-base, de ce qui appartient au support ou à la base. Il n'y a donc plus de surface acoustique de réflexion sous le support. Les réflexions ne peuvent donc plus se produire. L'intérêt d'avoir choisi un matériau polymérisable à froid se comprend aisément. Lors de la réalisation ultérieure de la base il n'est pas nécessaire pour polymériser ce matériau de base de réchauffer l'ensemble de la barrette. Ceci risquerait de détruire la déformation qu'on lui a donnée pré­cédemment. Le choix d'un matériau polymérisable à chaud est cependant possible : il suffit de couler la base avant la fin de l'opération de thermo-déformage c'est à dire avant le refroi­dissement. L'avantage de smatériaux thermo-déformables, est en outre de pouvoir admettre une grande variété de matériaux de chargement. Ceci leur confère une grande aptitude au bon réglage de l'impédance acoustique.As the material which constitutes the base is the same as that which constitutes the support, if these operations are well executed, at the end, it is almost impossible to discern the part, in the support-base, of what belongs to the support or at the base. There is therefore no longer any acoustic reflection surface under the support. Reflections can therefore no longer occur. The advantage of having chosen a cold polymerizable material is easily understood. During the subsequent production of the base, it is not necessary to polymerize this base material to heat the entire strip. This would risk destroying the deformation we gave it previously. The choice of a hot-polymerizable material is however possible: it suffices to pour the base before the end of the thermo-deformation operation, that is to say before cooling. The advantage of thermo-deformable materials, is also to be able to accept a wide variety of loading materials. This gives them a great ability to correctly adjust the acoustic impedance.

Pour réaliser la connexion des éléments piézo-électrique de la barrette, on peut déposer sur les métallisations latérales apparentes des blocs de chaque éléments des micro-gouttes 17 d'Indium. Puis on approche de chaque coté de la barrette, un circuit imprimé 18 muni de pistes de liaison telles que 21 et 22. Ce circuit porte en regard des connexions à réaliser des métallisations 19, elles aussi munies de micro-gouttes 20 d'Indium. On plaque ensuite les circuits imprimés sur les flans de la barrette et, par une opération de refusion dans une étuve, on peut obtenir la connexion de l'ensemble des éléments aux pistes. Ces pistes conduisent les signaux électriques, à l'émission et à la réception, depuis les organes générateurs et vers les organes de réception.To make the connection of the piezoelectric elements of the strip, it is possible to deposit on the apparent lateral metallizations blocks of each element of micro-drops 17 of Indium. Then, on each side of the bar, a printed circuit 18 provided with connection tracks such as 21 and 22 is approached. This circuit bears, opposite the connections to be metallized 19, also provided with micro-drops 20 of Indium. The printed circuits are then placed on the blanks of the strip and, by a reflow operation in an oven, it is possible to obtain the connection of all the elements to the tracks. These tracks conduct the electrical signals, on transmission and on reception, from the generating members and to the receiving members.

La forme présentée jusqu'ici pour la barrette est une forme convexe. Il est cependant connu dans l'état de la technique de fabriquer des formes concaves. Il est évident que l'on peut fabriquer de la même manière une sonde à barrette concave. La seule précaution à prendre consiste à réaliser dans ce cas des découpes 10 et 11 suffisamment larges pour que lors de la déformation imposée à la barrette les éléments piézo-électriques ne viennent pas au contact les uns des autres. Dans ce cas également on peut réaliser une base adhérant intimement avec le support.The shape presented so far for the bar is a convex shape. However, it is known in the state of the art to manufacture concave shapes. It is obvious that a concave bar probe can be made in the same way. The only precaution to take consists in making in this case cuts 10 and 11 sufficiently wide so that during the deformation imposed on the bar the piezoelectric elements do not come into contact with each other. In this case also, a base can be produced which adheres intimately to the support.

Claims (10)

1 - Sonde à barrette (1) courbe pour échographe du type comportant des éléments (3) piézo-électriques fixés sur un support (2) déformable caractérisée en ce que ce support est en un matériau thermo-déformable rigide à température ambiante.1 - Curved strip probe (1) for an ultrasound system of the type comprising piezoelectric elements (3) fixed on a deformable support (2) characterized in that this support is made of a rigid thermo-deformable material at room temperature. 2 - Sonde selon la revendication 1, caractérisée en ce que le matériau est une résine époxy polymérisable à froid.2 - Probe according to claim 1, characterized in that the material is a cold polymerizable epoxy resin. 3 - Sonde selon la revendication 1, caractérisée en ce que le matériau est un polyuréthane.3 - Probe according to claim 1, characterized in that the material is a polyurethane. 4 - Sonde selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le matériau est une mousse.4 - Probe according to any one of claims 1 to 3, characterized in that the material is a foam. 5 - Sonde selon la revendication 4, caractérisée en ce que la mousse comporte des microbilles plastiques.5 - A probe according to claim 4, characterized in that the foam comprises plastic microbeads. 6 - Sonde selon la revendication 5, caractérisée en ce que les microbilles sont phénoliques.6 - Probe according to claim 5, characterized in that the microbeads are phenolic. 7 - Sonde selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le support thermo-deformé est fixé à une base (16) qui épouse sa forme et qui est en un même matériau.7 - Probe according to any one of claims 1 to 6, characterized in that the heat-deformed support is fixed to a base (16) which matches its shape and which is made of the same material. 8 - Sonde selon l'une quelconque des revendications 1 à 7 caractérisée en ce que la barrette est courbe convexe(fig 2).8 - Probe according to any one of claims 1 to 7 characterized in that the bar is convex curve (fig 2). 9 - Sonde selon l'une quelconque des revendications 1 à 7, caractérisée en ce que la barrette est courbe et concave.9 - Probe according to any one of claims 1 to 7, characterized in that the bar is curved and concave. 10 - Procédé de fabrication de sonde à barrette (1) courbe caractérisée en ce qu'elle comprend les étapes de:
-collage d'une barrette piézo-électrique sur une lame support (2) thermo-déformable,
-réalisation de découpes (11,12) permettant de réaliser des transducteurs piézo-électriques indépendants et/ou de diviser les transducteurs piézo-électriques,
- chauffage et déformation de la barrette pour lui donner la forme désirée,
- connexion des électrodes aux transducteurs piézo-élec­triques.
10 - Method for manufacturing a curved strip probe (1) characterized in that it comprises the steps of:
bonding of a piezoelectric strip on a heat-deformable support blade (2),
making of cuts (11, 12) making it possible to produce independent piezoelectric transducers and / or to divide the piezoelectric transducers,
- heating and deformation of the bar to give it the desired shape,
- connection of the electrodes to the piezoelectric transducers.
EP87402635A 1986-11-28 1987-11-24 Curved-bar probe for an echograph Withdrawn EP0271395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8616661A FR2607591B1 (en) 1986-11-28 1986-11-28 CURVED BAR PROBE FOR ECHOGRAPH
FR8616661 1986-11-28

Publications (1)

Publication Number Publication Date
EP0271395A1 true EP0271395A1 (en) 1988-06-15

Family

ID=9341354

Family Applications (2)

Application Number Title Priority Date Filing Date
EP87402635A Withdrawn EP0271395A1 (en) 1986-11-28 1987-11-24 Curved-bar probe for an echograph
EP87907781A Ceased EP0333737A1 (en) 1986-11-28 1987-11-24 Probe with curved bar for echography

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP87907781A Ceased EP0333737A1 (en) 1986-11-28 1987-11-24 Probe with curved bar for echography

Country Status (5)

Country Link
US (1) US5109860A (en)
EP (2) EP0271395A1 (en)
JP (1) JPH02501430A (en)
FR (1) FR2607591B1 (en)
WO (1) WO1988004088A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453575A (en) * 1993-02-01 1995-09-26 Endosonics Corporation Apparatus and method for detecting blood flow in intravascular ultrasonic imaging
EP0671221B1 (en) * 1994-03-11 2000-04-26 Intravascular Research Limited Ultrasonic transducer array and method of manufacturing the same
US5711058A (en) * 1994-11-21 1998-01-27 General Electric Company Method for manufacturing transducer assembly with curved transducer array
US7226417B1 (en) 1995-12-26 2007-06-05 Volcano Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
US5857974A (en) 1997-01-08 1999-01-12 Endosonics Corporation High resolution intravascular ultrasound transducer assembly having a flexible substrate
FR2815723B1 (en) * 2000-10-24 2004-04-30 Thomson Csf SYSTEM METHOD AND PROBE FOR OBTAINING IMAGES VIA A BROADCAST EMITTED BY AN ANTENNA AFTER REFLECTION OF THESE WAVES AT A TARGET ASSEMBLY
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US20080119703A1 (en) 2006-10-04 2008-05-22 Mark Brister Analyte sensor
US7285897B2 (en) * 2003-12-31 2007-10-23 General Electric Company Curved micromachined ultrasonic transducer arrays and related methods of manufacture
DE102006010009A1 (en) * 2006-03-04 2007-09-13 Intelligendt Systems & Services Gmbh & Co Kg A method of manufacturing an ultrasonic probe with an ultrasonic transducer assembly having a curved transmitting and receiving surface
US20120265036A1 (en) 2011-04-15 2012-10-18 Dexcom, Inc. Advanced analyte sensor calibration and error detection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926182A1 (en) * 1979-06-28 1981-01-22 Siemens Ag Ultrasonic transducer elements arrangement - sandwiches each element between matching and damping sections for coping with irregular surfaces subjected to scanning for defects
JPS57181299A (en) * 1981-04-30 1982-11-08 Yokogawa Hokushin Electric Corp Conformal array transducer and its manufacture
JPS58120397A (en) * 1982-01-13 1983-07-18 Hitachi Medical Corp Production of ultrasonic probe
EP0128049A2 (en) * 1983-06-07 1984-12-12 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe having a backing member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4354501A (en) * 1979-08-28 1982-10-19 Univ Washington Esophageal catheter including ultrasonic transducer for use in detection of air emboli
US4556066A (en) * 1983-11-04 1985-12-03 The Kendall Company Ultrasound acoustical coupling pad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926182A1 (en) * 1979-06-28 1981-01-22 Siemens Ag Ultrasonic transducer elements arrangement - sandwiches each element between matching and damping sections for coping with irregular surfaces subjected to scanning for defects
JPS57181299A (en) * 1981-04-30 1982-11-08 Yokogawa Hokushin Electric Corp Conformal array transducer and its manufacture
JPS58120397A (en) * 1982-01-13 1983-07-18 Hitachi Medical Corp Production of ultrasonic probe
EP0128049A2 (en) * 1983-06-07 1984-12-12 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe having a backing member

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, vol. 7, no. 229 (E-203)[1374], 12 octobre 1983; & JP-A-58 120 397 (HITACHI MEDEIKO K.K.) 18-07-1983 *
PATENT ABSTRACTS OF JAPAN, vol. 7, no. 27 (E-156)[1172], 3 février 1983; & JP-A-57 181 299 (YOKOGAWA DENKI SEISAKUSHO K.K.) 08-11-1982 *

Also Published As

Publication number Publication date
EP0333737A1 (en) 1989-09-27
US5109860A (en) 1992-05-05
JPH02501430A (en) 1990-05-17
FR2607591A1 (en) 1988-06-03
FR2607591B1 (en) 1989-12-08
WO1988004088A1 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
EP0332637B1 (en) Probe provided with a concave arrangement of piezoelectric elements for ultrasound apparatus
EP0271395A1 (en) Curved-bar probe for an echograph
FR2700939A1 (en) Therapy apparatus for locating and treating, using acoustic waves, an area within the body of a living being.
EP0739656B1 (en) Ultrasonic transducer array and manufacturing method thereof
EP1222653B1 (en) Underwater broadband acoustic transducer
FR2962533A1 (en) THERMAL TRANSFER AND ACOUSTIC ADAPTATION LAYERS FOR ULTRASOUND TRANSDUCER
WO1996001702A1 (en) Wide-band multifrequency acoustic transducer
CA1154144A (en) High frequency oscillator with automatic temperature control
FR2847492A1 (en) Electrical connection formation method for ultrasonic piezoelectric transducer, involves mounting acoustic baking layer on transducer array whose elements are electrically separated for allowing individual electrical connection
FR2889315A1 (en) Ultrasonic objects detector for vehicle, has sensor contacting bumper wall and comprising vibrator disposed on bottom surface portion, where bumper and portion have thickness less than half of wavelength of waves generated by vibrator
FR2980326A1 (en) Ultrasound transducer comprises piezoelectric element defining front side and back side, lens connected to front side of piezoelectric element, heat sink connected to back side of piezoelectric element, and backside matching layer
EP0134611B1 (en) A flat microwave emitting or receiving antenna array, and microwave signal emitting or receiving system comprising a such flat antenna
FR2472244A1 (en) SURFACE ACOUSTIC WAVE SENSOR AND RECORDING DEVICE USING THE SAME
JP2005017343A (en) Acoustooptical element
EP0172445B1 (en) Passive transponder, specifically for searching victims of an avalanche
FR2583174A1 (en) ECHOGRAPHER PROBE
EP0335878B1 (en) Echography probe with improved connection circuit
EP4454768A1 (en) Line-column-addressed ultrasonic transduction device
CA1298395C (en) Ultrasound apparatus probe with a priezoelectric member strap
JPH10126889A (en) Manufacture of ultrasonic transducer and composite piezoelectric body
EP0088653B1 (en) Electroacoustical delay line
FR2736790A1 (en) Piezoelectric ultrasonic transducer with damping and focussing for non-destructive control of material or medical echograph
FR2674717A1 (en) LOW FREQUENCY DIRECTIVE ACOUSTIC ANTENNA.
FR2634089A1 (en) Ultrasound transducer with improved sensitivity
WO1988004091A1 (en) Echography probe with arrangement of piezoelectric elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES GR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19881216

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GELLY, JEAN-FRANCOIS

Inventor name: REYNIER, RENE

Inventor name: DUBUT, PATRICK

Inventor name: MAERFELD, CHARLES