EP0252315B1 - Combustion chamber device with a precombustion chamber for an understoichiometric combustion - Google Patents
Combustion chamber device with a precombustion chamber for an understoichiometric combustion Download PDFInfo
- Publication number
- EP0252315B1 EP0252315B1 EP87108265A EP87108265A EP0252315B1 EP 0252315 B1 EP0252315 B1 EP 0252315B1 EP 87108265 A EP87108265 A EP 87108265A EP 87108265 A EP87108265 A EP 87108265A EP 0252315 B1 EP0252315 B1 EP 0252315B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion
- combustion chamber
- air
- outlet duct
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C3/00—Combustion apparatus characterised by the shape of the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C6/00—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
- F23C6/04—Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/02—Disposition of air supply not passing through burner
Definitions
- the invention relates to a two-part combustion chamber device in which a first part is designed as a pre-combustion chamber for substoichiometric combustion and a second part as an after-combustion chamber.
- DE-B-1 021 646 a cylindrical combustion chamber is known, at the head of which there is a hemispherical dome. Partial combustion at the outlet of the dome can take place in this.
- This dome is to be regarded as a kind of evaporation burner, ie the heat generated in the closed head is used to heat and evaporate most of the combustion air or fuel.
- the task of this dome is the formation of an eddy current and the associated generation of a negative pressure. This negative pressure is said to be conducive to an increased inflow of combustion air through the flame tube openings.
- the dome geometry of DE-B-1 021 646 is closely linked to the flame tube geometry, ie a cylinder, because it is decisive for the inflow of secondary air into this cylinder.
- CH-A-163 686 shows a burner for liquid fuels, in which an oil feed line extends below the bottom of an elongated trough in its longitudinal axis. From this, fuel is injected into the trough through a series of nozzles and burned there. The injection takes place along a slightly raised back compared to the two side parts.
- Two band-shaped air jets are introduced on both sides of the upper end of the tub. The lower air jets are directed inwards against the respective side parts, are deflected and then flow into the combustion chamber in the same direction as the fuel jets and thereby pre-burn the fuel.
- the two upper band-shaped air jets are directed transversely to the longitudinal axis of the burner and are used for afterburning in the combustion chamber.
- this disadvantage is to be avoided in that, by means of a special design of the pre-combustion chamber by means of an air and fuel layer, its wall is shielded from the ignited combustion mixture and the temperature near the wall is thereby reduced to values which are permissible for the material of the combustion chamber walls are.
- the injection nozzles are arranged at the end of injection lines, which branch off from a fuel ring line surrounding the outlet duct and open directly radially inward of the outlet opening of the combustion air duct into the housing, the axes of the injection nozzles being essentially parallel to the tangent to the respective are directed adjacent wall part of the housing, and wherein for the supply of additional air, an annular additional air channel arranged at the end of the outlet channel is present.
- the injection nozzles are arranged at the end of a fuel line which opens into the housing coaxially with the axis of symmetry thereof, the axes of the injection nozzles being directed in such a way that the fuel jets shield the combustion air blown into the housing from the ignited fuel mixture, and where the additional air is taken from the combustion air intended for the afterburning chamber.
- the housing 2 of the pre-combustion chamber 1 shown schematically in FIG. 1 shows the shape of a heart with a cut-off tip in an axial section through the axis of rotation of the rotary body. In their place, the housing ends in an outlet channel 3 for the incompletely burned fuel mixture generated in the housing 2.
- a fuel ring line 4 for the liquid fuel is provided in the lower part of the housing 2 at a distance from the same. This passes from a fuel tank (not shown) via a feed line 5 into the ring line 4. From this ring line, a number branches off, uniformly distributed over the circumference, hook-shaped curved injection lines 6, which end within the outlet channel 3 in injection nozzles 7, from which fuel jets 8 are approximately parallel emerge towards the inner surface of the housing 2. Radially inward of the injection lines 6 is a rotating body formed baffle 9, which, together with the outer surface of the housing 2, defines an annular combustion air duct 10 in its lower part. The flow arrows 11 symbolize the combustion air, which is preheated in the channel 10 and, after a deflection at the lower end of the housing 2, flows upward approximately parallel to the housing wall and mixes with the fuel jet 8.
- Another rotationally symmetrical baffle plate 12 which surrounds the injection lines 6, delimits with the first-mentioned baffle plate 9 an annular additional air duct 13 through which air, represented by the flow arrows 14, is admixed to the preburned fuel mixture in the region of the outlet duct 3 in a stoichiometric ratio. This mixture then reaches a post-combustion chamber 16, part of the housing of which is shown, for complete combustion.
- the mechanism of shielding the wall of the housing 2 from the high combustion temperatures that occur during the substoichiometric pre-combustion is based on the tangential injection of the combustion air, which takes place over the entire inner circumference of the housing 2, which creates a vortex ring with a toroidal vortex core 15, the Cross section in Fig. 1 is symbolized by the two circles with dashed double hatching.
- this vortex core contains very hot gases, the centrifugal effect causing a stratification of the combustion gases of different temperatures or densities, which can only balance themselves out very slowly from the inside out.
- Such a compensation of the temperature or density from the inside out is, however, in stationary operation suppressed by the constantly supplied fuel / air mixture.
- the vortex core 15 also acts as an ignition source, by means of which the substoichiometric fuel / air mixture is ignited.
- Fuel injection radially inward of the combustion air layer close to the wall isolates it from the core of the incompletely burned combustion mixture to approximately the lower half of the housing 2, so that the latter cannot continue to burn with air from the layer close to the wall and only becomes ignitable again after additional air has been mixed in from the additional air duct 13 , whereby it can be completely burned in the afterburning chamber 16.
- the speed of the air injection into the pre-combustion chamber 1 should be significantly higher than the flame propagation speed, which creates a spiral flame front, which ideally does not hit the inner surface of the housing 2. At the time of ignition, the mixing process has progressed so far that lean mixture zones no longer occur.
- Fig. 2 shows a pre-combustion chamber 17 of a simplified design, in which the liquid fuel through a Axis of symmetry of the housing 18 coaxial fuel line 19 is fed to the injection nozzles 20 arranged at the end thereof. While the air for the pre-combustion is blown into the housing 18 close to the wall from below, as in the embodiment according to FIG. 1, the fuel is injected in the opposite direction from above at high speed.
- the nozzle axes are oriented in such a way that the air jets near the wall are also shielded from the burning mixture ignited in the center.
- Such a pre-combustion chamber 17 can advantageously be combined with gas burners arranged uniformly distributed over the circumference, two of which are shown in FIG.
- the fuel gas flowing in through the gas burner is indicated by the arrows 22, the combustion air by the arrows 23.
- the combustion air flow is dimensioned such that it is at least sufficient for the complete combustion of the gas and for the post-combustion of the incompletely burned combustion mixture flowing out of the pre-combustion chamber in the after-combustion chamber 24.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
Die Erfindung betrifft eine zweiteilige Brennkammereinrichtung, bei welcher ein erster Teil als Vorbrennkammer für unterstöchiometrische Verbrennung und ein zweiter Teil als Nachbrennkammer ausgebildet ist.The invention relates to a two-part combustion chamber device in which a first part is designed as a pre-combustion chamber for substoichiometric combustion and a second part as an after-combustion chamber.
Aus der DE-B-1 021 646 ist eine zylindrische Brennkammer bekannt, an deren Kopf sich eine halbkugelförmige Kuppel befindet. In dieser kann eine teilweise Verbrennung am Austritt der Kuppel stattfinden. Diese Kuppel ist als eine Art Verdampfungsbrenner anzusehen, d.h. die in dem abgeschlossenen Kopf erzeugte Hitze wird zum Erwärmen und Verdampfen des grössten Teiles der Verbrennungsluft bzw. des Kraftstoffes benutzt. Die Aufgabe dieser Kuppel ist in der Bildung eines Wirbelstromes und der damit verbundenen Erzeugung eines Unterdruckes zu sehen. Dieser Unterdruck soll förderlich sein für ein vermehrtes Einströmen von Verbrennungsluft durch die Flammrohröffnungen. Die Kuppelgeometrie der DE-B-1 021 646 ist eng gekoppelt mit der Flammrohrgeometrie, d.h. einem Zylinder, denn sie ist massgebend für das Einströmen der Sekundärluft in diesen Zylinder.From DE-B-1 021 646 a cylindrical combustion chamber is known, at the head of which there is a hemispherical dome. Partial combustion at the outlet of the dome can take place in this. This dome is to be regarded as a kind of evaporation burner, ie the heat generated in the closed head is used to heat and evaporate most of the combustion air or fuel. The task of this dome is the formation of an eddy current and the associated generation of a negative pressure. This negative pressure is said to be conducive to an increased inflow of combustion air through the flame tube openings. The dome geometry of DE-B-1 021 646 is closely linked to the flame tube geometry, ie a cylinder, because it is decisive for the inflow of secondary air into this cylinder.
Die CH-A-163 686 zeigt einen Brenner für flüssige Brennstoffe, bei dem sich unterhalb des Bodens einer länglichen Wanne in deren Längsachse eine Ölzufuhrleitung erstreckt. Aus dieser wird durch eine Reihe von Düsen Brennstoff in die Wanne gespritzt und darin verbrannt. Die Einspritzung erfolgt längs einer gegenüber den beiden Seitenpartien etwas erhöhten Rückens. Beidseits des oberen Endes der Wanne werden zwei bandförmige Luftstrahlen eingeführt. Die unteren Luftstrahlen sind nach innen gegen die jeweilige Seitenpartien gerichtet, werden umgelenkt und strömen dann in gleicher Richtung wie die Brennstoffstrahlen in den Brennraum und vorverbrennen dabei den Brennstoff. Die beiden oberen bandförmigen Luftstrahlen sind quer zur Brennerlängsachse gerichtet und dienen der Nachverbrennung im Brennraum.CH-A-163 686 shows a burner for liquid fuels, in which an oil feed line extends below the bottom of an elongated trough in its longitudinal axis. From this, fuel is injected into the trough through a series of nozzles and burned there. The injection takes place along a slightly raised back compared to the two side parts. Two band-shaped air jets are introduced on both sides of the upper end of the tub. The lower air jets are directed inwards against the respective side parts, are deflected and then flow into the combustion chamber in the same direction as the fuel jets and thereby pre-burn the fuel. The two upper band-shaped air jets are directed transversely to the longitudinal axis of the burner and are used for afterburning in the combustion chamber.
Bei hohen Temperaturen ablaufende Verbrennungsvorgänge verursachen unzulässig hohe NOx-Emissionen, deren Vermeidung bzw. Verringerung heutzutage aus Gründen des Umweltschutzes in gewissen Ländern behördlicherseits vorgeschrieben wird. Davon betroffen sind hauptsächlich industrielle Feuerungsanlagen und insbesondere auch Gasturbinen. Für letztere sind bei Gasfeuerungen daher Vormischbrenner entwickelt worden. Diese Technik der Vormischverbrennung ist die aussichtsreichste Methode für eine namhafte Verringerung der NOx-Bildung bei gasförmigen Brennstoffen.Combustion processes taking place at high temperatures cause impermissibly high NO x emissions, the avoidance or reduction of which is now mandatory by the authorities in certain countries for reasons of environmental protection. This mainly affects industrial combustion plants and especially gas turbines. Premix burners have therefore been developed for the latter in gas firing systems. This premix combustion technique is the most promising method for a significant reduction in NO x formation in gaseous fuels.
Für flüssige Brennstoffe ist diese Technik wegen der kurzen Zündverzugszeiten - bei hohem Druck tritt eine Dieselzündung auf - praktisch nicht anwendbar. Für eine schadstoffarme Verbrennung flüssiger Brennstoffe mussten daher andere Möglichkeiten gefunden werden. Ein aussichtsreiches Verfahren scheint darin zu bestehen, dass man die Verbrennung in zwei Phasen ablaufen lässt. Bei dieser sogenannten Zweistufenverbrennung wird der Brennstoff in einer Vorbrennkammer bei unterstöchiometrischen Gemischbedingungen vorverbrannt, z.B. bei einer Luftzahl λ = 0,7. Bei einer solchen, stark unterstöchiometrischen Verbrennung entsteht nur sehr wenig NOx, wogegen bei einem annähernd stöchiometrischen Gemisch, d.h., mit λ in der Nähe von 1, sehr viel NOx gebildet wird. Bei Verbrennungsvorgängen mit λ >> 1, also mit grossem Luftüberschuss und entsprechend kühler Flamme, entsteht ebenfalls nur wenig NOx.For liquid fuels, this technology is practically not applicable due to the short ignition delay times - diesel ignition occurs at high pressure. Therefore, other options had to be found for low-pollutant combustion of liquid fuels. A promising process seems to be that the combustion is carried out in two phases. In this so-called two-stage combustion, the fuel is pre-burned in a pre-combustion chamber under substoichiometric mixture conditions, for example at an air ratio λ = 0.7. With such a strongly sub-stoichiometric combustion, very little NO x is produced , whereas with an approximately stoichiometric mixture, ie with λ in the vicinity of 1, a large amount of NO x is formed. During combustion processes with λ >> 1, i.e. with a large excess of air and a correspondingly cool flame, there is also only little NO x .
Die bei der Bildung von NOx beteiligten Reaktionen laufen relativ langsam ab, so dass eine hohe Produktionsrate von NOx, die bei λ = 1 auftritt, durch sehr rasche Zumischung von Luft in das am Ende der Vorbrennkammer ausströmende Gemisch aus Verbrennungsgasen und noch unverbranntem Brennstoff vermieden werden kann. Das dadurch gebildete überstöchiometrische Brennstoff/Luft-Gemisch mit λ >> 1 wird dann in einer zweiten Brennkammer nachverbrannt. Die damit angestrebte Reduktion der NOx-Bildung durch eine solche zweistufige Verbrennung hat sich experimentell bestätigt, siehe hiezu den Aufsatz von R.E.Johns "Gasturbine Engines Emissions-Problems, Progress and Future" in der Zeitschrift "Progr. Energy Combust. Sci.", Vol. IV, 1978, pp. 73-113. Bei der praktischen Anwendung dieser Idee tritt jedoch die Schwierigkeit auf, dass die Vorverbrennung extrem hohe Temperaturen mit entsprechend sehr hoher Erhitzung der Vorbrennkammerwände erzeugt. Die bei normalen Brennkammern üblichen Kühlmethoden, wie Filmkühlung und Konvektionskühlung, sind für solche Vorbrennkammern ungeeignet, weil die dabei in das Brenngemisch gelangende Kühlluft die Luftzahl in den nahestöchiometrischen Bereich bringt, was wiederum zu stärkerer NOx-Bildung führt, die ja aber durch die unvollständige Vorverbrennung verringert werden soll.The reactions involved in the formation of NO x take place relatively slowly, so that a high production rate of NO x , which occurs at λ = 1, due to the very rapid admixture of air into the mixture of combustion gases and still unburned fuel flowing out at the end of the pre-combustion chamber can be avoided. The resulting over-stoichiometric fuel / air mixture with λ >> 1 is then burned in a second combustion chamber. The desired reduction in NO x formation through such a two-stage combustion has been confirmed experimentally, see the article by REJohns "Gas Turbine Engines Emissions Problems, Progress and Future" in the journal "Progr. Energy Combust. Sci.", Vol IV, 1978, pp. 73-113. In the practical application of this idea, however, there arises a problem that the pre-combustion is extremely high generated with a correspondingly very high heating of the pre-combustion chamber walls. The usual cooling methods for normal combustion chambers, such as film cooling and convection cooling, are unsuitable for such pre-combustion chambers because the cooling air that enters the combustion mixture brings the air ratio into the near-stoichiometric range, which in turn leads to stronger NO x formation, which, however, is due to the incomplete Pre-combustion should be reduced.
Mit der vorliegenden Erfindung soll dieser Nachteil vermieden werden, indem durch eine spezielle Gestaltung der Vorbrennkammer durch eine Luft- und Brennstoffschicht eine Abschirmung ihrer Wandung gegenüber dem entzündeten Brenngemisch erreicht und dadurch die Temperatur in Wandnähe auf Werte reduziert wird, die für den Werkstoff der Brennkammerwände zulässig sind.With the present invention, this disadvantage is to be avoided in that, by means of a special design of the pre-combustion chamber by means of an air and fuel layer, its wall is shielded from the ignited combustion mixture and the temperature near the wall is thereby reduced to values which are permissible for the material of the combustion chamber walls are.
Erfindungsgemäss wird diese Aufgabe mit den Merkmalen des Patenanspruchs 1 gelöst.According to the invention, this object is achieved with the features of
Bei einer bevorzugten Ausführungsform einer solchen Brennkammereinrichtung sind die Einspritzdüsen am Ende von Einspritzleitungen angeordnet, welche von einer den Austrittskanal umgebenden Brennstoffringleitung abzweigen und unmittelbar radial einwärts der Austrittsöffnung des Verbrennungsluftkanals in das Gehäuse einmünden, wobei die Achsen der Einspritzdüsen im wesentlichen parallel zur Tangente an den jeweils benachbarten Wandteil des Gehäuses gerichtet sind, und wobei für die Zufuhr von Zusatzluft ein am Ende des Austrittskanals angeordneter, ringförmiger Zusatzluftkanal vorhanden ist.In a preferred embodiment of such a combustion chamber device, the injection nozzles are arranged at the end of injection lines, which branch off from a fuel ring line surrounding the outlet duct and open directly radially inward of the outlet opening of the combustion air duct into the housing, the axes of the injection nozzles being essentially parallel to the tangent to the respective are directed adjacent wall part of the housing, and wherein for the supply of additional air, an annular additional air channel arranged at the end of the outlet channel is present.
Bei einer baulich einfacheren Ausführung sind die Einspritzdüsen am Ende einer Brennstoffleitung angeordnet, die koaxial zur Symmetrieachse des Gehäuses in dieses einmündet, wobei die Achsen der Einspritzdüsen so gerichtet sind, dass die Brennstoffstrahlen die in das Gehäuse eingeblasene Verbrennungsluft gegenüber dem entzündeten Brenngemisch abschirmen, und wobei die Zusatzluft der für die Nachbrennkammer bestimmten Verbrennungsluft entnommen wird.In a structurally simpler embodiment, the injection nozzles are arranged at the end of a fuel line which opens into the housing coaxially with the axis of symmetry thereof, the axes of the injection nozzles being directed in such a way that the fuel jets shield the combustion air blown into the housing from the ignited fuel mixture, and where the additional air is taken from the combustion air intended for the afterburning chamber.
Im folgenden wird die Erfindung anhand von in den Zeichnungen dargestellten Ausführungsformen näher erläutert. Es zeigen:
- Fig. 1
- schematisch eine Vorbrennkammer mit einer am Austrittskanal angeordneten Ringleitung für die Brennstoffzuführung, und die
- Fig. 2
- ebenfalls schematisch eine erfindungsgemässe Brennkammereinrichtung mit einer Vorbrennkammer mit zentraler Brennstoffeinspritzung und einer für Gasbetrieb eingerichteten Nachbrennkammer.
- Fig. 1
- schematically a pre-combustion chamber with a ring line arranged on the outlet duct for the fuel supply, and the
- Fig. 2
- likewise schematically a combustion chamber device according to the invention with a pre-combustion chamber with central fuel injection and an after-combustion chamber set up for gas operation.
Das Gehäuse 2 der in Fig. 1 schematisch dargestellten Vorbrennkammer 1 zeigt in einem durch die Drehachse des Rotationskörpers gelegten Axialschnitt die Form eines Herzens mit abgeschnittener Spitze. An deren Stelle endet das Gehäuse in einem Austrittskanal 3 für das im Gehäuse 2 erzeugte, unvollständig verbrannte Brenngemisch.The
Im unteren Teil des Gehäuses 2 ist mit einem Abstand zu demselben eine Brennstoffringleitung 4 für den flüssigen Brennstoff vorgesehen. Dieser gelangt aus einem nicht dargestellten Brennstofftank über eine Zuführleitung 5 in die Ringleitung 4. Von dieser Ringleitung zweigt eine Anzahl gleichmässig über den Umfang verteilter, hakenförmig gekrümmter Einspritzleitungen 6 ab, die innerhalb des Austrittskanals 3 in Einspritzdüsen 7 enden, aus denen Brennstoffstrahlen 8 annähernd parallel zur Innenfläche des Gehäuses 2 austreten. Radial einwärts der Einspritzleitungen 6 befindet sich ein als Rotationskörper ausgebildetes Leitblech 9, das zusammen mit der Aussenfläche des Gehäuses 2 in dessen unterem Teil einen ringförmigen Verbrennungsluftkanal 10 begrenzt. Die Strömungspfeile 11 versinnbildlichen die Verbrennungsluft, die im Kanal 10 vorgewärmt wird und nach einer Umlenkung am unteren Ende des Gehäuses 2 innerhalb desselben etwa parallel zur Gehäusewand nach oben strömt und sich mit dem Brennstoffstrahl 8 vermischt.A fuel ring line 4 for the liquid fuel is provided in the lower part of the
Ein weiteres rotationssymmetrisches Leitblech 12, das die Einspritzleitungen 6 umschliesst, begrenzt mit dem erstgenannten Leitblech 9 einen ringförmigen Zusatzluftkanal 13, durch den dem vorverbrannten Brenngemisch im Bereich des Austrittskanals 3 Luft, dargestellt durch die Strömungspfeile 14, in überstöchiometrischem Verhältnis zugemischt wird. Dieses Gemisch gelangt dann in einer Nachbrennkammer 16, von der ein Teil des Gehäuses dargestellt ist, zur vollständigen Verbrennung.Another rotationally
Der Mechanismus der Abschirmung der Wand des Gehäuses 2 gegen die hohen Verbrennungstemperaturen, die bei der unterstöchiometrischen Vorverbrennung auftreten, beruht auf der über den ganzen inneren Umfang des Gehäuses 2 stattfindenden, tangentialen Einblasung der Verbrennungsluft, die einen Wirbelring erzeugt mit einem torusförmigen Wirbelkern 15, dessen Querschnitt in Fig. 1 durch die beiden Kreise mit strichlierter Doppelschraffur symbolisiert wird. Dieser Wirbelkern enthält bei gezündetem Brennstoff sehr heisse Gase, wobei die Zentrifugalwirkung eine Schichtung der Verbrennungsgase von unterschiedlicher Temperatur bzw. Dichte verursacht, die sich nur sehr langsam von innen nach aussen ausgleichen können. Ein solcher Ausgleich der Temperatur bzw. Dichte von innen nach aussen wird jedoch im stationären Betrieb durch das ständig nachgelieferte Brennstoff/Luft-Gemisch unterdrückt. Es findet also eine stationäre Selbstabschirmung statt, die den Gehäusewerkstoff vor unzulässiger Ueberhitzung schützt. Der Wirbelkern 15 wirkt im stationären Betrieb auch als Zündquelle, durch die das unterstöchiometrische Brennstoff/Luft-Gemisch entflammt wird. Durch Brennstoffeinspritzung radial einwärts der wandnahen Verbrennungsluftschicht wird diese etwa bis zur unteren Hälfte des Gehäuses 2 vom Kern des unvollständig verbrannten Brenngemisches isoliert, so dass letzteres nicht mit Luft aus der wandnahen Schicht weiterbrennen kann und erst nach Zumischung von Zusatzluft aus dem Zusatzluftkanal 13 wieder zündfähig wird, wodurch es in der Nachbrennkammer 16 vollständig verbrannt werden kann.The mechanism of shielding the wall of the
Die Geschwindigkeit der Lufteinblasung in die Vorbrennkammer 1 soll wesentlich höher sein als die Flammenausbreitungsgeschwindigkeit, was eine spiralförmige Flammenfront erzeugt, die im Idealfall nicht auf die Innenfläche des Gehäuses 2 trifft. Zum Zeitpunkt der Zündung ist der Mischvorgang bereits so weit fortgeschritten, dass keine mageren Gemischzonen mehr auftreten.The speed of the air injection into the
Wie bereits oben erwähnt, wird dem nur teilweise verbrannten Brenngemisch im Bereich des Austrittskanals 3 aus dem Zusatzluftkanal 13 soviel Luft zugemischt, dass die vollständige Verbrennung in einer Nachbrennkammer stark überstöchiometrisch mit λ > > 1 stattfinden kann. In den so verdünnten Abgasen ist dadurch eine NOx-Bildung weitgehend unterdrückt.As already mentioned above, so much air is mixed into the only partially burned combustion mixture in the area of the
Die Fig. 2 zeigt eine Vorbrennkammer 17 vereinfachter Bauart, bei der der flüssige Brennstoff durch eine zur Symmetrieachse des Gehäuses 18 koaxiale Brennstoffleitung 19 den am Ende derselben angeordneten Einspritzdüsen 20 zugeführt wird. Während die Luft für die Vorverbrennung gleich wie bei der Ausführung nach Fig. 1 von unten her wandnah in das Gehäuse 18 eingeblasen wird, erfolgt die Brennstoffeinspritzung in umgekehrter Richtung von oben her mit grosser Geschwindigkeit. Die Düsenachsen sind dabei so gerichtet, dass ebenfalls eine Abschirmung der wandnahen Luftstrahlen gegen das im Zentrum entflammte Brenngemisch stattfindet. Eine solche Vorbrennkammer 17 kann vorteilhaft mit über den Umfang gleichmässig verteilt angeordneten Gasbrennern kombiniert werden, von denen in Fig. 2 zwei mit 21 bezeichnete dargestellt sind. Das durch die Gasbrenner zuströmende Brenngas ist dabei durch die Pfeile 22, die Verbrennungsluft durch die Pfeile 23 angedeutet. Der Verbrennungsluftstrom ist so bemessen, dass er mindestens zur vollständigen Verbrennung des Gases und zur Nachverbrennung des aus der Vorbrennkammer ausströmenden, unvollständig verbrannten Brenngemisches in der Nachbrennkammer 24 genügt.Fig. 2 shows a
Claims (3)
- Two-part combustion chamber arrangement, comprising- a first part in the form of a rotational body,- a second part, designed as a secondary burner (16, 24),- the outlet duct (3) of the rotational body opening out into the secondary combustion chamber,- there extending over the boundary of the outlet duct a combustion air duct (10) of which the outlet openings are arranged along the said boundary of the outlet duct so that the combustion air at the edge of the outlet duct can flow into the rotational body tangentially to its inner edge,- injection nozzles (7, 20) for a liquid fuel being provided in the rotational body,- there being means (13) of supplying auxiliary air to the pre-combustion combustion mixture after this leaves the outlet duct,- the rotational body being designed as a pre-combustion chamber (1, 17) for a sub-stoichiometric combustion,- for which purpose the casing (2) of the pre-combustion chamber has in an axial section taken through the axis of rotation of the rotational body the form of a heart with truncated tip,- for which purpose the combustion air duct (10) for the tangential air inflow is formed on the one hand by the truncated tip of the heart shape at the lower part of the casing (2) and on the other hand by a guide plate (9) shaped as a rotational body,- and for which purpose the axes of the injection nozzles (7, 20) arranged in the rotational body are oriented so that the jets of fuel shield the combustion air flowing into the pre-combustion chamber from the ignited combustion mixture,- the outlet duct (3), into which the truncated tip of the heart shape opens, being circular-cylindrical,- and the combustion mixture with a large excess of air flowing out of the pre-combustion chamber being able to burn completely in the secondary combustion chamber (16, 24) adjoining the outlet duct (3).
- Combustion chamber arrangement according to Claim 1, characterised in that the injection nozzles (7) are positioned at the end of injection lines (6) which branch from a fuel ring line (4) surrounding the outlet duct (3) and discharge into the casing (2) directly radially inwards from the outlet opening of the combustion air duct (10), in each case the axes of the injection nozzles (7) being directed essentially parallel to the tangent to the adjacent section of the wall of the casing (2) and there being an annular auxiliary air duct (13), for supplying auxiliary air, positioned at the end of the outlet duct (3).
- Combustion chamber arrangement according to Claim 1, characterised in that the injection nozzles (20) are positioned at the end of a fuel line (19) which discharges into the casing (18) coaxially with the latter's axis of symmetry, the axes of the injection nozzles (20) being directed so that the jets of fuel shield the combustion air injected into the casing (18) from the ignited combustion mixture and the auxiliary air being drawn from the combustion air (23) intended for the secondary combustion chamber (24).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH2748/86A CH671449A5 (en) | 1986-07-08 | 1986-07-08 | |
CH2748/86 | 1986-07-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0252315A1 EP0252315A1 (en) | 1988-01-13 |
EP0252315B1 true EP0252315B1 (en) | 1992-10-07 |
Family
ID=4240721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP87108265A Expired - Lifetime EP0252315B1 (en) | 1986-07-08 | 1987-06-08 | Combustion chamber device with a precombustion chamber for an understoichiometric combustion |
Country Status (5)
Country | Link |
---|---|
US (1) | US4894005A (en) |
EP (1) | EP0252315B1 (en) |
JP (1) | JPS6325418A (en) |
CH (1) | CH671449A5 (en) |
DE (1) | DE3782097D1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5114404A (en) * | 1990-07-24 | 1992-05-19 | Paxton Gerald R | Multifunctional retractable needle type general purpose disabling syringe having enhanced safety features and related method of operation |
DE59208364D1 (en) * | 1992-10-23 | 1997-05-22 | Asea Brown Boveri | Burner with electrical ignition device |
DE4416650A1 (en) * | 1994-05-11 | 1995-11-16 | Abb Management Ag | Combustion process for atmospheric combustion plants |
DE19502796B4 (en) * | 1995-01-30 | 2004-10-28 | Alstom | burner |
DE59808762D1 (en) * | 1998-08-27 | 2003-07-24 | Alstom Switzerland Ltd | Burner arrangement for a gas turbine |
US6874452B2 (en) * | 2002-01-15 | 2005-04-05 | Joseph S. Adams | Resonant combustion chamber and recycler for linear motors |
US7168949B2 (en) | 2004-06-10 | 2007-01-30 | Georgia Tech Research Center | Stagnation point reverse flow combustor for a combustion system |
KR20090099051A (en) * | 2006-10-18 | 2009-09-21 | 린 플레임 인코포레이티드 | Gas / fuel premixes used in combination with energy release / converters |
US8015814B2 (en) * | 2006-10-24 | 2011-09-13 | Caterpillar Inc. | Turbine engine having folded annular jet combustor |
JP5296320B2 (en) * | 2007-01-30 | 2013-09-25 | ゼネラル・エレクトリック・カンパニイ | System having backflow injection mechanism and method for injecting fuel and air |
EP2006606A1 (en) * | 2007-06-21 | 2008-12-24 | Siemens Aktiengesellschaft | Swirling-free stabilising of the flame of a premix burner |
BR112012005521A2 (en) | 2009-09-13 | 2019-09-24 | Lean Flame Inc | combustion cavity sketches for fuel scheduling in trapped vortex combustors |
RU2633982C1 (en) * | 2016-06-29 | 2017-10-20 | Акционерное общество "ОДК-Авиадвигатель" | Flame tube of gas turbine engine combustion chamber |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US871070A (en) * | 1903-01-16 | 1907-11-12 | Hawley Down Draft Furnace Company | Furnace. |
US792642A (en) * | 1903-06-20 | 1905-06-20 | William Erastus Williams | Melting-furnace. |
US1052588A (en) * | 1911-04-12 | 1913-02-11 | John Janicki | Hydrocarbon power-generator. |
CH163686A (en) * | 1932-09-08 | 1933-08-31 | Fricker Fritz | Liquid fuel burners. |
US1987400A (en) * | 1933-01-07 | 1935-01-08 | Charles B Hillhouse | Method of burning oil as city gas |
US2143259A (en) * | 1937-06-21 | 1939-01-10 | Clarkson Alick | Fluid burner |
US2217649A (en) * | 1939-06-05 | 1940-10-08 | Robert H Goddard | Combustion chamber for rocket apparatus |
US2346333A (en) * | 1942-08-07 | 1944-04-11 | Bruno A Schaumann | Hydrocarbon burner |
US2456402A (en) * | 1942-10-20 | 1948-12-14 | Daniel And Florence Guggenheim | Combustion chamber and means for supplying plural liquid fuels thereto |
US2483780A (en) * | 1946-10-30 | 1949-10-04 | Benjamin J Parmele | Cyclone burner |
US2694291A (en) * | 1948-02-07 | 1954-11-16 | Henning C Rosengart | Rotor and combustion chamber arrangement for gas turbines |
US2635564A (en) * | 1948-09-15 | 1953-04-21 | Power Jets Res & Dev Ltd | Combustion system for pulverulent fuel |
US2715816A (en) * | 1950-10-27 | 1955-08-23 | Ruston & Hornsby Ltd | Combustion chamber for use with internal combustion turbines |
US2651913A (en) * | 1951-03-13 | 1953-09-15 | Solar Aircraft Co | Gas turbine combustion chamber |
US2778327A (en) * | 1953-02-27 | 1957-01-22 | Babcock & Wilcox Co | Cyclone furnace |
DE1021646B (en) * | 1953-12-07 | 1957-12-27 | Gen Elek C Company | Combustion chamber |
DE1000189B (en) * | 1955-06-28 | 1957-01-03 | Bmw Studiengesellschaft Fuer T | Gas turbine, in particular small gas turbine |
US2869629A (en) * | 1955-12-08 | 1959-01-20 | Gen Electric | Burner assembly |
US2933296A (en) * | 1955-12-27 | 1960-04-19 | Carleton D Spangler | Apparatus for producing an insulated stream of hot fluid |
US2967394A (en) * | 1959-12-14 | 1961-01-10 | Gen Electric | Combustion apparatus |
US3306334A (en) * | 1965-04-26 | 1967-02-28 | Goubsky Gregory Michael | Space heaters |
FR2203023B1 (en) * | 1972-10-13 | 1976-08-20 | Onera (Off Nat Aerospatiale) | |
US3808803A (en) * | 1973-03-15 | 1974-05-07 | Us Navy | Anticarbon device for the scroll fuel carburetor |
US4035137A (en) * | 1973-04-26 | 1977-07-12 | Forney Engineering Company | Burner unit |
DE2341904B2 (en) * | 1973-08-18 | 1978-07-27 | Motoren- Und Turbinen-Union Muenchen Gmbh, 8000 Muenchen | Combustion chamber for gas turbine engines |
DE2511172A1 (en) * | 1975-03-14 | 1976-09-30 | Daimler Benz Ag | FILM EVAPORATION COMBUSTION CHAMBER |
JPS5217219A (en) * | 1975-07-31 | 1977-02-09 | Nisshin Steel Co Ltd | Exhaust-gas recycle type low-nox burner |
US4040252A (en) * | 1976-01-30 | 1977-08-09 | United Technologies Corporation | Catalytic premixing combustor |
US4098075A (en) * | 1976-06-01 | 1978-07-04 | United Technologies Corporation | Radial inflow combustor |
SU589452A1 (en) * | 1976-06-03 | 1978-01-25 | Тольяттинский политехнический институт | Vortex combustion chamber |
JPS5913641B2 (en) * | 1978-05-22 | 1984-03-31 | 三菱電機株式会社 | combustion device |
JPS56119404A (en) * | 1980-02-25 | 1981-09-19 | Toshio Uchino | Rotary swirling combustion boiler |
GB2098719B (en) * | 1981-05-20 | 1984-11-21 | Rolls Royce | Gas turbine engine combustion apparatus |
US4504211A (en) * | 1982-08-02 | 1985-03-12 | Phillips Petroleum Company | Combination of fuels |
US4606720A (en) * | 1984-09-17 | 1986-08-19 | Foster-Miller, Inc. | Pre-vaporizing liquid fuel burner |
US4683541A (en) * | 1985-03-13 | 1987-07-28 | David Constant V | Rotary fluidized bed combustion system |
-
1986
- 1986-07-08 CH CH2748/86A patent/CH671449A5/de not_active IP Right Cessation
-
1987
- 1987-06-08 EP EP87108265A patent/EP0252315B1/en not_active Expired - Lifetime
- 1987-06-08 DE DE8787108265T patent/DE3782097D1/en not_active Expired - Lifetime
- 1987-06-18 US US07/063,480 patent/US4894005A/en not_active Expired - Fee Related
- 1987-07-08 JP JP62168937A patent/JPS6325418A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0252315A1 (en) | 1988-01-13 |
DE3782097D1 (en) | 1992-11-12 |
CH671449A5 (en) | 1989-08-31 |
US4894005A (en) | 1990-01-16 |
JPS6325418A (en) | 1988-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69412572T2 (en) | Hybrid burner of a gas turbine | |
DE69306950T2 (en) | COMBUSTION CHAMBER AND METHOD THEREFOR | |
DE69632111T2 (en) | Premix burner for a gas turbine combustion chamber with low pollutant emission | |
DE69405281T2 (en) | Premix combustion chamber with concentric ring channels | |
DE19533055B4 (en) | Double fuel mixer for a gas turbine combustor | |
EP0576697B1 (en) | Combustor chamber for a gas turbine | |
DE69828916T2 (en) | Low emission combustion system for gas turbine engines | |
DE69513542T2 (en) | Fuel nozzle | |
EP0193838B1 (en) | Burner disposition for combustion installations, especially for combustion chambers of gas turbine installations, and method for its operation | |
DE19903770B4 (en) | Gasification burner for a gas turbine engine | |
DE69834621T2 (en) | Gas turbine burners with low NOx emissions | |
DE69830131T2 (en) | Swirl generator without Venturi | |
EP1436546B1 (en) | Burner for synthesis gas | |
EP0252315B1 (en) | Combustion chamber device with a precombustion chamber for an understoichiometric combustion | |
EP0924470B1 (en) | Premix combustor for a gas turbine | |
DE4110759A1 (en) | Lean, graded combustion device | |
DE2940431A1 (en) | COMBUSTION CHAMBER WITH STAGE FUEL INJECTION AND METHOD FOR OPERATING A HIGH TEMPERATURE COMBUSTION CHAMBER | |
DE2555007A1 (en) | COMBUSTION CHAMBER AND METHOD FOR GENERATING LOW EMISSIONS COMBUSTION | |
EP0571782A1 (en) | Gasturbine combustor and operating method | |
DE3841269A1 (en) | FUEL NOZZLE WITH CATALYTIC GLOW INSERT | |
DE2555085A1 (en) | COMBUSTION CHAMBER AND METHOD FOR GENERATING LOW EMISSIONS COMBUSTION | |
EP0433789A1 (en) | Method for a premix burning of a liquid fuel | |
EP0392158A2 (en) | Method for operating a combustion plant for fossil fuels | |
EP1754937B1 (en) | Burner head and method of combusting fuel | |
DE2525292A1 (en) | SLEEVE DRIVE PLANT WITH TURNED CURRENT BURNER CHAMBER TO INCREASE THE OUTLET JET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE GB LI NL SE |
|
17P | Request for examination filed |
Effective date: 19880701 |
|
17Q | First examination report despatched |
Effective date: 19900207 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB LI NL SE |
|
REF | Corresponds to: |
Ref document number: 3782097 Country of ref document: DE Date of ref document: 19921112 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19921216 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930512 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930524 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930630 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930819 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19930917 Year of fee payment: 7 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19940630 Ref country code: CH Effective date: 19940630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950101 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87108265.7 Effective date: 19950110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940608 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950301 |
|
EUG | Se: european patent has lapsed |
Ref document number: 87108265.7 |