EP0266272B1 - Procédé de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse et son utilisation pour le traitement d'effluents aqueux - Google Patents
Procédé de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse et son utilisation pour le traitement d'effluents aqueux Download PDFInfo
- Publication number
- EP0266272B1 EP0266272B1 EP87402423A EP87402423A EP0266272B1 EP 0266272 B1 EP0266272 B1 EP 0266272B1 EP 87402423 A EP87402423 A EP 87402423A EP 87402423 A EP87402423 A EP 87402423A EP 0266272 B1 EP0266272 B1 EP 0266272B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- process according
- aqueous solution
- compounds
- aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
Definitions
- the subject of the invention is a process for recovering acidic organophosphorus compounds and / or organophosphate ions present in an aqueous solution.
- Acid organophosphorus compounds which cannot be used for extraction may also be found in effluents from liquid-liquid metal extraction installations. This is the case, for example, of extraction facilities for uranium and / or plutonium which use tributyl phosphate as an extractant, because the degradation by hydrolysis, photolysis and / or radiolysis of tributyl phosphate leads to the formation of mono and di-butylphosphoric acids; the presence of these acids in the organic extraction phase may disturb the extraction process, they are generally extracted from this organic phase by washing in a basic aqueous solution, which leads to the production of basic effluents containing salts organophosphorus acids. In this case, it is also desirable to extract these organophosphorus compounds before discharging the aqueous effluents.
- these solutions can come from extractions carried out in an acid medium as is the case for example of dilute sulfuric solutions from which various metals have been extracted. They can also consist of basic solutions, as is the case, for example, for solutions for washing solvents from irradiated fuel treatment plants using tributyl phosphate.
- This method has the disadvantage that it can only be used in a limited range of acidity, which can cause certain problems, since this acidification can lead to precipitation or troublesome chemical reactions in the effluent to be treated.
- the present invention specifically relates to a process for recovering acidic organophosphorus compounds and / or organophosphate ions present in an aqueous solution which overcomes this drawback.
- the process according to the invention for recovering acidic organophosphorus compounds and / or organophosphate ions present in an aqueous solution is characterized in that the aqueous solution is brought into contact with at least one poorly soluble amino organic compound. in water, chosen from the compounds comprising at least one amine function, the salts of these amino compounds with an acid and the quaternary ammonium salts, and in that the complex formed by reaction is separated from the aqueous solution acid organophosphorus compounds and / or organophosphate ions with the amino organic compound (s).
- the amino compounds used must be sparingly soluble in water so as not to pollute the aqueous solution with which they are brought into contact.
- an amino compound is chosen whose solubility in water does not exceed approximately 1 mg / l.
- the amino organic compound used can be a primary, secondary or tertiary amine or else a quaternary ammonium salt. It can also be constituted by a salt obtained by reaction of a primary, secondary or tertiary amine with an inorganic acid such as hydrochloric acid, or an organic acid such as formic acid or acetic acid. It is also possible to use an amine partially salified by an acid.
- the amines which can be used are preferably alkylamines, in particular trialkylamines such as triisooctylamine.
- cyclic amines can also be used, for example dibenzylamine and tribenzylamine.
- the acid organophosphorus compound AH or the organophosphate ions A _ react with the organic compound with amine function RN or with its salt RN + H ... B _ according to the following reaction schemes: in which RN can represent a primary amine RNH2, a secondary amine RR′NH or a tertiary amine RR′R ⁇ N.
- a complex is thus obtained which can then be separated from the aqueous solution.
- the process of the invention can be used to treat a wide variety of aqueous solutions, with pH ranging over a wide range which can range, for example, from 0.3 to very basic pH, greater than 12.5, while retaining very good efficiency at these very basic pHs.
- an organic amino compound can be used in an organic phase immiscible with water so as to extract the complex in the organic phase.
- the process can be carried out in a solvent extraction installation in which the co-current or counter-current contact the aqueous solution to be treated with the organic phase containing at least one of the amino compounds mentioned above.
- an organic solvent which can consist of a paraffinic or aromatic hydrocarbon, a chlorinated compound such as CHCl3 or CCl4, an ether, an ester, an alcohol, a ketone, alone or as a mixture.
- an organic solvent is used which consists of a mixture of a hydrocarbon and an alcohol, for example a mixture of n-dodecane and octanol-1.
- the extraction devices that can be used are conventional equipment such as mixer-settler batteries, liquid-liquid extraction columns (pulsed, agitated, packed, etc.), liquid-liquid chromatography columns .
- the flow rates of aqueous solution and of organic solution are chosen so as to obtain the desired contact time between the two solutions.
- concentration of amino compound in the organic solution is chosen as a function of its solubility in the solvent so as to obtain a good extraction of the acid organophosphorus compounds or of the organophosphate ions while having good physico-chemical characteristics linked to the hydrodynamics of systems.
- the extraction is carried out at room temperature, but it can be carried out at higher temperatures, ranging for example from 20 to 50 ° C., or at temperatures below room temperature if this proves necessary.
- the process of the invention applies to many acidic organophosphorus and / or organophosphate compounds. However, it is most often used to recover acidic organophosphorus compounds consisting of mono or di-alkylphosphoric acids or the corresponding organophosphate ions.
- the contacting is carried out for 5 min at room temperature using equal volumes of aqueous solution and of organic solution.
- the DBP concentrations of the aqueous phase and of the organic phase are determined. This gives the value of the partition coefficient D of dibutylphosphoric acid DBP which is equal to the ratio of the concentration of DBP in the organic phase to the concentration of DBP in the aqueous phase.
- the partition coefficient D of the DBP is always greater than 40.
- aqueous solutions containing 0.1 mol.l _1 of NaNO3 and 5.3.10 _3 mol.l _1 of DBP, having a pH ranging from 3 to 7.1 are brought into contact with an organic phase consisting of Genamine CS200 nitrate (Hoechst) in solution in an octanol n-dodecane mixture containing 18% octanol and 82% dodecane.
- Genamine is a mixture of secondary amines containing 51% of amine with 12 carbon atoms, 22% of amine with 14 carbon atoms, 11% of amine with 16 carbon atoms and 14% of amine with 18 carbon atoms.
- the extraction is carried out as in Example 1 but operating at a temperature of 50 ° C.
- the DBP sharing coefficients are always greater than 50 for these solutions.
- Aqueous solutions having a pH ranging from 2.5 to 12.5, containing 0.1 mol.l _1 of NaNO3 and 4.8.10 _3 mol.l _1 of DBP are brought into contact with an organic phase consisting of tetraheptylammonium chloride at a concentration of 0.4 mol.l _1 in the mixture 18% octanol and 82% n-dodecane.
- the contacting is carried out for 5 min at a temperature of 20 ° C. using equal volumes of aqueous phase and of organic phase.
- the partition coefficient of the DBP is always greater than 40.
- an aqueous solution is treated containing 5.10 _3 mol.l _1 of dibutylphosphoric acid (DBP) and 0.5 mol.l _1 of sodium chloride using as organic phase triisooctylamine diluted to 0.44 mol. l _1 in a mixture of dodecane-octanol-1 at 16% by volume of octanol-1.
- DBP dibutylphosphoric acid
- a volume of the aqueous solution is brought into contact with a volume of the organic phase for 5 minutes with stirring, then the phases are allowed to settle and the concentrations of dibutylphosphoric acid in the aqueous phase and the organic phase are determined.
- the partition coefficient D of dibutylphosphoric acid is 35.
- Example 4 The same procedure is repeated as in Example 4, but the starting aqueous solution contains 0.5 mol.l _1 of sodium nitrate instead of sodium chloride.
- the partition coefficient D of dibutylphosphoric acid is 30.
- Example 4 The same procedure is repeated as in Example 4, but the starting aqueous solution contains 0.5 mol.l _1 of sodium perchlorate instead of sodium chloride. Under these conditions, the partition coefficient D is 15.
- Example 4 The same procedure is repeated as in Example 4, but the starting aqueous solution contains 0.5 mol.l _1 of sodium sulfate instead of sodium chloride. Under these conditions, the partition coefficient D of dibutylphosphoric acid is 59.
- Example 4 The procedure of Example 4 is repeated, the aqueous solution this time being a solution containing 0.45 mol.l _1 of nitric acid, 5.3 gl _1 of trivalent plutonium, 0.1 mol.l _1 of nitrate of hydrazinium and 5.10 _3 mol.l _1 of DBP.
- An organic phase is used consisting of triisooctylamine at 0.44 mol.l _1 in a mixture of octanol and n-dodecane containing 16% by volume of octanol.
- the distribution coefficient of DBP is equal to 50 and that of plutonium is equal to 0.06.
- an aqueous solution is treated obtained during the washing of tributylphosphate (TBP) used in a plutonium and uranium purification cycle. Washing of the TBP is carried out with an aqueous carbonic solution obtained by partial neutralization of the hydrazine base with CO2.
- TBP tributylphosphate
- the aqueous solution leaving the washing installation contains 4,78.10 _3 mol.l -1 of dibutyl phosphate and its pH is adjusted to a value of 6.8 by adding nitric acid, then treated according to the method of invention, in a counter-current liquid-liquid extraction installation comprising two stages, using an organic phase comprising as solvent a mixture of n-dodecane and octanol-1 at 16% by volume of octanol-1 , containing 0.32 mol.l -1 of triisooctylamine and 0.12 mol.l -1 of triisooctylammonium nitrate.
- a ratio: aqueous flow / organic flow of 0.46 is used and an aqueous phase is collected at the outlet of the installation, the dibutylphosphate content is 0.08.10 _3 mol.l _1 , this which corresponds to a purification rate of 98.4%.
- the plutonium IV is present in the aqueous phase, does not substantially extract is in the organic phase, the plutonium of the partition coefficient is less than 1.2.10 _2. Also, the purified aqueous solution can be recycled for subsequent treatments for the recovery of fissile material.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Extraction Or Liquid Replacement (AREA)
- Removal Of Specific Substances (AREA)
Description
- L'invention a pour objet un procédé de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse.
- De façon plus précise, elle concerne le traitement d'effluents aqueux contenant de tels composés organophosphorés en vue de récupérer ces composés organophosphorés qui constituent des produits gênants pour l'environnement et peuvent dans certains cas être réutilisés pour la séparation de métaux par extraction liquide-liquide.
- Depuis quelques années, on utilise de plus en plus dans l'industrie des composés organophosphorés acides pour réaliser la séparation de métaux par extraction liquide-liquide. Ces composés sont généralement constitués par des acides mono ou dialkylphosphoriques tels que l'acide di-2-éthylhexylphosphorique, qui présentent des propriétés intéressantes pour la purification de nombreux métaux tels que le nickel, le cuivre, le zinc, les terres rares, l'uranium et le plutonium.
- Ces composés organophosphorés acides ou leurs sels avec des cations minéraux étant très légèrement solubles dans l'eau, les solutions aqueuses sortant de ces installations d'extraction contiennent de ce fait de faibles quantités de composés organophosphorés acides qu'il est souhaitable de récupérer avant le rejet des effluents, d'une part pour éviter de polluer l'environnement et, d'autre part pour récupérer ces extractants et les recycler dans l'installation d'extraction liquide-liquide.
- Des composés organophosphorés acides non utilisables pour l'extraction peuvent également se trouver dans les effluents provenant d'installations d'extraction liquide-liquide de métaux. C'est le cas par exemple des installations d'extraction de l'uranium et/ou du plutonium qui utilisent comme extractant le phosphate de tributyle, car la dégradation par hydrolyse, photolyse et/ou radiolyse du phosphate du tributyle conduit à la formation d'acides mono et di-butylphosphoriques; la présence de ces acides dans la phase organique d'extraction risquant de perturber le processus d'extraction, on les extrait généralement de cette phase organique par lavage dans une solution aqueuse basique, ce qui conduit à la production d'effluents basiques contenant des sels d'acides organophosphorés. Dans ce cas, il est également souhaitable d'extraire ces composés organophosphorés avant de rejeter les effluents aqueux.
- Cette récupération des composés organophosphorés acides et/ou des ions organophosphate pose certains problèmes car le pH des solutions aqueuses qui les contiennent peut varier dans une large gamme.
- En effet, ces solutions peuvent provenir d'extractions réalisées en milieu acide comme c'est le cas par exemple des solutions sulfuriques diluées desquelles on a extrait divers métaux. Elles peuvent aussi être constituées par des solutions basiques, comme c'est le cas par exemple pour les solutions de lavage des solvants provenant des installations de traitement de combustibles irradiés utilisant le phosphate de tributyle.
- Parmi les procédés permettant de traiter des effluents aqueux de ce type, on connaît un procédé d'extraction des acides mono et di-butylphosphoriques présents dans les solutions basiques carbonatées, qui consiste à acidifier tout d'abord la solution carbonatée par addition d'acide nitrique pour amener son acidité à une valeur de 3-4N et à extraire ensuite les acides phosphoriques par le 2-éthyl 1-hexanol, comme il est décrit par E.H. HORWITZ et al, "Actinides Separations", Honolulu, Hawai, April 3-5, 1979, p. 475, ACS Symposium, Series 117.
- Cette méthode a l'inconvénient de ne pouvoir être utilisée que dans une gamme d'acidité restreinte, ce qui peut poser certains problèmes, car cette acidification peut conduire à des précipitations ou à des réactions chimiques gênantes dans l'effluent à traiter.
- La présente invention a précisément pour objet un procédé de récupération des composés organophosphorés acides et/ou des ions organophosphate présents dans une solution aqueuse qui pallie cet inconvénient.
- Le procédé, selon l'invention, de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse, se caractérise en ce que l'on met en contact la solution aqueuse avec au moins un composé organique aminé peu soluble dans l'eau, choisi parmi les composés comportant au moins une fonction amine, les sels de ces composés aminés avec un acide et les sels d'ammonium quaternaire, et en ce que l'on sépare de la solution aqueuse le complexe formé par réaction des composés organophosphorés acides et/ou des ions organophosphate avec le ou les composés organiques aminés.
- Selon l'invention les composés aminés utilisés doivent être peu solubles dans l'eau pour ne pas polluer la solution aqueuse avec laquelle on les met en contact. Généralement, on choisit un composé aminé dont la solubilité dans l'eau ne dépasse pas environ 1 mg/l.
- A titre d'exemple, le composé organique aminé utilisé peut être une amine primaire, secondaire ou tertiaire ou encore un sel d'ammonium quaternaire. Il peut également être constitué par un sel obtenu par réaction d'une amine primaire, secondaire ou tertiaire avec un acide inorganique tel que l'acide chlorhydrique, ou un acide organique tel que l'acide formique ou l'acide acétique. On peut encore utiliser une amine partiellement salifiée par un acide.
- Les amines susceptibles d'être utilisées sont de préférence, des alkylamines, en particulier des trialkylamines comme la triisooctylamine. Toutefois, on peut également utiliser des amines cycliques, par exemple la dibenzylamine et la tribenzylamine.
- Dans le procédé de l'invention, le composé organophosphoré acide AH ou les ions organophosphate A_ réagissent avec le composé organique à fonction amine RN ou avec son sel RN + H...B_ selon les schémas réactionnels suivants:
dans lesquels RN peut représenter une amine primaire RNH₂, une amine secondaire RR′NH ou une amine tertiaire RR′R˝N. - On obtient ainsi un complexe que l'on peut ensuite séparer de la solution aqueuse.
- Dans le cas où l'on utilise comme composé organique aminé un sel ammonium quaternaire de formule RR′R˝R‴N + ...B_ que l'on symbolise par R₄ N + ...B_, le composé organophosphoré acide AH ou les ions organophosphate A_ réagissent avec ce sel d'ammonium quaternaire selon les schémas réactionnels suivants:
qui constituent un mécanisme d'échange d'anions. Les anions B_ (minéraux comme NO - Le procédé de l'invention peut être utilisé pour traiter des solutions aqueuses très variées, ayant des pH s'étendant dans une large gamme qui peut aller par exemple de 0,3 jusqu'à des pH très basiques, supérieurs à 12,5, tout en conservant une très bonne efficacité à ces pH très basiques.
- Pour favoriser la séparation du complexe formé, on peut utiliser un composé organique aminé dans une phase organique non miscible à l'eau de façon à extraire le complexe dans la phase organique. Dans ce cas, on peut mettre en oeuvre le procédé dans une installation d'extraction par solvant dans laquelle on met en contact à co-courant ou à contre-courant la solution aqueuse à traiter avec la phase organique contenant au moins l'un des composés aminés mentionnés précédemment. Généralement le composé organique aminé est dissous ou dilué dans un solvant organique qui peut être constitué par un hydrocarbure paraffinique ou aromatique, un composé chloré tel que CHCl₃ ou CCl₄, un éther, un ester, un alcool, une cétone, seul ou en mélange. De préférence, dans l'invention on utilise un solvant organique constitué par un mélange d'un hydrocarbure et d'un alcool, par exemple un mélange de n-dodécane et d'octanol-1.
- Les appareils d'extraction susceptibles d'être utilisés sont des équipements classiques tels que des batteries de mélangeurs-décanteurs, des colonnes d'extraction liquide-liquide (pulsées, agitées, à garnissage, etc.), des colonnes de chromatographie liquide-liquide. Dans ces appareils, les débits de solution aqueuse et de solution organique sont choisis de façon à obtenir le temps de contact souhaité entre les deux solutions. De même, la concentration en composé aminé de la solution organique est choisie en fonction de sa solubilité dans le solvant de façon à obtenir une bonne extraction des composés organophosphorés acides ou des ions organophosphate tout en ayant de bonnes caractéristiques physico-chimiques liées à l'hydrodynamique des systèmes.
- Généralement, on réalise l'extraction à la température ambiante, mais l'on peut opérer à des températures supérieures, allant par exemple de 20 à 50°C, ou à des températures inférieures à la température ambiante si cela s'avère nécessaire.
- Selon une variante de l'invention, on peut aussi faciliter la séparation du complexe formé lors de la réaction en mettant en contact la solution aqueuse contenant les composés organophosphorés acides ou les ions organophosphate avec un support solide sur lequel est fixé le composé organique, éventuellement dissous ou dilué dans les solvants organiques décrits précédemment. Dans ce cas, on peut utiliser les techniques de chromatographie liquide-liquide pour mettre en oeuvre les étapes de réaction et de séparation.
- Le procédé de l'invention s'applique à de nombreux composés organophosphorés acides et/ou organophosphate. Toutefois, on l'utilise le plus souvent pour récupérer des composés organophosphorés acides constitués par des acides mono ou di-alkylphosphoriques ou les ions organophosphate correspondants.
- D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture des exemples suivants donnés bien entendu à titre non limitatif pour illustrer le procédé de l'invention.
- Dans cet exemple, on traite des solutions aqueuses contenant 4,4.10_3 mol.l_1 d'acide dibutylphosphorique (DBP) et 0,1 mol.l_1 de NaNO₃, ayant des pH allant de 4,5 à 7, en utilisant comme phase organique le produit Primène JMT qui est un mélange d'amines primaires ayant 18 à 22 atomes de carbone, sous forme nitrate à une concentration de 0,38 mol.l_1 dans le mélange octanol-1-n-dodécane à 18% d'octanol-1 et 82% de n-dodécane. On réalise la mise en contact pendant 5 min à la température ambiante en utilisant des volumes égaux de solution aqueuse et de solution organique. Après décantation des phases, on détermine les concentrations en DBP de la phase aqueuse et de la phase organique. On obtient ainsi la valeur du coefficient de partage D de l'acide dibutyl-phosphorique DBP qui est égal au rapport de la concentration en DBP de la phase organique à la concentration en DBP de la phase aqueuse.
- Dans les conditions décrites ci-dessus, le coefficient de partage D du DBP est toujours supérieur à 40.
- Dans cet exemple, on met en contact des solutions aqueuses contenant 0,1 mol.l_1 de NaNO₃ et 5,3.10_3 mol.l_1 de DBP, ayant des pH allant de 3 à 7, 1, avec une phase organique constituée de nitrate de Genamine CS200 (Hoechst) en solution dans un mélange octanol n-dodécane à 18% d'octanol et 82% de dodécane. La génamine est un mélange d'amines secondaires contenant 51% d'amine à 12 atomes de carbone, 22% d'amine à 14 atomes de carbone, 11% d'amine à 16 atomes de carbone et 14% d'amine à 18 atomes de carbone. On réalise l'extraction comme dans l'exemple 1 mais en opérant à une température de 50°C.
- Les coefficients de partage du DBP sont toujours supérieurs à 50 pour ces solutions.
- On met en contact des solutions aqueuses ayant un pH allant de 2,5 à 12,5, contenant 0,1 mol.l_1 de NaNO₃ et 4,8.10_3 mol.l_1 de DBP avec une phase organique constituée de chlorure de tétraheptylammonium à une concentration de 0,4 mol.l_1 dans le mélange 18% d'octanol et 82% de n-dodécane.
- On réalise la mise en contact pendant 5 min à la température de 20°C en utilisant des volumes égaux de phase aqueuse et de phase organique.
- Le coefficient de partage du DBP est toujours supérieur à 40.
- Dans cet exemple, on traite une solution aqueuse contenant 5.10_3 mol.l_1 d'acide dibutylphosphorique (DBP) et 0,5 mol.l_1 de chlorure de sodium en utilisant comme phase organique de la triisooctylamine diluée à 0,44 mol.l_1 dans un mélange dodécane-octanol-1 à 16% en volume d'octanol-1.
- On met en contact un volume de la solution aqueuse avec un volume de la phase organique pendant 5 minutes sous agitation, puis on laisse décanter les phases et on détermine les concentrations en acide dibutylphosphorique de la phase aqueuse et de la phase organique. On obtient ainsi la valeur du coefficient de partage D de l'acide dibutylphosphorique entre la phase aqueuse et la phase organique, celui-ci étant égal au rapport de la concentration en acide dibutylphosphorique de la phase organique à la concentration en acide dibutylphosphorique de la phase aqueuse.
- Dans les conditions décrites précédemment, le coefficient de partage D de l'acide dibutylphosphorique est de 35.
- On répète le même mode opératoire que dans l'exemple 4, mais la solution aqueuse de départ contient 0,5 mol.l_1 de nitrate de sodium au lieu du chlorure de sodium.
- Dans ces conditions, le coefficient de partage D de l'acide dibutylphosphorique est de 30.
- On répète le même mode opératoire que dans l'exemple 4, mais la solution aqueuse de départ contient 0,5 mol.l_1 de perchlorate de sodium au lieu du chlorure de sodium. Dans ces conditions, le coefficient de partage D est de 15.
- On répète le même mode opératoire que dans l'exemple 4, mais la solution aqueuse de départ contient 0,5 mol.l_1 de sulfate de sodium au lieu du chlorure de sodium. Dans ces conditions, le coefficient de partage D de l'acide dibutylphosphorique est de 59.
- Au vu de ces exemples, on constate que l'utilisation de triisooctylamine permet d'épurer à plus de 93% toutes les solutions traitées dans les exemples 4 à 7, la majorité étant épurée à plus de 95%.
- On répète le mode opératoire de l'exemple 4, la solution aqueuse étant cette fois une solution contenant 0,45 mol.l_1 d'acide nitrique, 5,3 g.l_1 de plutonium trivalent, 0,1 mol.l_1 de nitrate d'hydrazinium et 5.10_3 mol.l_1 de DBP. On utilise une phase organique constituée de triisooctylamine à 0,44 mol.l_1 dans un mélange d'octanol et de n-dodécane contenant 16% en volume d'octanol.
- Dans ces conditions, le coefficient de distribution du DBP est égal à 50 et celui du plutonium est égal à 0,06.
- Dans cet exemple, on traite une solution aqueuse obtenue lors du lavage de tributylphosphate (TBP) utilisé dans un cycle de purification du plutonium et de l'uranium. Le lavage du TBP est réalisé avec une solution aqueuse carbonique obtenue par neutralisation partielle de l'hydrazine base par du CO₂. La solution aqueuse sortant de l'installation de lavage contient 4,78.10_3 mol.l_1 de dibutylphosphate et on ajuste son pH à une valeur de 6,8 par addition d'acide nitrique, puis on la traite, selon le procédé de l'invention, dans une installation d'extraction liquide-liquide à contre-courant comportant deux étages, en utilisant une phase organique comportant comme solvant un mélange de n-dodécane et d'octanol-1 à 16% en volume d'octanol-1, contenant 0,32 mol.l_1 de triisooctylamine et 0,12 mol.l_1 de nitrate de triisooctylammonium.
- Dans cette installation, on utilise un rapport: débit aqueux/débit organique de 0,46 et l'on recueille à la sortie de l'installation une phase aqueuse dont la teneur en dibutylphosphate est de 0,08.10_3 mol.l_1, ce qui correspond à un taux d'épuration de 98,4%.
- On remarque par ailleurs que le plutonium IV qui est présent en phase aqueuse, ne s'extrait pratiquement pas dans la phase organique, le coefficient de partage du plutonium étant inférieur à 1,2.10_2. Aussi, la solution aqueuse épurée peut être recyclée pour des traitements ultérieurs de récupération de matière fissile.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8615127A FR2606202B1 (fr) | 1986-10-30 | 1986-10-30 | Procede de recuperation de composes organophosphores acides et/ou d'ions organophosphate presents dans une solution aqueuse et son utilisation pour le traitement d'effluents aqueux |
FR8615127 | 1986-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0266272A1 EP0266272A1 (fr) | 1988-05-04 |
EP0266272B1 true EP0266272B1 (fr) | 1991-06-05 |
Family
ID=9340367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87402423A Expired - Lifetime EP0266272B1 (fr) | 1986-10-30 | 1987-10-27 | Procédé de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse et son utilisation pour le traitement d'effluents aqueux |
Country Status (7)
Country | Link |
---|---|
US (1) | US4898963A (fr) |
EP (1) | EP0266272B1 (fr) |
JP (1) | JP2822183B2 (fr) |
AU (1) | AU602933B2 (fr) |
DE (1) | DE3770579D1 (fr) |
FR (1) | FR2606202B1 (fr) |
ZA (1) | ZA877938B (fr) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2642746A1 (en) * | 1989-01-17 | 1990-08-10 | Commissariat Energie Atomique | Process and device for the removal of organophosphorus products by electrochemical mineralisation of a nitric solution, capable of being employed in a process for extracting an actinide |
FR2934685B1 (fr) * | 2008-07-29 | 2010-09-03 | Commissariat Energie Atomique | Detection et/ou quantification electrique de composes organophosphores |
KR101667418B1 (ko) * | 2009-12-15 | 2016-10-18 | 산와 유카 고교 가부시키가이샤 | 아세트산-질산-인산계 혼산 폐액으로부터의 인산의 분리 회수 방법 |
CN114350984B (zh) * | 2020-10-14 | 2023-05-30 | 厦门稀土材料研究所 | 磷酸类萃取沉淀剂分离回收稀土的方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH436835A (de) * | 1959-03-06 | 1967-05-31 | Philips Nv | Schädlingsbekämpfungsmittel |
GB941791A (en) * | 1960-10-10 | 1963-11-13 | Atomic Energy Authority Uk | Improvements in or relating to the purification of extraction solvents containing trialkyl phosphates |
US3150159A (en) * | 1961-09-22 | 1964-09-22 | John M Schmitt | Removal of hydrocarbon degradation products from organic solutions |
US3708508A (en) * | 1971-04-09 | 1973-01-02 | Atomic Energy Commission | Method for the purification and recovery of tributyl phosphate used in reprocessing nuclear fuel |
DE2633112C2 (de) * | 1976-07-23 | 1985-04-11 | Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe | Verfahren zur Entfernung von Zersetzungsprodukten aus Extraktionsmitteln die zur Wiederaufarbeitung abgebrannter Kernbrenn- und/oder Brutstoffe verwendet werden |
JPS55109213A (en) * | 1979-02-10 | 1980-08-22 | Nippon Soretsukusu Kk | Recovering phosphate ion |
DE3235030A1 (de) * | 1982-09-22 | 1984-03-22 | Ruhrchemie Ag, 4200 Oberhausen | Verfahren zur herstellung von sulfonierten arylphosphinen |
-
1986
- 1986-10-30 FR FR8615127A patent/FR2606202B1/fr not_active Expired - Lifetime
-
1987
- 1987-10-22 ZA ZA877938A patent/ZA877938B/xx unknown
- 1987-10-27 EP EP87402423A patent/EP0266272B1/fr not_active Expired - Lifetime
- 1987-10-27 DE DE8787402423T patent/DE3770579D1/de not_active Expired - Lifetime
- 1987-10-28 AU AU80435/87A patent/AU602933B2/en not_active Ceased
- 1987-10-29 US US07/114,622 patent/US4898963A/en not_active Expired - Fee Related
- 1987-10-29 JP JP62271961A patent/JP2822183B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
AU8043587A (en) | 1988-05-05 |
JP2822183B2 (ja) | 1998-11-11 |
FR2606202A1 (fr) | 1988-05-06 |
FR2606202B1 (fr) | 1992-09-18 |
DE3770579D1 (de) | 1991-07-11 |
US4898963A (en) | 1990-02-06 |
JPS63122692A (ja) | 1988-05-26 |
ZA877938B (en) | 1988-04-26 |
AU602933B2 (en) | 1990-11-01 |
EP0266272A1 (fr) | 1988-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1233025A (fr) | Procede de separation des terres rares par extraction liquide-liquide | |
EP0210928B1 (fr) | Nouveaux agents d'extraction et nouveaux propanediamides, leur utilisation pour la récuperation des actinides et/ou des lanthanides et leur procédé de préparation | |
EP0038764B1 (fr) | Applications à l'échange de cathions de dérivés diphosphoniques, nouveaux dérivés diphosphoniques et leur procédé de fabrication | |
EP0046437A1 (fr) | Procédé d'extraction sélective du germanium | |
EP0245122A2 (fr) | Procédé de purification d'un sel de baryum | |
EP0090692B1 (fr) | Procédé de récuperation et de purification d'un acide sulfurique residuaire contenant des sels de titane | |
EP0110789B1 (fr) | Procédé de récupération des actinides et/ou des lanthanides présents à l'état trivalent dans une solution aqueuse acide | |
Shukla et al. | Liquid-liquid extraction of palladium (II) from nitric acid by bis (2-ethylhexyl) sulphoxide | |
CN102753711A (zh) | 用于从天然铀浓缩物中纯化铀的方法 | |
EP0004226B1 (fr) | Procédé de séparation des éléments du groupe constitué par les lanthanides et l'yttrium | |
EP0014629B1 (fr) | Procédé de récupération de ruthénium présent dans une solution aqueuse nitrique et application de ce procédé à une solution nitrique obtenue par dissolution d'éléments combustibles irradiés | |
EP0266272B1 (fr) | Procédé de récupération de composés organophosphorés acides et/ou d'ions organophosphate présents dans une solution aqueuse et son utilisation pour le traitement d'effluents aqueux | |
FR2593829A1 (fr) | Procede pour extraire selectivement du zinc d'une saumure aqueuse | |
FR2842535A1 (fr) | Procede d'elimination d'impuretes de solutions d'extraction par solvant. | |
FR3038326A1 (fr) | Procede de separation du fer d'une phase organique contenant de l'uranium et procede d'extraction de l'uranium d'une solution aqueuse d'acide mineral contenant de l'uranium et du fer | |
EP2110371B1 (fr) | Procédé pour la préparation de cycloalkanone | |
EP0233121B1 (fr) | Procédé d'élimination du plomb de terres rares | |
EP0289390A1 (fr) | Procédé d'élimination de la radioactivité d'effluents par extraction liquide-liquide | |
FR2460275A1 (fr) | Procede de separation de metaux des terres rares par extraction au solvant | |
EP0594489B1 (fr) | Procédé de conversion continue d'un sel d'hydroxylamine en un autre sel d'hydroxilamine | |
EP0251399A1 (fr) | Procédé de séparation ou de récupération de plutonium et plutonium ainsi obtenu | |
FR2656150A1 (fr) | Procede de recuperation au moyen d'un ether couronne du plutonium present dans des solutions telles que les effluents aqueux, les solutions concentrees de produits de fission et les solutions concentrees de plutonium. | |
FR3148426A1 (fr) | Procede de separation et de purification de terres rares lourdes par extraction liquide/liquide | |
EP0101394B1 (fr) | Procédé de valorisation de l'uranium et des terres rares contenus dans de l'UF4 impur provenant de l'extraction de l'uranium de l'acide phosphorique | |
FR2617829A1 (fr) | Procede de separation des terres rares par extraction liquide-liquide mettant en oeuvre des diluants halogenes ou du type acides carboxyliques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES GB IT |
|
17P | Request for examination filed |
Effective date: 19881006 |
|
17Q | First examination report despatched |
Effective date: 19900718 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 19910605 |
|
REF | Corresponds to: |
Ref document number: 3770579 Country of ref document: DE Date of ref document: 19910711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19910916 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19920701 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061025 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20071026 |