[go: up one dir, main page]

EP0257881A2 - Antenne à fente constituée par un guide d'onde et réseau de celle-ci - Google Patents

Antenne à fente constituée par un guide d'onde et réseau de celle-ci Download PDF

Info

Publication number
EP0257881A2
EP0257881A2 EP87306986A EP87306986A EP0257881A2 EP 0257881 A2 EP0257881 A2 EP 0257881A2 EP 87306986 A EP87306986 A EP 87306986A EP 87306986 A EP87306986 A EP 87306986A EP 0257881 A2 EP0257881 A2 EP 0257881A2
Authority
EP
European Patent Office
Prior art keywords
slot
slotted waveguide
waveguide antenna
waveguide
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87306986A
Other languages
German (de)
English (en)
Other versions
EP0257881A3 (fr
Inventor
Lye Whatt Chua
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Decca Ltd
Original Assignee
Decca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Decca Ltd filed Critical Decca Ltd
Publication of EP0257881A2 publication Critical patent/EP0257881A2/fr
Publication of EP0257881A3 publication Critical patent/EP0257881A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0233Horns fed by a slotted waveguide array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays

Definitions

  • This invention relates to slotted waveguide antennas and arrays and in particular to slotted waveguide antennas and arrays for use in microwave radars antennas and arrays.
  • the degree of coupling depends upon both the current density, associated with the boundary current sheet that is interrupted by the slot, and the component of the length of the slot transverse to the lines of current.
  • a narrow slot cut along the centre of the broad face of a rectangular waveguide will constitute a non-radiating element since it lies substantially within a region of zero current density, whereas, when such a narrow slot is oriented at an angle to the waveguide axis it perturbs the current sheet and constitutes a radiating element.
  • the level of the unwanted side lobes is, for instance, critically dependent on such accuracy of alignment.
  • a slotted waveguide antenna comprises a hollow waveguide, an aperture defining a narrow slot in the waveguide, a Vivaldi horn type radiator and energy coupling means for coupling energy in the waveguide through the slot to the radiator.
  • the Vivaldi horn type radiator is a substantially planar slot-line aerial with constant beamwidth an theoretically unlimited instantaneous frequency bandwidth: more importantly, the radiated wave from a Vivaldi horn type radiator is linearly polarised in the plane of the aerial.
  • the detailed structure and function of the Vivaldi horn type radiator is already known: for instance, reference may be made to UK-A-1601441 or to "The Vivaldi Aerial" (P.J. Gibson) pp101-105: Proc .9th EU M.C., Brighton, 1979.
  • the Vivaldi horn type radiator comprises a diverging slot line conductor pair on a dielectric constant, e.g. fibre glass, substrate.
  • the radiation mechanism can be generally understood to be a non-resonant travelling wave, the energy of which is gradually coupled to the radiation field as the separation between the slot line conductors increases. Further, the diverging slot-line structure provides the required gradual impedance match from that at the feeding portion of slot line to the free space impedance of 377 Ohms.
  • Vivaldi horn type radiator with a slotted waveguide thus entirely obviates the need for spurious mode suppression devices commonly used with inclined slot type antennas. Further, the requirement for both accurate alignment and, for non-resonant slots, accurate sizing, is also greatly reduced.
  • a slotted waveguide antenna comprises a hollow waveguide, an aperture defining a narrow slot in the waveguide, a Vivaldi horn type radiator and energy coupling means for coupling energy in the waveguide through the slot to the radiator and wherein the waveguide is a hollow rectangular waveguide and the slot is a non- radiating, longitudinal slot, parallel to the waveguide axis.
  • FIG. 1 a portion of a hollow rectangular waveguide 1 is shown having a narrow longitudinal slot 2 positioned such that its long axis lies along the centre of one broad wall and is, therefore, parallel to the waveguide axis. It will be apparent that such a slot constitutes a non-radiating element for the dominant TE10mode.
  • the probe 3 is a substantially planar possible lithographically printed probe having a one or both surfaces bounded by a dielectric constant substrate 10 and forming a portion of a conductor of a strip transmission line 4.
  • the substrate 10 may be extended to supportively contact the internal surface of the waveguide on a side facing the slot.
  • a further advantage to sandwiching the probe 3 between dielectric layers 10 is that the antenna can be operated at relatively high power levels: for instance, at X-band, transmitter peak power levels in excess of 35 KW are possible.
  • a probe may be inserted through the wall of the waveguide substantially adjacent to the slot in order to sufficiently perturb the internal current sheet to couple energy from an otherwise non-radiating slot.
  • the Vivaldi horn type radiator shown generally at 5, has a slot line, feed portion 7 terminating in a first section of slot line 8 which is coplanar but perpendicular to the feed portion 8.
  • the length of the first section 8 is ⁇ g /4 so that it constitutes an effective short circuit element.
  • Lying parallel and below the first section 8 is an end section 9 of strip transmission line, also of length ⁇ g /4 but constituting an effective open circuit element: a dielectric medium 10, in this embodiment also serving as the high dielectric constant substrae of the Vivaldi horn type radiator 5, separates first section 8 from end section 9.
  • These two sections comprise the transition element required to twist the E-field vector from perpendicular to parallel to the xy plane.
  • the alignment of the E-field vector can be readily reversed by changing the orientation of the transition element, comprising sections 8 and 9.
  • the energy coupling means comprises a co-axial probe forming a portion of a co-axial transmission line, and a co-axial/slot transition element for coupling energy from the co-axial transmission line to the slot line of the Vivaldi type horn radiator.
  • the Vivaldi horn type radiator further comprises a symmetrical pair of diverging slot line conductors 12 and 14, defining the required exponential taper.
  • a further Vivaldi horn type radiator 5 may be positioned parallel to a first radiator, the pair being positioned equidistantly from the line defining the long axis of the slot.
  • Such a symmetrical arrangement constitutes a balanced, as opposed to an unbalanced, radiator.
  • the balanced arrangement generates a beam which is symmetrical about the xy plane, whereas a single radiator generates a tilted beam: the latter may, however, be advantageously utilised in, for instance, the reduction of sea clutter.
  • the balanced arrangement has a lower loss of radiation at the transition element but may be more complex to manufacture.
  • the beam pattern in the plane perpendicular to the xy plane is principally controlled by metal flares, the edge of one of which is indicated at 17.
  • the antenna incorporates flanges 15, bounding both outer long sides of the slot, and having a width of ⁇ g /4 to constitute an effective open circuit elements. Consequently, the ground lane current associated with the ground plane of strip transmission line 4 is inhibited from circulating on the outside walls of the waveguide 1: the Vivaldi horn type radiator 5 is, therefore, electrically isolated from the waveguide.
  • a radiation input 20 feeds the waveguide 1 from one end.
  • a further advantage to this arrangement is the cancelling of the unwanted residual radiation of adjacent transmission elements near the axis of radiation.
  • different probes 3 each have a predetermined extent of penetration into the waveguide 1 in order to provide a required amplitude taper across the width of the radiation profile. It will be apparent that the length of the array determines the beamwidth of the antenna array, and, consequently, the gain of the array.
  • a matched termination 21 is provided for the waveguide.
  • a radiation input 20 feeds the centre of a wavegude 1.
  • the strip transmission line 4 associated with each Vivaldi radiator to the right of the input 20 is extended by an extra ⁇ g /4 at portion 18.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
EP87306986A 1986-08-29 1987-08-06 Antenne à fente constituée par un guide d'onde et réseau de celle-ci Withdrawn EP0257881A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8620882A GB2194681B (en) 1986-08-29 1986-08-29 Slotted waveguide antenna and array
GB8620882 1986-08-29

Publications (2)

Publication Number Publication Date
EP0257881A2 true EP0257881A2 (fr) 1988-03-02
EP0257881A3 EP0257881A3 (fr) 1989-09-20

Family

ID=10603370

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87306986A Withdrawn EP0257881A3 (fr) 1986-08-29 1987-08-06 Antenne à fente constituée par un guide d'onde et réseau de celle-ci

Country Status (4)

Country Link
EP (1) EP0257881A3 (fr)
JP (1) JPS63100804A (fr)
KR (1) KR880003452A (fr)
GB (1) GB2194681B (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853704A (en) * 1988-05-23 1989-08-01 Ball Corporation Notch antenna with microstrip feed
EP0401978A2 (fr) * 1989-06-09 1990-12-12 The Marconi Company Limited Disposition d'antenne
DE3941125A1 (de) * 1989-12-13 1991-06-20 Telefunken Systemtechnik Zweiseitige planare breitband-antenne
US5070340A (en) * 1989-07-06 1991-12-03 Ball Corporation Broadband microstrip-fed antenna
US5081466A (en) * 1990-05-04 1992-01-14 Motorola, Inc. Tapered notch antenna
EP0477102A1 (fr) * 1990-09-21 1992-03-25 Societe Technique D'application Et De Recherche Electronique Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
FR2753568A1 (fr) * 1996-09-19 1998-03-20 Dassault Electronique Antenne-reseau polyvalente
EP1251587A1 (fr) * 2001-04-17 2002-10-23 Lucent Technologies Inc. Structure d'antenne large bande
WO2010117491A2 (fr) * 2009-04-06 2010-10-14 Sheng Peng Antenne à large bande et à gain élevé
WO2010129967A1 (fr) * 2009-04-06 2010-11-11 Sheng Peng Antenne à large bande 3g ou 4g à gain élevé
WO2018063627A1 (fr) * 2016-09-27 2018-04-05 Intel Corporation Connecteur de guide d'ondes doté d'un lanceur à fente conique
KR101864070B1 (ko) * 2017-03-02 2018-06-01 국방과학연구소 비발디 급전 하이브리드 혼 안테나
WO2018111211A1 (fr) * 2016-12-16 2018-06-21 Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Système d'antenne radar mono-impulsion
KR101890363B1 (ko) * 2017-08-22 2018-08-21 국방과학연구소 안테나 장치
US10256521B2 (en) 2016-09-29 2019-04-09 Intel Corporation Waveguide connector with slot launcher
CN112038759A (zh) * 2020-09-23 2020-12-04 中国航空工业集团公司雷华电子技术研究所 一种超宽带多通道集成式喇叭天线
CN113258280A (zh) * 2021-05-12 2021-08-13 长春理工大学 一种Ka波段爪形宽带对拓Vivaldi天线
US11309619B2 (en) 2016-09-23 2022-04-19 Intel Corporation Waveguide coupling systems and methods
US11394094B2 (en) 2016-09-30 2022-07-19 Intel Corporation Waveguide connector having a curved array of waveguides configured to connect a package to excitation elements

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023623A (en) * 1989-12-21 1991-06-11 Hughes Aircraft Company Dual mode antenna apparatus having slotted waveguide and broadband arrays
AU6142396A (en) * 1995-10-19 1997-05-07 Boris Iosifovich Sukhovetsky Wideband antenna array
US6677899B1 (en) * 2003-02-25 2004-01-13 Raytheon Company Low cost 2-D electronically scanned array with compact CTS feed and MEMS phase shifters
US6822615B2 (en) * 2003-02-25 2004-11-23 Raytheon Company Wideband 2-D electronically scanned array with compact CTS feed and MEMS phase shifters
FR2868610A1 (fr) * 2004-04-06 2005-10-07 Thomson Licensing Sa Perfectionnement aux antennes planaires de type fente
US7057563B2 (en) * 2004-05-28 2006-06-06 Raytheon Company Radiator structures
KR100834422B1 (ko) * 2007-05-31 2008-06-04 한국전자통신연구원 프로브
KR102358474B1 (ko) * 2021-01-29 2022-02-08 홍익대학교 산학협력단 피라미드 형상의 도체 날개를 갖는 비발디 안테나 장치
CN113571865B (zh) * 2021-07-28 2023-05-30 中国电子科技集团公司第三十八研究所 一种榕树天线有限阵列

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176300A (en) * 1964-01-24 1965-03-30 Avco Corp Adjustable slotted wave guide radiator with coupling element
GB1142787A (en) * 1965-08-16 1969-02-12 Marconi Co Ltd Improvements in or relating to aerial systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB507473A (en) * 1936-09-15 1939-06-14 Otto Bormann Improvements in or relating to coupling devices for use in the production, amplification or reception of ultra-short waves
NL73349C (fr) * 1941-11-28
GB1601441A (en) * 1978-03-10 1981-10-28 Philips Electronic Associated Antenna
DE3241890A1 (de) * 1982-11-12 1984-05-17 kabelmetal electro GmbH, 3000 Hannover Polarisationsweiche mit speisehorn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3176300A (en) * 1964-01-24 1965-03-30 Avco Corp Adjustable slotted wave guide radiator with coupling element
GB1142787A (en) * 1965-08-16 1969-02-12 Marconi Co Ltd Improvements in or relating to aerial systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IEEE TRANS. ON MICROWAVE THEORY AND TECHNICS vol. MTT-27, no. 9, September 1979, New York, US; V.M- PANDHARIPANDE et al. "Equivalent circuit of a narrow-wall waveguide slot coupler" *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343322A2 (fr) * 1988-05-23 1989-11-29 Ball Corporation Antenne fente à alimentation microbande
EP0343322A3 (fr) * 1988-05-23 1990-06-13 Ball Corporation Antenne fente à alimentation microbande
US4853704A (en) * 1988-05-23 1989-08-01 Ball Corporation Notch antenna with microstrip feed
GB2232821B (en) * 1989-06-09 1994-01-12 Marconi Co Ltd Antenna arrangement
EP0401978A2 (fr) * 1989-06-09 1990-12-12 The Marconi Company Limited Disposition d'antenne
GB2232821A (en) * 1989-06-09 1990-12-19 Marconi Co Ltd Antenna arrangement
EP0401978A3 (fr) * 1989-06-09 1991-07-24 The Marconi Company Limited Disposition d'antenne
US5036335A (en) * 1989-06-09 1991-07-30 The Marconi Company Limited Tapered slot antenna with balun slot line and stripline feed
US5070340A (en) * 1989-07-06 1991-12-03 Ball Corporation Broadband microstrip-fed antenna
DE3941125C2 (de) * 1989-12-13 2001-02-22 Daimlerchrysler Aerospace Ag Planare Breitband-Antenne
DE3941125A1 (de) * 1989-12-13 1991-06-20 Telefunken Systemtechnik Zweiseitige planare breitband-antenne
US5081466A (en) * 1990-05-04 1992-01-14 Motorola, Inc. Tapered notch antenna
EP0477102A1 (fr) * 1990-09-21 1992-03-25 Societe Technique D'application Et De Recherche Electronique Réseau directif pour radiocommunications, à éléments rayonnants adjacents et ensemble de tels réseaux directifs
FR2667198A1 (fr) * 1990-09-21 1992-03-27 Applic Rech Electro Ste Reseau directif pour radiocommunications, a elements rayonnants adjacents et ensemble de tels reseaux directifs.
US5202698A (en) * 1990-09-21 1993-04-13 Societe Technique D'application Et De Recherche Electronique Directional radiocommunication array
FR2753568A1 (fr) * 1996-09-19 1998-03-20 Dassault Electronique Antenne-reseau polyvalente
EP0831550A1 (fr) * 1996-09-19 1998-03-25 Dassault Electronique Antenne-réseau polyvalente
EP1251587A1 (fr) * 2001-04-17 2002-10-23 Lucent Technologies Inc. Structure d'antenne large bande
US6538614B2 (en) 2001-04-17 2003-03-25 Lucent Technologies Inc. Broadband antenna structure
WO2010129967A1 (fr) * 2009-04-06 2010-11-11 Sheng Peng Antenne à large bande 3g ou 4g à gain élevé
WO2010117491A3 (fr) * 2009-04-06 2011-01-13 Sheng Peng Antenne à large bande et à gain élevé
WO2010117491A2 (fr) * 2009-04-06 2010-10-14 Sheng Peng Antenne à large bande et à gain élevé
US11309619B2 (en) 2016-09-23 2022-04-19 Intel Corporation Waveguide coupling systems and methods
WO2018063627A1 (fr) * 2016-09-27 2018-04-05 Intel Corporation Connecteur de guide d'ondes doté d'un lanceur à fente conique
US10566672B2 (en) 2016-09-27 2020-02-18 Intel Corporation Waveguide connector with tapered slot launcher
US10256521B2 (en) 2016-09-29 2019-04-09 Intel Corporation Waveguide connector with slot launcher
US11394094B2 (en) 2016-09-30 2022-07-19 Intel Corporation Waveguide connector having a curved array of waveguides configured to connect a package to excitation elements
WO2018111211A1 (fr) * 2016-12-16 2018-06-21 Aselsan Elektroni̇k Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Système d'antenne radar mono-impulsion
KR101864070B1 (ko) * 2017-03-02 2018-06-01 국방과학연구소 비발디 급전 하이브리드 혼 안테나
KR101890363B1 (ko) * 2017-08-22 2018-08-21 국방과학연구소 안테나 장치
CN112038759A (zh) * 2020-09-23 2020-12-04 中国航空工业集团公司雷华电子技术研究所 一种超宽带多通道集成式喇叭天线
CN113258280A (zh) * 2021-05-12 2021-08-13 长春理工大学 一种Ka波段爪形宽带对拓Vivaldi天线
CN113258280B (zh) * 2021-05-12 2022-07-08 长春理工大学 一种基于爪形槽的Ka波段宽带对拓Vivaldi天线

Also Published As

Publication number Publication date
GB8620882D0 (en) 1987-01-14
GB2194681B (en) 1990-04-18
KR880003452A (ko) 1988-05-17
GB2194681A (en) 1988-03-09
EP0257881A3 (fr) 1989-09-20
JPS63100804A (ja) 1988-05-02

Similar Documents

Publication Publication Date Title
EP0257881A2 (fr) Antenne à fente constituée par un guide d'onde et réseau de celle-ci
EP0447218B1 (fr) Antenne microbande pour plusieurs fréquences
US5070340A (en) Broadband microstrip-fed antenna
US5359338A (en) Linear conformal antenna array for scanning near end-fire in one direction
US4755820A (en) Antenna device
US6424298B1 (en) Microstrip array antenna
US5675345A (en) Compact antenna with folded substrate
US4843403A (en) Broadband notch antenna
US5008681A (en) Microstrip antenna with parasitic elements
US4839663A (en) Dual polarized slot-dipole radiating element
US2914766A (en) Three conductor planar antenna
EP0531800A1 (fr) Source à fente évasée asymétriquement
EP0565051B1 (fr) Radiateur plane à large bande utilisable dans un réseau radiateur
US4833482A (en) Circularly polarized microstrip antenna array
EP0455493A2 (fr) Antenne à fente élargissante
JPH0671171B2 (ja) 広帯域アンテナ
US5717410A (en) Omnidirectional slot antenna
EP0349069A1 (fr) Antenne-réseau à phase commandable à double polarisation
US3987454A (en) Log-periodic longitudinal slot antenna array excited by a waveguide with a conductive ridge
US6087988A (en) In-line CP patch radiator
GB2169453A (en) Radio frequency antenna system
US4260988A (en) Stripline antenna for microwaves
EP0493014A1 (fr) Antenne microbande
US4507664A (en) Dielectric image waveguide antenna array
US11450973B1 (en) All metal wideband tapered slot phased array antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19900321

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CHUA, LYE WHATT