EP0254005B1 - Method for the improvement of the regularity with a piston engine and engine running according to this method - Google Patents
Method for the improvement of the regularity with a piston engine and engine running according to this method Download PDFInfo
- Publication number
- EP0254005B1 EP0254005B1 EP87108248A EP87108248A EP0254005B1 EP 0254005 B1 EP0254005 B1 EP 0254005B1 EP 87108248 A EP87108248 A EP 87108248A EP 87108248 A EP87108248 A EP 87108248A EP 0254005 B1 EP0254005 B1 EP 0254005B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- shaft
- torsional vibrations
- engine
- torsional
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 29
- 238000012937 correction Methods 0.000 claims description 30
- 238000002347 injection Methods 0.000 claims description 27
- 239000007924 injection Substances 0.000 claims description 27
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 8
- 239000000446 fuel Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 2
- 239000013598 vector Substances 0.000 description 18
- 230000002706 hydrostatic effect Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B75/20—Multi-cylinder engines with cylinders all in one line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
- F02D41/1498—With detection of the mechanical response of the engine measuring engine roughness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/16—Engines characterised by number of cylinders, e.g. single-cylinder engines
- F02B75/18—Multi-cylinder engines
- F02B2075/1804—Number of cylinders
- F02B2075/1824—Number of cylinders six
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
- F02D2041/286—Interface circuits comprising means for signal processing
- F02D2041/288—Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1015—Engines misfires
Definitions
- the present invention relates to a method for improving the synchronism with a three- or multi-cylinder reciprocating piston internal combustion engine in the stationary operating state, in which the indicated mean pressure of at least one cylinder is changed, and to a reciprocating piston internal combustion engine for practicing the method.
- the control and monitoring of the synchronism of such reciprocating internal combustion engines has hitherto been carried out by monitoring the speed of the output shaft or the shaft of a machine driven by the engine.
- the regulation itself is carried out by changing the injection quantity of all injection pumps, which are connected to the individual cylinders in a certain cycle.
- the invention provides a remedy here and ensures that the reciprocating piston internal combustion engine has a significantly improved synchronism behavior in this respect.
- such a method for improving the synchronism of a three- or multi-cylinder reciprocating piston internal combustion engine is characterized in that the torsional vibrations of at least one order of the drive shaft system are minimized by:
- the torsional vibrations on the drive shaft or on a shaft kinematically connected to the drive shaft are measured with a torsional vibration measuring device
- the measured torsional vibrations are subjected to a Fourier analysis for torsional vibrations
- correction factors for the change in the indicated mean cylinder pressure of at least two cylinders are determined from the determined amounts and phase positions of the torsional vibration amplitudes and from the comparison with predetermined torsional vibrations caused by the individual cylinders,
- the correction factors cause a change in the injection quantity per injection process of the injection pump in at least one of these two cylinders.
- the invention further relates to a reciprocating piston internal combustion engine according to claim 5 for carrying out the method and advantageous special embodiments of the method and the reciprocating piston internal combustion engine.
- the six-cylinder two-stroke diesel engine 1 with turbocharger 11 and with the shaft 12 drives a generator 2, the rotor of the generator, such as drawn, mounted directly on the extension of the shaft 12 or the rotor shaft can be coupled to the shaft 12 of the diesel engine 1.
- the torsional vibrations or their amplitudes and angular position are continuously measured with the torsional vibration meter 3 at the shaft end 123 and fed to the Fourier analyzer 4.
- the Fourier decomposition of the torsional vibrations into members of different orders is carried out.
- the cranking method is a simple approximation method, for example, the torsional vibrations are minimized iteratively, i.e. in several cycles or steps. Correction signals are generated at each step and are supplied to the relevant injection pumps 61, 62, 63, 64, 65, 66. Due to the corrections, a new steady state is established in the course of the diesel engine 1. After this has been reached, the torsional vibrations are measured and analyzed again in a further control cycle, and other correction signals are generated on the basis of the analysis results and the torsional vibrations are further minimized.
- the control cycle advantageously extends over the time of several working cycles (revolutions) of the diesel engine 1. This ensures that the stochastic changes in the indicated cylinder mean pressure from ignition to ignition of the individual cylinders 161, 162, 163, 164, 165, 166 are the ones to be evaluated Only negligibly affect the torsional vibration signal.
- torsional vibrations e.g. a device available on the market under the name angle encoder (optical incremental encoder, type G 70 from Litton).
- An injection pump that is suitable for changing the injection quantity is e.g. described in DE-OS 31 00 725.2-13.
- Fourier analyzers are also known and commercially available (e.g. CAT 2515 from Genrad).
- the two-stroke diesel engine 1 from FIG. 2 with the six cylinders 161 to 166 drives the marine propeller 7 via the shaft 22.
- the other end of the crankshaft 22 of the diesel engine is connected via a clutch 18 to a transmission gear 8, which drives a hydraulic pump 81 .
- This pump 81 is part of a hydrostatic transmission which, together with the hydrostatic motor 82, forms a closed hydraulic pressure medium circuit.
- the supply of this circuit with hydrostatic pressure medium, e.g. Oil is carried out by the low pressure station 83, which contains a pressure medium reservoir, a feed pump, an overflow line with an overflow valve, filter, etc.
- the hydrostatic motor 82 drives the electric generator 9 via a shaft 89.
- the speed of the shaft 89 and thus of the generator 9 is monitored by the sensor 84, from which the measured actual value is fed to the speed controller 85 and in which the actual value is also included the specified target value is compared.
- the generator delivers the electrical energy to the vehicle electrical system 100.
- the quantity of pressure medium flowing through the hydrostatic motor 82 is prevented by the control signals being fed via the signal line 86 to an actuator in the motor 82.
- the torsional vibration meter 3 measures the torsional vibrations of the shaft of the generator 9.
- the determination of the correction signals which are fed to the injection pumps 61, 62, 63, 64, 65, 66 are carried out in the same way as for the system from FIG. 1 described, determined.
- the torsional vibrations generated by the diesel engine 1 are partially transmitted to the engine 82 and the shaft of the generator via the hydrostatic circuit.
- the shaft 17 drives the diesel engine 1 via the coupling 71 and shaft 73 the adjustable ship propeller 72.
- the shaft 17 of the diesel engine 1 on the other side of the diesel engine drives the generator 9 via a transmission 91, which outputs the electrical current to the electrical system 100.
- the torsional vibrations or their amplitudes and angular position are measured with the torsional vibration meter 3 on the shaft of the generator and continuously fed to the Fourier analyzer 4.
- the Fourier decomposition of the torsional vibrations into links of different orders is carried out in the Fourier analyzer 4 and a comparison with predefined target values then takes place.
- the correction signals for the change in the injection quantity of the injection pumps 61, 62, 63, 64, 65, 66 are in the injection pump controller 5, which comprises a computer, on the basis of, for example, the elements of the first and second order, e.g. determined by the Kurbeister method, which is explained with reference to FIG. 3.
- the shaft 17 of the diesel engine drives over the Coupling 71, the shaft 73 with the adjustable ship propeller 72.
- the gear 92 is connected as a secondary gear to the shaft of the diesel engine 1 and drives the generator 9 via a coupling 94.
- the generator supplies electrical energy to the vehicle electrical system 100.
- the torsional vibrations of the Shaft of the generator with the torsional vibration meter 3 continuously determined according to amplitude and angular position and fed to the Fourier analyzer 4.
- the torsional vibrations are broken down into links of different orders in the Fourier analyzer 4 and then compared with predetermined target values.
- the shaft 17 of the diesel engine 1 drives the shaft 73 with the adjustable ship propeller 72 via the coupling 71.
- the transmission 93 is driven directly by the shaft 73 and in turn drives the generator via the coupling 94 9.
- the generator 9 supplies electrical energy to the vehicle electrical system 100.
- the amplitude and angular position of the torsional vibrations are continuously measured on the shaft of the generator 9 and fed to the Fourier analyzer 4.
- the torsion vibrations are broken down into the members of different orders, and then a comparison with predetermined target values takes place.
- the correction signals for the injection pumps 61, 62, 63, 64, 65 and 66 can be determined in the systems of FIGS. 2A, 2B and 2C in the same way as described for FIG. 1.
- the firing order of the engine is 1, 6, 2, 4, 3, 5.
- the calculated torsional vibration vectors 191 to 196 are first order of the shaft of a six-cylinder engine for all six cases that one of the cylinders has a 5% reduction in yields mean indicated cylinder pressure, shown in dashed lines.
- These vectors 191 to 196 form the so-called first-order correction crank stars.
- the ends of these vectors 191 to 196 lie on a circle whose center M does not lie in the zero point P of the pole diagram, but is shifted by a vector 190.
- This vector 190 corresponds to the ideal torsional vibration vector, i.e. fully balanced engine.
- This calculated Kurbeistern 191 'to 196' is now used to determine the corrections to the mean indicated cylinder pressure in one or two cylinders.
- each fault can be attributed to two faulty cylinders, for example, generally makes it necessary to carry out the iteration iteratively, ie in several steps.
- a single correction factor for only one cylinder results when the Vek the measured disturbance coincides with one of the vectors 191 'to 196'.
- correction factors for the first-order disturbances has been explained here for the sake of clarity using a graphic example, it is expedient to calculate the correction factors in the injection pump control 5 arithmetically, i.e. to be determined numerically.
- the correction factors for minimizing the second-order torsional vibrations can also be determined in an analogous manner.
- the described way of minimizing the torsional vibrations has proven to be very favorable in practice.
- the invention is in no way limited to the exemplary embodiments described, but rather comprises any method for improving the synchronism of reciprocating piston internal combustion engines, in which correction factors acting on the indicated medium pressure are determined in a different way.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
Description
Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Verbessern des Gleichlaufs mit einer drei- oder mehrzylindrigen Hubkolbenbrennkraftmaschine im stationären Betriebszustand, bei der der indizierte Mitteldruck mindestens eines Zylinders verändert wird, sowie auf eine Hubkolbenbrennkraftmaschine zum Ausüben des Verfahrens.The present invention relates to a method for improving the synchronism with a three- or multi-cylinder reciprocating piston internal combustion engine in the stationary operating state, in which the indicated mean pressure of at least one cylinder is changed, and to a reciprocating piston internal combustion engine for practicing the method.
Die Steuerung und Ueberwachung des Gleichlaufs derartiger Hubkolbenbrennkraftmaschinen, wie beispielsweise Dieselmotoren, erfolgt bisher mit der Ueberwachung der Drehzahl der Abtriebswelle oder der Welle einer vom Motor angetriebenen Maschine. Die Regelung selbst erfolgt über die Aenderung der einspritzmenge aller Einspritzpumpen, welche in einem bestimmten Zylus den einzelnen Zylindem zugeschaltet werden.The control and monitoring of the synchronism of such reciprocating internal combustion engines, such as, for example, diesel engines, has hitherto been carried out by monitoring the speed of the output shaft or the shaft of a machine driven by the engine. The regulation itself is carried out by changing the injection quantity of all injection pumps, which are connected to the individual cylinders in a certain cycle.
Diese bekannte Art der Regelung berücksichtigt und regelt die Konstanz der Drehzahl in dem Sinne, dass mit der Veränderung der Einspritzmenge diese für sämtliche Zylinder in gleicher Weise verändert wird, wenn man davon ausgeht, dass die Einspritzmenge in jedem Zylinder gleich gross ist. Die Publikation C33/85 der Institution of Mechanical Engineers Conference 1985-2, Seite 15-24, (Mechanical Engineering Publications Limited, London) zeigt mit dem Beitrag "Vehicle Condition Monitoring and Fault Diagnosis" ein Messmodell und die Möglichkeit, um fehlbare Zylinder eines mehrzylindrigen Dieselmotors im stationären Zustand eines Kurbelwellenumgangs festzustellen. Drehzahlschwankungen werden dabei mittels Fourier-Analyse beobachtet.This known type of control takes into account and regulates the constancy of the speed in the sense that with the change in the injection quantity, this is changed in the same way for all cylinders if it is assumed that the injection quantity in each cylinder is the same. The publication C33 / 85 of the Institution of Mechanical Engineers Conference 1985-2, page 15-24, (Mechanical Engineering Publications Limited, London) shows with the article "Vehicle Condition Monitoring and Fault Diagnosis" a measurement model and the possibility to detect a failed cylinder multi-cylinder diesel engine in the steady state of a crankshaft deal. Speed fluctuations are observed using Fourier analysis.
Eine weitere Art der Drehzahlregelung wird in EP-A 0 113510 beschrieben, indem bezogen auf eine gemittelte Betriebsdrehzahl die Drehzahlabweichung respektive der Zeitunterschied für ein vorbestimmtes Drehwinkelintervall an der Motorwelle gemessen wird, diese Drehzahlabweichung jeweils zyklisch mit der Zündfolge einem bestimmten Zylinder zugeteilt wird und indem entgegen zur Drehzahlabweichung auf die Einspritzzeit und damit die Einspritzmenge an den zugeteilten Zylindern eine Regelung einwirkt, um eine gleichgrosse Drehzahlschwankung über alle an der Motorwelle gemessenen Drehwinkelintervalle zu erreichen.Another type of speed control is described in EP-A 0 113510 in that the speed deviation or the time difference for a predetermined rotation angle interval is measured on the motor shaft based on an average operating speed, this speed deviation is cyclically allocated to a specific cylinder with the firing sequence and in the opposite way A control system acts on the deviation of the speed on the injection time and thus the injection quantity on the allocated cylinders, in order to achieve an equally large speed fluctuation over all rotation angle intervals measured on the engine shaft.
Derartige Regelungen nehmen kaum Rücksicht auf die Torsionsschwingungen des beteiligten Wellensystems und deren Auswirkungen auf die angetriebenen Aggregate, die somit bei bisher bekannten Drehzahlregelung unberücksichtigt bleiben.Such regulations hardly take into account the torsional vibrations of the shaft system involved and their effects on the driven units, which are therefore not taken into account in the previously known speed control.
Es gibt Fälle, wo diese Art der Regelung nicht ausreichend ist und bei denen die durch Torsionsschwingungen der Wellen entstehenden Drehzahlunterschiede oder dadurch entstehende Aenderungen der Winkelgeschwindigkeit innerhalb einer Umdrehung schon störend sein können. Beispielsweise kann dieser durch Torsionsschwingungen erzeugte Ungleichlauf in dieselgetriebenen elektrischen Maschinen, wie Generatoren, sich störend auswirken. Bei derartigen Anlagen, die etwa mit langsamlaufenden Zweitakt-Dieselmotoren (z.B. 80 bis 120/min) angetrieben werden, liegt in vielen Fällen die Erregungsfrequenz für Torsionsschwingungen erster und zweiter Ordnung der Welle (einfache oder doppelte Drehfrequenz) in der Nähe der elektrischen Eigenfrequenz des Generators. Dabei kann der Fall eintreten, dass die Amplituden der Torsionsschwingungen dieser Ordnungen dynamisch mehrfach vergrössert werden, wobei im Verbundbetrieb das mechanische Wellensystem als Ganzes gegen das starre Verbundnetz schwingt, was beispielsweise zu Leistungspendelungen führen kann. In einem selbständigen Netz (Inselbetrieb) wiederum kann dies Lichtflimmern zur Folge haben. Die Erfindung schafft hier Abhilfe und gewährleistet ein in dieser Hinsicht wesentlich verbessertes Gleichlaufverhalten der Hubkolbenbrennkraftmaschine. Erfindungsgemäss ist ein derartiges Verfahren zum Verbessern des Gleichlaufs einer drei- oder mehrzylindrigen Hubkolbenbrennkraftmaschine dadurch gekennzeichnet, dass die Torsionsschwingungen wenigstens einer Ordnung des Antriebswellensystems minimiert werden, indemThere are cases where this type of control is not sufficient and in which the speed differences resulting from torsional vibrations of the shafts or changes in the angular velocity resulting therefrom can be disruptive within one revolution. For example, this uneven running caused by torsional vibrations in diesel-powered electrical machines, such as generators, can have a disruptive effect. In systems of this type, which are driven with slow-running two-stroke diesel engines (e.g. 80 to 120 / min), the excitation frequency for torsional vibrations of the first and second order of the shaft (single or double rotational frequency) is in many cases close to the electrical natural frequency of the generator . The case may arise that the amplitudes of the torsional vibrations of these orders are dynamically increased several times, with the mechanical shaft system as a whole vibrating against the rigid interconnected network in combined operation, which can lead, for example, to power fluctuations. In an independent network (stand-alone operation), this can result in flickering light. The invention provides a remedy here and ensures that the reciprocating piston internal combustion engine has a significantly improved synchronism behavior in this respect. According to the invention, such a method for improving the synchronism of a three- or multi-cylinder reciprocating piston internal combustion engine is characterized in that the torsional vibrations of at least one order of the drive shaft system are minimized by:
in einem ersten Verfahrensschritt die Torsionsschwingungen an der Antriebswelle oder an eine kinematisch mit der Antriebswelle verbundenen Welle mit einer Torsionsschwingungs-Messvorrichtung gemessen werden,in a first method step, the torsional vibrations on the drive shaft or on a shaft kinematically connected to the drive shaft are measured with a torsional vibration measuring device,
in einem zweiten Verfahrensschritt die gemessenen Torsionsschwingungen einer Fourier-Analyse für Torsionsschwingungen unterworfen werden,in a second process step, the measured torsional vibrations are subjected to a Fourier analysis for torsional vibrations,
in einem dritten Verfahrensschritt in einem Rechner aus den ermittelten Beträgen und Phasenlagen der Torsionsschwingungsamplituden und aus dem Vergleich mit vorbestimmten Torsionsschwingungen, die durch die einzelnen Zylinder hervorgerufen werden, Korrekturfaktoren für die Veränderung des indizierten Zylindermitteldrucks mindestens zweier Zylinder bestimmt werden,in a third method step in a computer, correction factors for the change in the indicated mean cylinder pressure of at least two cylinders are determined from the determined amounts and phase positions of the torsional vibration amplitudes and from the comparison with predetermined torsional vibrations caused by the individual cylinders,
in einem vierten Verfahrensschritt die Korrekturfaktoren eine Veränderung der Einspritzmenge pro Einspritzvorgang der Einspritzpumpe bei mindestens einem dieser zwei Zylinder bewirken.in a fourth method step, the correction factors cause a change in the injection quantity per injection process of the injection pump in at least one of these two cylinders.
Die Erfindung betrifft ferner eine Hubkolbenbrennkraftmaschine nach Anspruch 5 zur Ausführung des Verfahrens sowie vorteilhafte besondere Ausführungsformen des Verfahrens bzw. der Hubkolbenbrennkraftmaschine.The invention further relates to a reciprocating piston internal combustion engine according to
Die Erfindung wird am Beispiel der Zeichnungen näher erläutert. Es zeigen:
- Fig. 1 schematisch einen sechszylindrigen Dieselmotor mit Generator und erfindungsgemässer Anlage für die Verbesserung des Gleichlaufs des Dieselmotors;
- Fig. 2, 2A, 2B, 2C je schematisch einen sechszylindigen Schiffsdieselmotor mit nebengeschaltetem Bordnetz-Generator und erfindungsgemisser Anlage für die Verbesserung des Gleichlaufs des Dieselmotors;
- Fig. 3 das Poldiagramm der Torsionsschwingungen erster Ordnung der Welle eines Sechszylinder-Dieselmotors bzw. einer vom Dieselmotor angetriebenen Welle.
- Figure 1 shows schematically a six-cylinder diesel engine with generator and system according to the invention for improving the synchronism of the diesel engine.
- 2, 2A, 2B, 2C each schematically show a six-cylinder marine diesel engine with a connected on-board electrical system generator and a system according to the invention for improving the synchronism of the diesel engine;
- 3 shows the pole diagram of the torsional vibrations of the first order of the shaft of a six-cylinder diesel engine or of a shaft driven by the diesel engine.
Der sechszylindrige Zweitakt-Dieselmotor 1 mit Aufladegruppe 11 und mit der Welle 12 treibt einen Generator 2, wobei der Rotor des Generators, wie gezeichnet, direkt auf der Verlängerung der Welle 12 montiert oder die Rotorwelle mit der Welle 12 des Dieselmotors 1 gekuppelt sein kann. Die Torsionsschwingungen bzw. deren Amplituden und Winkellage werden mit dem Torsionsschwingungsmesser 3 am Wellenende 123 laufend gemessen und dem Fourier-Analysator 4 zugeführt. Im Fourier-Analysator 4 wird die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung durchgeführt.The six-cylinder two-
Vorerst spritzen die Einspritzpumpen 61, 62, 63, 64, 65, 66, von denen je eine einem Zylinder 161, 162, 163, 164, 165, 166 zugeordnet ist, vorbestimmte, unter sich gleiche Mengen Brennstoff in die Zylinder. Sobald der Dieselmotor den stationären Betriebszustand erreicht hat, wird der Schalter 45 geschlossen und die Fourier-Signale des Fourier-Analysators gelangen nun zur Einspritzpumpensteuerung 5, welche einen Rechner umfasst, der aufgrund beispielsweise der Glieder erster und zweiter Ordnung nach z.B. der Kurbelsternmethode, die anhand von Fig. 3 erklärt wird, und durch Vergleich mit einem Sollzustand bestimmt:
- 1. welcher oder welche der
161, 162, 163, 164, 165, 166 die Anregung der Torsionsschwingungen dieser Ordnung verursachen undZylinder - 2. welche Korrektur der Einspritzmenge in welchen Zylindem erforderlich ist, um die Torsionsschwingungen dieser Ordnung zu minimieren.
- 1. Which or which of the
161, 162, 163, 164, 165, 166 cause the excitation of the torsional vibrations of this order andcylinders - 2. Which correction of the injection quantity in which cylinders is required in order to minimize the torsional vibrations of this order.
Da es sich bei der Kurbelstemmethode beispielsweise um ein einfaches Näherungsverfahren handelt, erfolgt die Minimierung der Torsionsschwingungen iterativ, d.h. in mehreren Zyklen oder Schritten. Bei jedem Schritt werden Korrektursignale erzeugt, die den betreffenden Einspritzpumpen 61, 62, 63, 64, 65, 66 zugeführt werden. Aufgrund der Korrekturen stellt sich im Lauf des Dieselmotors 1 ein neuer stationärer Zustand ein. Nachdem dieser erreicht ist, werden in einem weiteren Regelzyklus wieder die Torsionsschwingungen gemessen und analysiert und aufgrund der Analyseergebnisse andere Korrektursignale erzeugt und die Torsionsschwingungen weiter minimiert.Since the cranking method is a simple approximation method, for example, the torsional vibrations are minimized iteratively, i.e. in several cycles or steps. Correction signals are generated at each step and are supplied to the
In der Regel wird ein günstiger stationärer Betriebszustand mit minimalen, nicht mehr störenden Torsionsschwingungen z.B. erster und zweiter Ordnung der Welle 12 oder auch höhrer Ordnungen nach einigen Regelzyklen der beschriebenen Art erreicht.As a rule, a favorable steady-state operating condition with minimal torsional vibrations that are no longer disruptive, e.g. First and second order of the
Der Regelzyklus erstreckt sich dabei mit Vorteil über die Zeit mehrerer Arbeitszyklen (Umdrehungen) des Dieselmotors 1. Damit wird erreicht, dass die stochastischen Aenderungen des indizierten Zylindermitteldrucks von Zündung zu Zündung der einzelnen Zylinder 161, 162, 163, 164, 165, 166 das auszuwertende Torsionsschwingungssignal nur in vernachlässigbarer Weise beeinträchtigen.The control cycle advantageously extends over the time of several working cycles (revolutions) of the
Für die Erfassung der Torsionsschwingungen eignet sich z.B. eine unter der Bezeichnung Winkelkodierer (optical incremental encoder, Typ G 70 der Firma Litton) im Markt erhältliche Vorrichtung. Eine Einspritzpumpe, die sich für die Änderung der Einspritzmenge eignet, ist z.B. in der DE-OS 31 00 725.2-13 beschrieben. Fourier-Analysatoren sind ebenfalls bekannt und im Handel erhältlich (z.B. CAT 2515 der Firma Genrad).For the detection of the torsional vibrations e.g. a device available on the market under the name angle encoder (optical incremental encoder, type G 70 from Litton). An injection pump that is suitable for changing the injection quantity is e.g. described in DE-OS 31 00 725.2-13. Fourier analyzers are also known and commercially available (e.g. CAT 2515 from Genrad).
Der Zweitakt-Dieselmotor 1 von Fig. 2 mit den sechs Zylindern 161 bis 166 treibt über die Welle 22 den Schiffsantriebsporpeller 7. Das andere Ende der Kurbelwelle 22 des Dieselmotors ist über eine Kupplung 18 mit einem Uebersetzungsgetriebe 8 verbunden, welches eine hydraulische Pumpe 81 antreibt. Diese Pumpe 81 ist ein Teil eines hydrostatischen Getriebes, das zusammen mit dem hydrostatischen Motor 82 einen geschlossenen hydraulischen Druckmittelkreislauf bildet. Die Versorgung dieses Kreislaufs mit hydrostatischem Druckmittel, z.B. Oel, erfolgt durch die Niederdruckstation 83, die ein Druckmittelreservoir, eine Zubringerpumpe, eine Ueberströmleitung mit Ueberströmventil, Filter usw. enthält. Der hydrostatische Motor 82 treibt über eine Welle 89 den elektrischen Generator 9. Die Drehzahl der Welle 89 und damit des Generators 9 wird mit dem Messfühler 84 überwacht, von welchem der gemessene Ist-Wert dem DrehzahlRegler 85 zugeführt und in weichem der Ist-Wert mit dem vorgegebenen Soll-Wert verglichen wird. Der Generator gibt die elektrische Energie an das Bordnetz 100 ab. Bei Abweichungen von Ist- und Soll-Wert wird die Menge des den hydrostatischen Motor 82 durchströmenden Druckmittels verhindert, indem die Reglersignale über die Singalleitung 86 einem Stellorgan im Motor 82 zugeführt werden. In diesem Beispiel misst der Torsionsschwingungsmesser 3 die Torsionsschwingungen der Welle des Generators 9. Die Bestimmung der Korrektursignale, welche den Einspritzpumpen 61, 62, 63, 64, 65, 66 zugeführt werden, werden in gleicher Weise, wie oben für die Anlage von Fig. 1 beschrieben, bestimmt. Die vom Dieselmotor 1 erzeugten Torsionsschwingungen werden über den hydrostatischen Kreislauf auf den Motor 82 und die Welle des Generators teilweise übertragen.The two-
Bei der in Fig. 2A dargestellten Schiffsdieselanlage treibt die Welle 17 den Dieselmotor 1 über die Kupplung 71 und Welle 73 den verstellbaren Schiffsantriebspropeller 72. Die Welle 17, des Dieselmotors 1 auf der anderen Seite des Dieselmotors treibt über ein Getriebe 91 den Generator 9, der den elektrischen Strom an das Bordnetz 100 abgibt. Die Torsionsschwingungen bzw. deren Amplituden und Winkellage werden mit dem Torsionsschwingungsmesser 3 an der Welle des Generators gemessen und laufend dem Fourier-Analysator 4 zugeführt. Im FourierAnalysator 4 wird die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung durchgeführt und anschliessend findet ein Vergleich mit vorgegebenen Sollwerten statt. Die Korrektursignale für die Veränderung der Einspritzmenge der Einspritzpumpen 61, 62, 63, 64, 65, 66 werden in der EinspritzpumpenSteuerung 5, welche einen Rechner umfasst, aufgrund beispielsweise der Glieder erster und zweiter Ordnung, z.B. nach der Kurbeisternmethode, die anhand von Fig. 3 erklärt wird, bestimmt.2A, the
Bei der in Fig. 2B dargestellten Schiffsdieselanlage treibt die Welle 17 des Dieselmotors über die Kupplung 71 die Welle 73 mit dem verstellbaren Schiffsantriebspropeller 72. Das Getriebe 92 ist als Nebengetriebe an der Welle des Dieselmotors 1 angeschlossen und treibt über eine Kupplung 94 den Generator 9. Der Generator liefert elektrische Energie an das Bordnetz 100. Auch hier werden die Torsionsschwingungen der Welle des Generators mit dem Torsionsschwingungsmesser 3 nach Amplitude und Winkellager dauernd bestimmt und dem Fourier-Analysator 4 zugeführt. Auch hier erfolgt im Fourier-Analysator 4 die Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung und anschliessend der Vergleich mit vorgegebenen Sollwerten.2B, the
Bei der in Fig. 2C dargestellten Schiffsdieselanlage treibt die Welle 17 des Dieselmotors 1 über die Kupplung 71 die Welle 73 mit dem verstellbaren Schiffsantriebspropeller 72. In dieser Anlage wird das Getriebe 93 direkt von der Welle 73 angetrieben und treibt seinerseits über die Kupplung 94 den Generator 9. Der Generator 9 liefert elektrische Energie an das Bordnetz 100. wiederum werden an der Welle des Generators 9 Amplitude und Winkellage der Torsionsschwingungen laufend gemessen und dem Fourier-Analysator 4 zugeführt. Im Fourier-Analysator 4 erfolgt die Fourier-Zerlegung der Torsionsschwingungen in die Glieder verschiedener Ordnung und anschliessend findet ein Vergleich mit vorgegebenen Sollwerten statt. Die Bestimmung der Korrektursignale für die Einspritzpumpen 61, 62, 63, 64, 65 und 66 kann bei den Anlagen von Fig. 2A, 2B und 2C in gleicher Weise wie zu Fig. 1 beschrieben erfolgen.In the marine diesel system shown in FIG. 2C, the
Die Verbesserung des Gleichlaufs des Dieselmotors 1 und auch der vom Dieselmotor angetriebenen Generatoren 9 erfordert, dass sich der Dieselmotor im wesentlichen in einem stationären Betriebszustand befindet. Dies ist bei Schiffsdieselanlagen allgemein, und vermehrt noch bei Schiffsdieselanlagen mit verstellbaren Schiffsantriebspropeller, im Fahrbetrieb über grössere Zeiträume der Fall. Die hydraulischen oder mechanischen Getriebe 91, 92, 93 vermögen beispielsweise die Drehzahl des Rotors innerhalb gewisser Grenzen von Drehzahländerungen, wie dies bei Schiffsantrieben mit nichtverstellbarem Schiffsantriebspropeller der Fall sein kann, konstant zu halten. Da ein Schiff über mehrere Bordgeneratoren verfügt, wird häufig die vom Antriebsdieselmotor getriebene Gruppe dem Bordnetz nur im Fahrbetrieb auf offener See, wo der Antriebsmotor mit konstanter Drehzahl läuft, zugeschaltet.Improving the synchronism of the
Es ist auch möglich, den Rotor des Generators 9 direkt auf die Welle 73 zu setzen und den Generator für eine bestimmte Drehzahl auszulegen, die der Drehzahl des Dieselmotors bei Dauerbetrieb entspricht. Damit würde dann beispielsweise in einer Anlage, wie in Fig. 2C dargestellt, das Getriebe 93 und die Kupplung 94 entfallen. Die Torsionsschwingungen würden in diesem Fall mit dem Torsionsschwingungsmesser 3 an der Welle 73 oder an der Welle 17 gemessen.It is also possible to place the rotor of the
Anhand von Fig. 3 wird die Kurbelsternmethode für die Bestimmung der Korrekturfaktoren zur Korrektur der Einspritzmenge für die Minimierung der Torsionsschwingungen erster Ordnung erläutert. Im Kurbelsternverfahren geht man beispielsweise von den vereinfachenden Annahmen aus, dass
- - der mittlere indizierte Zylinderdruck eines Zylinders nicht
mehr als 5 % vom Soll-Wert abweicht; - - sich die Störamplitude linear mit der Störung ändert und die Phase gleich bleibt;
- - die gemessene Störung, d.h. eine gemessene Torsionsschwingung durch Korrektur des mittleren indizierten Zylinderdrucks von zwei oder in Sonderfällen einem Zylinder minimiert werden kann, d.h. die Störung durch die entsprechenden Zylinder erzeugt wird.
- - the average indicated cylinder pressure of a cylinder does not deviate from the target value by more than 5%;
- - the interference amplitude changes linearly with the interference and the phase remains the same;
- - The measured disturbance, ie a measured torsional vibration can be minimized by correcting the mean indicated cylinder pressure of two or, in special cases, one cylinder, ie the disturbance is generated by the corresponding cylinder.
Die Zündfolge des Motors sei 1, 6, 2, 4, 3, 5. Im Poldiagramm 19 sind die berechneten Torsionsschwingungsvektoren 191 bis 196 erster Ordnung der Welle eines sechszylindrigen Motors für alle sechs Fälle, dass einer der Zylinder eine 5%-ige Reduktion des mittleren indizierten Zylinderdrucks erbringt, gestrichelt eingezeichnet. Diese Vektoren 191 bis 196 bilden den sogenannten Korrekturkurbelstern erster Ordnung. Die Enden dieser Vektoren 191 bis 196 liegen auf einem Kreis, dessen Mittelpunkt M nicht im Nullpunkt P des Poldiagramms liegt, sondern um einen Vektor 190 verschoben ist. Dieser Vektor 190 entspricht dem Torsionsschwingungsvektor des idealen, d.h. vollständig ausgeglichenen Motors.The firing order of the engine is 1, 6, 2, 4, 3, 5. In pole diagram 19, the calculated
Subtrahiert man von den einzelnen Vektoren 191 bis 196 je diesen Vektor 190, so erhält man den verschobenen Korrekturkurbeistern 191' bis 196'.If you subtract this
Dieser berechnete Kurbeistern 191' bis 196' dient nun für die Bestimmung der Korrekturen des mittleren indizierten Zylinderdrucks in einem oder zwei Zylindern.This calculated Kurbeistern 191 'to 196' is now used to determine the corrections to the mean indicated cylinder pressure in one or two cylinders.
wird nun beispielsweise an der Welle eine Torsionsschwingung S (Amplitude und Phase) gemessen und der Vektor in den verschobenen Korrekturkurbelstern eingezeichnet, so liegt S zwischen zwei Vektoren des verschobenen Korrekturkurbelsterns, in unserem Beispiel zwischen den Vektoren 191' und 196' oder fällt in die Richtung eines der Vektoren 191' bis 196'. Die Zerlegung des Amplituden-Vektors S in die beiden Vektoren si und s6 in Richtung der beiden Vektoren des Korrekturkurbelsterns wird also als Störung der beiden Zylinder 1 und 2 interpretiert. Da der Korrekturkurbeistem auf der Annahme von Minderleistungen der gestörten Zylinder basiert, aber die Zylinder auch zuviel leisten könnten, muss diese Zerlegung in der richtigen Vektorbasis gerechnet werden. Diese Basis ist ein Paar aus den Vektoren zi, zε, z3 und z4. Der Korrekturfaktor für die zwei Zylinder einer Paarkombination ergibt sich somit direkt aus dem Korrekturkurbeistern.If, for example, a torsional vibration S (amplitude and phase) is measured on the shaft and the vector is drawn in the shifted correction crank star, S lies between two vectors of the shifted correction crank star, in our example between vectors 191 'and 196' or falls in the direction one of the vectors 191 'to 196'. The decomposition of the amplitude vector S into the two vectors s i and s 6 in the direction of the two vectors of the correction crank star is thus interpreted as a disturbance of the two
In Wirklichkeit können einer oder mehrere Zylinder gestört sein. Die vereinfachte Annahme, jede Störung auf beispielsweise zwei gestörte Zylinder zurückzuführen, macht es in der Regel notwendig, die Minimierung iterativ, d.h. in mehreren Schritten durchzuführen. Ein einziger Korrekturfaktor für nur einen Zylinder ergibt sich dann, wenn der Vektor der gemessenen Störung mit einem der Vektoren 191' bis 196' zusammenfällt.In reality one or more cylinders can be disturbed. The simplified assumption that each fault can be attributed to two faulty cylinders, for example, generally makes it necessary to carry out the iteration iteratively, ie in several steps. A single correction factor for only one cylinder results when the Vek the measured disturbance coincides with one of the vectors 191 'to 196'.
Obschon die Berechnung der Korrekturfaktoren für die Störungen erster Ordnung hier aus Gründen der Anschaulichkeit an einem graphischen Beispiel erläutert wurde, ist es zweckmäßig, die Korrekturfaktoren in der Einspritzpumpensteuerung 5 rechnerisch, d.h. numerisch zu ermitteln. In analoger Weise können auch die Korrekturfaktoren für die Minimierung der Torsionsschwingungen zweiter Ordnung bestimmt werden.Although the calculation of the correction factors for the first-order disturbances has been explained here for the sake of clarity using a graphic example, it is expedient to calculate the correction factors in the
Die beschriebene Art der Minimierung der Torsionsschwingungen hat sich in der Praxis als sehr günstig erwiesen. Die Erfindung ist keineswegs auf die beschriebenen Ausführungsbeispiele beschränkt, sondern umfasst irgendwelche Verfahren zur Verbesserung des Gleichlaufs von Hubkolbenbrennkraftmaschinen, bei denen auf den indizierten Mitteldruck einwirkende Korrekturfaktoren in anderer Weise ermittelt werden.The described way of minimizing the torsional vibrations has proven to be very favorable in practice. The invention is in no way limited to the exemplary embodiments described, but rather comprises any method for improving the synchronism of reciprocating piston internal combustion engines, in which correction factors acting on the indicated medium pressure are determined in a different way.
Die Erfindung wurde anhand von Beispielen, die sich auf Dieselmotoren beziehen, erläutert. Prinzipiell ist das Verfahren aber für jede Hubkolbenbrennkraftmaschine mit volumetrischer Brennstoffzufuhr zu den Zylindern anwendbar.The invention has been explained on the basis of examples relating to diesel engines. In principle, however, the method can be used for any reciprocating piston internal combustion engine with a volumetric fuel supply to the cylinders.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2524/86A CH674398A5 (en) | 1986-06-23 | 1986-06-23 | |
CH2524/86 | 1986-06-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0254005A1 EP0254005A1 (en) | 1988-01-27 |
EP0254005B1 true EP0254005B1 (en) | 1990-01-31 |
Family
ID=4235730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87108248A Expired - Lifetime EP0254005B1 (en) | 1986-06-23 | 1987-06-06 | Method for the improvement of the regularity with a piston engine and engine running according to this method |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0254005B1 (en) |
JP (1) | JP2686261B2 (en) |
CH (1) | CH674398A5 (en) |
DE (1) | DE3761577D1 (en) |
DK (1) | DK162853C (en) |
FI (1) | FI89404C (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3004307B2 (en) * | 1990-03-23 | 2000-01-31 | 三菱重工業株式会社 | Diesel engine crankshaft torsional vibration suppressor |
DK9300283U4 (en) * | 1993-06-04 | 1994-10-14 | Man B & W Diesel Gmbh | Internal combustion engine |
AR000059A1 (en) * | 1994-11-07 | 1997-05-21 | Eaton Corp | Arrangement and method to measure and analyze the operation of a rotating component in the transmission line of a vehicle. |
DE19911096C2 (en) * | 1999-03-12 | 2001-03-01 | Gruendl & Hoffmann | Device for damping irregularities in the drive train of an internal combustion engine driven motor vehicle |
ITBO20030001A1 (en) | 2003-01-02 | 2004-07-03 | Ferrari Spa | METHOD FOR THE REDUCTION OF RESONANCE PHENOMENA IN A LINE |
US7082932B1 (en) * | 2004-06-04 | 2006-08-01 | Brunswick Corporation | Control system for an internal combustion engine with a supercharger |
WO2005124133A1 (en) * | 2004-06-17 | 2005-12-29 | Man B & W Diesel A/S | Vibration reduction by combustion parameter control of large diesel engines |
EP1739296B1 (en) * | 2005-06-30 | 2013-03-06 | Wärtsilä Schweiz AG | Method to optimise an operating parameter of a reciprocating combustion engine, and engine |
FI121150B (en) | 2005-11-30 | 2010-07-30 | Waertsilae Finland Oy | Apparatus and method for a piston combustion engine for identifying an uneven cylinder power ratio |
CN115217664B (en) * | 2021-06-07 | 2023-09-29 | 广州汽车集团股份有限公司 | Cylinder pressure control method, device and storage medium |
CN115031978B (en) * | 2022-04-07 | 2024-08-02 | 哈尔滨工程大学 | Diesel engine crankshaft torsional vibration model calibration method based on connecting rod transient stress |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4539956A (en) * | 1982-12-09 | 1985-09-10 | General Motors Corporation | Diesel fuel injection pump with adaptive torque balance control |
JPS6026131A (en) * | 1983-07-22 | 1985-02-09 | Toyota Motor Corp | Torque controller for internal-combustion engine |
JPH0650080B2 (en) * | 1984-05-30 | 1994-06-29 | 日本電装株式会社 | Fuel injection amount control method for internal combustion engine |
-
1986
- 1986-06-23 CH CH2524/86A patent/CH674398A5/de not_active IP Right Cessation
-
1987
- 1987-03-24 DK DK150087A patent/DK162853C/en not_active IP Right Cessation
- 1987-04-14 FI FI871638A patent/FI89404C/en not_active IP Right Cessation
- 1987-06-06 DE DE8787108248T patent/DE3761577D1/en not_active Expired - Lifetime
- 1987-06-06 EP EP87108248A patent/EP0254005B1/en not_active Expired - Lifetime
- 1987-06-22 JP JP62155239A patent/JP2686261B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE3761577D1 (en) | 1990-03-08 |
DK150087A (en) | 1987-12-24 |
CH674398A5 (en) | 1990-05-31 |
DK150087D0 (en) | 1987-03-24 |
EP0254005A1 (en) | 1988-01-27 |
FI871638A0 (en) | 1987-04-14 |
DK162853B (en) | 1991-12-16 |
FI89404B (en) | 1993-06-15 |
FI871638L (en) | 1987-12-24 |
FI89404C (en) | 1993-09-27 |
DK162853C (en) | 1995-12-04 |
JP2686261B2 (en) | 1997-12-08 |
JPS6312864A (en) | 1988-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1242738B1 (en) | Regulation of true running for diesel engines | |
EP0254005B1 (en) | Method for the improvement of the regularity with a piston engine and engine running according to this method | |
DE68927935T2 (en) | SYSTEM FOR CONTROLLING THE POWER OF AN ENGINE | |
DE102020104290B4 (en) | Misfire detection device for an internal combustion engine, misfire detection system for an internal combustion engine, data analysis device, controller for an internal combustion engine, method of detecting a misfire of an internal combustion engine, and reception executing device | |
EP3374617B1 (en) | Method for the combined identification of a piston stroke phase difference, an inlet valve stroke phase difference and an outlet valve stroke phase difference of an internal combustion engine | |
DE68923526T2 (en) | Method and device for the electronic control of a machine with several cylinders. | |
EP3523528B1 (en) | Method for the combined identification of an inlet valve stroke phase difference and an outlet valve stroke phase difference of an internal combustion engine with the aid of lines of the same amplitude | |
EP3523529B1 (en) | Method for the combined identification of the phase differences of the inlet valve stroke and the outlet valve stroke of an internal combustion engine with the aid of lines of equal phase position and amplitude | |
EP1664512B1 (en) | Method for controlling and regulating an internal combustion engine | |
DE102012210301B3 (en) | Determining the amount of energy released in a cylinder of an internal combustion engine by means of an evaluation of tooth times of a sensor disc connected to a crankshaft | |
EP0858555B1 (en) | Method of cylinder-selective control of an internal combustion engine | |
DE102008021581B3 (en) | Method for determining the rail pressure in a common rail system and common rail injection system | |
DE102016117342B4 (en) | Device for detecting a misfire | |
DE69204243T2 (en) | Method and device for measuring the torque of a thermal internal combustion engine, in particular taking into account the recirculation of the exhaust gas and the remaining burned gas and the excess of combustion medium. | |
DE4021886A1 (en) | FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE | |
DE4327912C1 (en) | Engine idling speed control module | |
DE102011077698B4 (en) | Method and device for controlling the smooth running of an internal combustion engine | |
DE102012110028B4 (en) | Learning device for an internal combustion engine | |
DE19926982C2 (en) | Engine speed calculator | |
EP3026245B1 (en) | Method for controlling a combustion machine | |
EP0463537B1 (en) | Method for off-bench determining of technical characteristics of combustion engines and their single cylinders, and apparatus making use of this method | |
DE102016204263B4 (en) | Method for equalizing cylinders of an internal combustion engine | |
WO1991017350A1 (en) | Process and device for determining the amount of fuel to be supplied to an internal-combustion engine with intermittent fuel injection during operation | |
EP0406765B1 (en) | Method and apparatus for regulating the rotational speed of a slow-running multi-cylinder diesel engine | |
EP1058108B1 (en) | Method and apparatus for diagnosing and controlling an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19880720 |
|
17Q | First examination report despatched |
Effective date: 19890118 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
ITF | It: translation for a ep patent filed | ||
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3761577 Country of ref document: DE Date of ref document: 19900308 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920505 Year of fee payment: 6 |
|
ITTA | It: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930606 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930606 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060614 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060616 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060619 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060630 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20070606 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20070606 |