[go: up one dir, main page]

EP0244626B1 - Elektrode sowie deren Verwendung - Google Patents

Elektrode sowie deren Verwendung Download PDF

Info

Publication number
EP0244626B1
EP0244626B1 EP87104615A EP87104615A EP0244626B1 EP 0244626 B1 EP0244626 B1 EP 0244626B1 EP 87104615 A EP87104615 A EP 87104615A EP 87104615 A EP87104615 A EP 87104615A EP 0244626 B1 EP0244626 B1 EP 0244626B1
Authority
EP
European Patent Office
Prior art keywords
electrodes
brickwork
electrode
drying
desalting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP87104615A
Other languages
English (en)
French (fr)
Other versions
EP0244626A1 (de
Inventor
Bernard Dr Wessling
Christian Funder
Harald Dr. Volk
Olaf Siemers
Holger Merkle
Manfred Hilleberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wessling Bernhard Dr
Original Assignee
Wessling Bernhard Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wessling Bernhard Dr filed Critical Wessling Bernhard Dr
Priority to AT87104615T priority Critical patent/ATE47529T1/de
Publication of EP0244626A1 publication Critical patent/EP0244626A1/de
Application granted granted Critical
Publication of EP0244626B1 publication Critical patent/EP0244626B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/70Drying or keeping dry, e.g. by air vents
    • E04B1/7007Drying or keeping dry, e.g. by air vents by using electricity, e.g. electro-osmosis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2201/00Type of materials to be protected by cathodic protection
    • C23F2201/02Concrete, e.g. reinforced

Definitions

  • the invention relates to electrodes based on thermoplastic macromolecular materials and conductive non-metallic additives and the use thereof.
  • Electrodes are used for various electrochemical purposes, especially in aqueous media, e.g. for the electrochemical synthesis of substances, for electrolysis, for measuring purposes or as sensors or in galvanic cells for storing electrical energy.
  • Electrodes which can be produced with thermoplastic processing methods (e.g. extrusion or injection molding) from mixtures of thermoplastic macromolecular materials with conductive non-metallic additives and which are stable under electrolysis conditions (cf. e.g. D. Kyriacon and D. Jannakondakis, "Electrocatalysis for Organic Synthesis ", New York 1986).
  • thermoplastic processing methods e.g. extrusion or injection molding
  • electrolysis conditions cf. e.g. D. Kyriacon and D. Jannakondakis, "Electrocatalysis for Organic Synthesis ", New York 1986.
  • a particularly interesting application for such electrodes under complex electrolytic conditions are electrical processes for removing capillary moisture in masonry.
  • the capillary moisture and salinization of masonry as well as the corrosion of reinforced concrete represent a serious economic and conservation problem.
  • EP-OS 100 845 and AT-OS 3101/82 network-like, conductive coated carbon fiber electrode: network quickly loses electrical contact with the electrode, which is also removed at short notice); M.W. Tenge, DE-OS 27 06 172 and 27 06 193, 27 05 814, 27 05 813 and 25 03 670 (soot-filled PTFE electrode; with 9 2 V working voltage too low, poor contact with the masonry, very low conductivity).
  • the synthetic macromolecular material A is polar and stable with respect to the electrolysis medium, i.e. stable in hydrolysis and above all oxidation in aqueous media.
  • the material can be processed thermoplastically and can, but need not, be crosslinkable.
  • the macromolecular electrode component A has polar substances, including EVA (ethylene vinyl acetate), CPE (chlorinated polyethylene), TPU (thermoplastic polyurethane), in particular polyether polyurethane, hard and soft PVC (polyvinyl chloride), NBR (nitrile rubber), ABS (acrylonitrile butadiene) -Styrene terpolymer), SBR (styrene-butadiene rubber), fluoroelastomers or mixtures of such substances have been proven. They should be able to be well wetted by the electrolysis medium, but not swell or dissolved or (e.g. hydrolytically) decomposed.
  • the conductive additives B are non-metallic; on the one hand, they are capable of modifying the material in a conductive manner, on the other hand, they can build up a potential during use (for example, compared to a reference electrode before or after a certain period of operation), without this significantly affecting the system's operability.
  • the conductive additives B are mixtures of a) so-called conductive carbon black (electrically conductive carbon black with a surface area of more than 600 m 2 / g) and optionally carbon fibers with b) carbon black of lower conductivity with a surface area of less than 600 m 2 / g, graphite , intrinsically conductive polymers (in complexed or compensated form) or transition metal oxides.
  • Examples of intrinsically conductive polymers are polyacetylene, polypyrrole, polyphenylenes, polyanilines, polythiophenes, polyphthalocyanines and other polymers with conjugated ⁇ -electron systems.
  • suitable metal oxides are Fe (II) / Fe (III) mixed oxides, Mn0 2 , V 2 0s, Nb 2 0 3 , that is to say those in which the transition metal can be converted into a higher, likewise stable oxidation state.
  • the conductive additives B are mixed in concentrations of 3 to 75% by weight, preferably 8 to 55% by weight, with 25 to 97, preferably 45 to 92% by weight or component A.
  • Mixture B contains the conductive and the potential stabilizing substances in weight ratios of 1: 4 to 4: 1.
  • the resistivity preferred for use as an electrode is less than 104 fi cm, preferably below 10 3 0 cm, more preferably below the second 102 0 cm.
  • the electrode material is produced on commercially available plastic processing machines such as twin-screw extruders, internal mixers or the like using conventional processing aids such as stabilizers, lubricants, fillers, etc.
  • the mass obtained is granulated or transformed directly into the later electrode shape (foils, plates, profiles, etc.).
  • the electrodes are used in a variety of processes, e.g. as sensors, as electrodes for electrolytic oxidation or reduction, for electrocatalysis, for drainage - e.g. of masonry, sludge, peat and the like - for desalination or corrosion protection.
  • Electrodes were tested with 6 V DC voltage in aqueous NaCl solution. It was found that the current flow drops rapidly with graphite electrodes, and likewise with carbon fiber electrodes. Metal electrodes are consumed. Carbon-filled polymer electrodes made of e.g. cross-linked polyethylene, which contain a metal core, apparently always have contact problems and ultimately break down the metal core through a weak point; wetting by the electrolysis medium is poor.
  • the electrodes according to the invention surprisingly show a completely different behavior: after an initially constant current, the current flow increases by up to 50%, then drops slightly and stabilizes at least at the initial level, but often between the initial and the maximum level.
  • the initial current is essentially determined by the resistance of the electrodes and is therefore higher for the carbon fiber.
  • the electrode according to the invention shows a current which is more than 10 times higher is even higher than the baseline.
  • the electrodes are placed in a flat form, e.g. in the form of foils or plates. Foils that have been punched out (to facilitate plastering) have proven effective for drying walls.
  • the foils are connected by conductors with a large cross section e.g. contacted by welding; these conductors can run inside the masonry, as can the contact point in the masonry (e.g. plaster); the contact between the voltage generator and the conductor must be outside the masonry with protection against moisture.
  • Direct and alternating voltages of the required size can be used to operate the electrodes.
  • use is preferably made between 4 and 48V, and pulsed DC voltage can be used to limit the current flow at voltages of more than 6V.
  • Another anode consisted of PVC and 40% polyaniline hydrochloride (No. 6), the cathode made of PVC, 40% polyaniline and 8% conductive carbon black.
  • a carbon fiber find (No. 7) is used as a further comparison electrode.
  • the electrodes are attached in an electrolysis vessel in spatially separated but electrolytically connected cylinders, the aqueous solution ( 2 g NaCI / 100 g H 2 O) only half covering the electrodes, so that the electrodes are contacted with welded metal wires outside the electrolysis medium can.
  • the cylinders have a valve at the top, so that gases can be periodically released during electrolysis.
  • Example 2 In a long-term test, three electrode compositions composed according to the invention were used as anode and cathode in an aqueous electrolysis according to Example 2. All electrodes contained conductive carbon black (Ketjenblack EC) as component Ba in soft PVC. No. 1 and No. 2 contained as component Bb graphite, No. 3 the mixed oxide of Example 2. The current profile is shown in FIG. 5 (not standardized on the electrode area).
  • conductive carbon black Ketjenblack EC

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Hybrid Cells (AREA)
  • Primary Cells (AREA)

Description

  • Die Erfindung betrifft Elektroden auf der Basis von thermoplastischen makromolekularen Werkstoffen und leitfähigen nichtmetallischen Zusätzen sowie deren Verwendung.
  • Elektroden werden für verschiedene elektrochemische Zwecke, insbesondere in wässrigen Medien verwendet, z.B. zur elektrochemischen Synthese von Stoffen, zur Elektrolyse, zu Meßzwecken bzw. als Sensoren oder in galvanischen Zellen zur Speicherung elektrischer Energie.
  • Sofern man keine Metalle als Elektrodenmaterial verwendet, werden meist Graphitelektroden eingesetzt. In neuerer Zeit diskutiert man auch die Anwendung von intrinsisch leitfähigen Polymeren in komplexierter (dotierter), reiner Form, z.B. Elektroden aus Polyacetylen, Polypyrrol, Polyanilin, Polyphenylenen, Polyphenylensulfiden, Polyphthalocyaninen, Polythiophenen und auch aus Polymeren mit konjugierten n-Elektronensystemen, die aber bisher nur als Elektroden in wiederaufladbaren Batterien eingesetzt werden konnten (vergl. A.J. Heeger, A.G. McDiarmid u.a., Phys. Rev. Lett. 39, 1089 (1977); P.J. Nigrey u.a., J. Elektrochem. Soc.128, 1651 (1981».
  • Es sind keine Elektroden bekannt, die mit thermoplastischen Verarbeitungsverfahren (z.B. Extrusion oder Spritzguß) aus Mischungen thermoplastischer makromolekularer Werkstoffe mit leitfähigen nichtmetallischen Zusätzen hergestellt werden können und unter Elektrolysebedingungen stabil sind (vergl. z.B. D. Kyriacon und D. Jannakondakis, "Electrocatalysis for Organic Synthesis", New York 1986). Eine besonders interessante Anwendung für solche Elektroden unter komplexen elektrolytischen Bedingungen stellen elektrische Verfahren zur Entfernung von Kapillarfeuchte in Mauerwerk dar. Die Kapillarfeuchte und Versalzung von Mauerwerk sowie die Korrosion von Stahlbeton stellt ein ernstes volkswirtschaftliches und konservatorisches Problem dar. Die Sanierung von Bauwerken ist hochkompliziert und offenbar - entgegen den Beteuerungen zahlreicher Hersteller und Vertreiber unterschiedlicher mechanischer, chemischer und elektrokinetischer Verfahren - immer noch nicht gelöst (vergl. z.B. C. Ahrendt, "Trockenlegung", Stuttgart, 1983). Gewissen Erfolgen stehen zahlreiche Mißerfolge gegenüber, unabhängig von der Art der Verfahren.
  • Die Anwendung von elektrischer Spannung zur Mauertrocknung wird in der allgemeinen und Patentliteratur vielfach beschrieben (vergl. z.B. C. Ahrendt, a.a.0.) und dort meist als elektroosmotisches, elektrokinetisches oder elektrophysikalisches Verfahren bezeichnet.
  • Offenbar wurden bisher die grundlegenden Probleme der elektrischen Mauertrocknung nicht erkannt:
    • 1. Abgesehen von Modellsystemen können aufgrund des Salzgehaltes im Mauerwerk Trocknungseffekte nur oberhalb der Zersetzungsspannung des Wassers beobachtet werden.
    • 2. Die dabei auftretenden elektrochemischen Prozesse lassen H2 an der Kathode und wohl vorrangig CI2 (nicht, wie oft behauptet wird, 02) an der Anode entstehen, welches sich sofort zu OCI-(Hypochlorit) umsetzt. Die Anode ist daher elektrolytischen, oxidativen und durch Ionentransport offenbar auch mechanischen Abbauvorgängen ausgesetzt.
    • 3. Die Elektroden, vor allem rußgefüllte Kunststoffelektroden, bauen ein Gegenpotential von 0,5 bis 2 mV und darüber auf, das dem angelegten Potential entgegenwirkt und den Stromfluß stark reduziert. Außerdem scheinen die Elektroden aufgrund dieses Potentials in ihrer Leistungsfähigkeit stark nachzulassen.
  • Sofern man aus naheliegenden Kostengründen keine Edelmetalle verwenden kann, sind die eingesetzten Metall- oder Kunststoffelektroden diesen Prozessen ausgesetzt. Als Gesamtresultat fällt bei allen diesen Elektroden der Strom rasch ab, die Elektroden zerfallen oder bauen einen sehr hohen Widerstand auf. Die in der Patentliteratur beschriebenen Verfahren lassen diese Probleme unberücksichtigt. Beispielhaft seien hier einige Verfahren und ihre jeweiligen Probleme kurz erwähnt: P. Friese u.a. DE-OS 34 30 449 (elektrolytisch abbauende Metallelektrode); C. Meisel-Crone, DE-AS 14 59 998 (gepreßte Graphitelektrode: sehr instabil); H. Oppitz, EP-OS 100 845 und AT-OS 3101/82 (netzwerkartige, leitfähig beschichtete Kohlefaserelektrode: Netz verliert schnell elektrischen Kontakt zur Elektrode, welche ebenfalls kurzfristig abgebaut wird); M.W. Tenge, DE-OS 27 06 172 sowie 27 06 193, 27 05 814, 27 05 813 und 25 03 670 (rußgefüllte PTFE-Elektrode; mit 9 2 V zu niedrige Arbeitsspannung, schlechter Kontakt zum Mauerwerk, sehr niedrige Leitfähigkeit).
  • Nach allem Anschein ist eine Mauertrocknung auf elektrischem Wege aber immer mit Elektrolyse verbunden, die beobachteten Sanierungseffekte werden durch die Elektrolyse in Gang gesetzt.
  • Es ist daher Aufgabe der Erfindung, Elektroden für Elektrolyseverfahren bzw. für Anwendungen, bei denen elektrochemische Umwandlungen erwünscht oder unvermeidbar sind, zu schaffen, die unter den jeweiligen Bedingungen stabil sind.
  • Obwohl nach Elektrolyseversuchen mit marktgängigen rußgefüllten Thermoplasten und nach der Literatur keinerlei Hinweise vorlagen, wie die beobachteten Abbauprozesse überwunden werden könnten, wurde nunmehr überraschenderweise gefunden, daß dennoch ganz bestimmte Kombinationen von synthetischen makromolekularen Werkstoffen A und leitfähigen Zusätzen B Elektroden ergeben, die unter den jeweiligen elektrochemischen Bedingungen stabil sind. Gegenstand der Erfindung ist eine unter Elektrolysebedingungen stabile, insbesondere zur Trocknung von Mauerwerk geeignete Elektrode auf Basis von leitfähigen Stoffen und makromolekularen Werkstoffen als Bindemittel, welche dadurch gekennzeichnet ist, daß sie besteht aus
    • A. einem thermoplastischen polaren Polymer, einem thermoplastischen Polykondensat oder einem thermoplastischen Polyaddukt oder deren Gemischen, die durch das Elektrolysemedium gut benetzbar und gegenüber dem an der jeweiligen Elektrode ablaufenden elektrochemischen Vorgang stabil sind, und
    • B. einer Mischung im Gewichtsverhältnis von 1:4 bis 4:1 aus
      • a) Leitruß mit einer Oberfläche von mehr als 600 m2/g und gegebenenfalls Kohlefasern mit
      • b) Ruß mit einer Oberfläche von weniger als 600 m2/g und/oder Übergangsmetalloxiden und/oder einem intrinsisch leitfähigen Polymer besteht.
  • Dabei ist der synthetische makromolekulare Werkstoff A polar und gegenüber dem Elektrolysemedium stabil, d.h. in wässrigen Medien hydrolyse- und vor allem oxidationsstabil. Der Werkstoff ist thermoplastisch verarbeitbar und kann, muß aber nicht vernetzbar sein. Als makromolekulare Elektrodenkomponente A haben sich polare Stoffe, darunter EVA (Ethylenvinylacetat), CPE (Chloriertes Polyethylen), TPU (Thermoplastisches Polyurethan), insbesondere Polyetherpolyurethan, Hart- und Weich-PVC (Polyvinylchlorid), NBR (Nitrilkautschuk), ABS (Acrylnitril-Butadien-Styrol-Terpolymer), SBR (StyrolButadien-Kautschuk), Fluorelastomere oder Mischungen solcher Stoffe bewährt. Sie sollen durch das Elektrolysemedium gut benetzt, aber nicht angequollen oder gelöst bzw. (z.B. hydrolytisch) zersetzt werden können.
  • Die leitfähigen Zusätze B sind nicht-metallisch; sie vermögen einerseits den Werkstoff leitfähig zu modifizieren, andererseits können sie ein Potential während der Anwendung aufbauen (z.B. gegenüber einer Referenzelektrode vor bzw. nach einer gewissen Betriebsdauer), ohne daß dadurch die Betriebsfähigkeit des Systems wesentlich beeinträchtigt wird. Als leitfähige Zusätze B kommen Mischungen aus a) sog. Leitruß (elektrisch leitfähigem Ruß mit einer Oberfläche von mehr als 600 m2/g) und gegebenenfalls Kohlefasern mit b) Ruß geringerer Leitfähigkeit mit einer Oberfläche von weniger als 600 m2/g, Graphit, intrinsisch leitfähigen Polymeren (in komplexierter oder kompensierter Form) oder Übergangsmetalloxiden in Frage. Als intrinsisch leitfähige Polymere sind z.B. Polyacetylen, Polypyrrol, Polyphenylene, Polyaniline, Polythiophene, Polyphthalocyanine und andere Polymere mit konjugierten π-Elektronensystemen zu nennen. Als Metalloxide kommen z.B. Fe(II)/Fe(III)-Mischoxide, Mn02, V20s, Nb203 u.a. in Betracht, also solche, bei denen das Übergangsmetall in einen höheren, ebenfalls stabilen Oxydationszustand überführt werden kann.
  • Die leitfähigen Zusätze B werden in Konzentrationen von 3 bis 75 Gew.-%, vorzugsweise 8 bis 55 Gew.-%, mit 25 bis 97, vorzugsweise 45 bis 92 Gew.-% oder Komponente A vermischt.
  • Die Mischung B enthält die leitfähigen und die potentialstabilisierenden Stoffe in Gewichtsverhältnissen von 1:4 bis 4:1.
  • Als stabil wird eine erfindungsgemäße Elektrode angesehen, wenn
    • a) bei konstanter Gleichspannung ein weitgehend gleichbleibender Strom fließt (dessen Größe natürlich von der Leitfähigkeit der Elektrode und der des Systems abhängig ist), wobei während der notwendigen Betriebsdauer (z.B. in einem Zeitraum von einigen Monaten bis Jahren) die Abnahme der Leistung einen für den jeweiligen Prozeß kritischen Wert nicht unterschreitet;
    • b) die Elektrode (meistens die Anode) mechanisch stabil bleibt (optischer, einfacher Versprödungstest oder Zugprüfung, kein wesentlicher Gewichtsverlust).
  • Der für die Anwendung als Elektroden bevorzugte spezifische Widerstand liegt unter 104 fi cm, vorzugsweise unter 103 0 cm, besonders bevorzugterweise unter 2 . 102 0 cm.
  • Die Herstellung des Elektrodenmaterials erfolgt auf handelsüblichen Kunststoffverarbeitungsmaschinen wie Doppelschneckenextrudern, Innenmischern oder dergleichen unter Verwendung üblicher Verarbeitungshilfsmittel wie Stabilisatoren, Gleitmitteln, Füllstoffen u.a. Die erhaltene Masse wird granuliert oder direkt in die spätere Elektrodenform (Folien, Platten, Profile u.ä.) umgeformt. Die Elektroden finden in vielfältigen Verfahren Anwendung, z.B. als Sensoren, als Elektroden für die elektrolytische Oxidation oder Reduktion, zur Elektrokatalyse, zur Entwässerung - z.B. von Mauerwerk, Schlämmen, Torf und dergl. -zur Entsalzung oder im Korrosionsschutz.
  • Die Prüfung der Elektroden wurde mit 6 V Gleichspannung in wässriger NaCI-Lösung durchgeführt. Dabei zeigte sich, daß der Stromfluß bei Graphitelektroden rasch absinkt, desgleichen bei Kohlefaserelektroden. Metallelektroden werden verbraucht. Rußgefüllte Polymerelektroden aus z.B. vernetztem Polyethylen, die einen Metallkern enthalten, haben offenbar immer Kontaktierungsprobleme und bauen schließlich durch eine Schwachstelle hindurch den Metallkern ab; die Benetzung durch das Elektrolysemedium ist schlecht.
  • Die erfindungsgemäßen Elektroden zeigen überraschenderweise ein gänzlich anderes Verhalten: Nach anfänglich konstantem Strom steigt der Stromfluß um bis zu 50% an, fällt dann leicht ab und stabilisiert sich mindestens auf dem Ausgangsniveau, häufig aber zwischen dem Ausgangs- und dem Maximal-Niveau.
  • Eine Erklärung für die beobachteten Phänomene kann noch nicht gegeben werden. Vor allem der Mechanismus der potential- und stromstabilisierenden Funktion ist unklar. Zur Verdeutlichung seien aus den zahlreichen Versuchen, welche z.T. in den Beispielen dokumentiert sind, einige Eckwerte herausgehoben.
    Figure imgb0001
  • Der Anfangsstrom wird im wesentlichen durch den Widerstand der Elektroden bestimmt und ist deshalb bei der Kohlefaser höher. Bei vergleichbarem Endwiderstand (möglicherweise ist bei der erfindungsgemäßen Elektrode nur die äußerste Oberfläche verändert, was durch Kontaktierungsprobleme einen höheren Widerstand vortäuscht, während der innere Widerstand auf ursprünglichem Niveau bleibt) und Endpotential zeigt aber die erfindungsgemäße Elektrode einen mehr als 10-fach höheren Strom, der sogar höher ist als der Ausgangswert. Die nur mit Leitruß gefüllte Elektrode kann ebenfalls den Strom nicht stabilisieren.
  • In der Praxis setzt man die Elektroden in flächiger Form, z.B. in Form von Folien oder Platten ein. Für die Trocknung von Mauern haben sich Folien, die ausgestanzt wurden (zur Erleichterung des Anputzens) bewährt. Die Folien werden durch Leiter mit großem Querschnitt z.B. durch Verschweißen kontaktiert; diese Leiter können innerhalb des Mauerwerks verlaufen, ebenso kann die Kontaktstelle im Mauerwerk (z.B. Putz) liegen; der Kontakt zwischen Spannungsgeber und Leiter muß außerhalb des Mauerwerks mit Schutz vor Feuchtigkeitszutritt erfolgen.
  • Zum Betrieb der Elektroden können Gleich- und Wechselspannungen in erforderlicher Größe eingesetzt werden. Zur Mauertrocknung wendet man bevorzugterweise zwichen 4 und 48V an, wobei zur Begrenzung des Stromflusses bei Spannungen von mehr als 6 V gepulste Gleichspannung eingesetzt werden kann.
  • Zur weiteren Erläuterung der Erfindung sollen nachfolgende Beispiele dienen, auf welche die Erfindung aber nicht beschränkt ist. Alle Mengenangaben beziehen sich auf das Gewicht.
  • Beispiel 1
  • In einem Innenmischer werden 80 Teile Ethylen-Vinylacetat (20% VA) mit 9 Teilen Leitruß mit einer Oberfläche von 950 m2/g (Ketjenblack EC) und 11 Teilen Flammruß (Flammruß 101 der Degussa AG) mit einer Oberfläche von 20 m2/g und 3 Teilen Stabilisatoren und Gleitmitteln gemischt, plastifiziert und granuliert (Rezept Nr. 1). Analog wird verfahren mit TPU (Polyethertyp) (Rezept Nr. 2) und Weich-PVC (Nr. 3). Weiterhin wird die Mischung 1 in gleicher Zusammensetzung, aber anstelle des Furnaceruß mit Graphit (Nr. 4), sowie zum Vergleich ohne Furnaceruß (Nr. 5) ausgeführt. Die Granulate werden zu Platten von 2 mm Dicke gepreßt und zu Elektroden von 12,5 mm Länge und 20 mm Breite geschnitten.
  • Eine weitere Anode bestand aus PVC und 40% Polyanilinhydrochlorid (Nr. 6), die Kathode aus PVC, 40% Polyanilin und 8% Leitruß. Als weitere Vergleichselektrode wird ein Kohlefaserfand (Nr. 7) eingesetzt. Die Elektroden werden in einem Elektrolysegefäß in räumlich getrennten, aber elektrolytisch verbundenen Zylindern angebracht, wobei die wässrige Lösung (2g NaCI/100g H20) die Elektroden nur halb bedeckt, so daß die Kontaktierung der Elektroden mit eingeschweißten Metalldrähten außerhalb des Elektrolyse-Mediums erfolgen kann. Die Zylinder haben ein oben angebrachtes Ventil, so daß entstehende Gase während der Elektrolyse periodisch abgelassen werden können.
  • Bei Betrieb mit 6 V Gleichspannung wurden die in der nachfolgenden Tabelle enthaltenen Ergebnisse erhalten. Die nicht erfindungsgemäßen Elektroden sind deutlich unterlegen.
    Figure imgb0002
  • Beispiel 2
  • In einem Vergleichsversuch wurden zwei handelsübliche Elektrodenmaterialien (1: rußgefülltes PE, 2: Kohlefaserband) und eine erfindungsgemäße Elektrodenmasse (Zusammensetzung des Beispiels 1, Nr. 3, welche jedoch als Komponente Bb statt Flammruß ein Fe(II)/Fe(III)-Mischoxid (Eisenoxid-Pigment 130 M der Bayer AG) enthielt, als Anoden in wässriger Elektrolyse (6 V) (2% NaCI-Lösung geschaltet. Dabei sind die Vergleichsmaterialien 1 und 2 elektrisch nach 100 bzw. 60 h, mechanisch (Reißfestigkeit) jeweils nach etwa 60 h zerstört (Fig. 1 und 2). Die erfindungsgemäße Elektrodenmasse arbeitet jedoch auch nach 800 h noch mit nennenswerter Leistung und ist mechanisch noch nicht zerstört (Fig. 3 und 4). Die Gewichtsänderung beträgt für
    • - Nr. 1 Anode - 11 %/Kathode -8% (Zerstörung durch Oxidation bzw. Reduktion, Materialabtrag)
    • - Nr. 2 Anode +9%/Kathode +14% (Zerstörung durch loneneinlagerung)
    • - Nr. 3 Anode +1%/Kathode +4% (wesentlich geringere Gewichtsveränderungen bei 8-facher Elektrolysezeit und -leistung)
    Beispiel 3
  • In einem Langzeittest wurden drei erfindungsgemäß zusammengesetzte Elektrodenmassen als Anode und Kathode in einer wässrigen Elektrolyse gemäß Beispiel 2 eingesetzt. Alle Elektroden enthielten Leitruß (Ketjenblack EC) als Komponente Ba in Weich-PVC. Nr. 1 und Nr. 2 enthielten als Komponente Bb Graphit, Nr. 3 das Mischoxid des Beispiels 2. Der Stromverlauf ist in Fig. 5 dargestellt (nicht auf Elektrodenfläche normiert).

Claims (10)

1. Unter Elektrolysebedingungen stabile, insbesondere zur Trocknung von Mauerwerk geeignete Elektrode auf Basis von leitfähigen Stoffen und makromolekularen Werkstoffen als Bindemittel, dadurch gekennzeichnet, daß sie aus
A. einem thermoplastischen polaren Polymer, einem thermoplastischen Polykondensat oder einem thermoplastischen Polyaddukt oder deren Gemischen besteht, die durch das Elektrolysemedium gut benetzbar und gegenüber dem an der jeweiligen Elektrode ablaufenden elektrochemischen Vorgang stabil sind, und
B. einer Mischung im Gewichtsverhältnis von 1:4 bis 4:1 aus
a) Leitruß mit einer Oberfläche von mehr als 600 m2/g und gegebenenfalls Kohlefasern mit
b) Ruß mit einer Oberfläche von weniger als 600 m2/g und/oder Graphit und/oder Obergangsmetalloxiden und/oder einem intrinsisch leitfähigen Polymer besteht.
2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, daß sie als Komponente A Polyvinylchlorid und/oder chloriertes Polyethylen enthält.
3. Elektrode nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Komponenten A und B in einem Gewichtsverhältnis zwischen 97:3 und 25:75 vorliegen.
4. Verwendung der Elektrode nach den Ansprüchen 1 bis 3 in Elektrolyseverfahren, insbesondere zur Entsalzung und Trocknung von Mauerwerk, zur Entfernung von Kapillarfeuchte aus Torfen oder Schlämmen, zum Korrosionsschutz, zur Bodenbewässerung, in der Elektrosynthese oder -katalyse und als Sensoren.
5. Verwendung nach Anspruch 4 zur Mauerentsalzung und -trocknung, dadurch gekennzeichnet, daß als Anode eine Elektrode nach den Ansprüchen 1 bis 3 eingesetzt wird und Spannungen von 4 bis 48 V angelegt werden.
6. Verwendung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß die Elektroden einen spezifischen Widerstand von weniger als 104 Q cm aufweisen.
7. Verwendung nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Elektroden in großflächiger Form mit dem Mauerwerk kontaktiert werden, wobei die in Form von Folien oder Bahnen vorliegenden Elektroden zur Erleichterung der Anbringung mit Ausstanzungen versehen werden.
8. Verwendung der Elektroden zur Mauerentsalzung und -trocknung nach den Ansprüchen 4 bis 7, dadurch gekennzeichnet, daß die Spannung von einem Spannungsgeber, der außerhalb der Mauer angeordnet ist, über Leiter mit großem Querschnitt aus dem gleichen Material wie die verwendeten Elektroden an die Elektroden angelegt wird.
9. Verwendung der Elektroden zur Mauerentsalzung und -trocknung nach den Ansprüchen 4 bis 9, dadurch gekennzeichnet, daß eine gepulste Gleichspannung angelegt wird.
10. Verwendung der Elektroden zur Mauerentsalzung und -trocknung nach den Ansprüchen 4 bis 9, dadurch gekennzeichnet, daß die Elektroden mit einem Putz, der besonders reich an Calciumhydroxid und/oder -carbonat ist, an das zu trocknende bzw. zu entsalzende Mauerwerk angebracht werden.
EP87104615A 1986-03-27 1987-03-27 Elektrode sowie deren Verwendung Expired EP0244626B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87104615T ATE47529T1 (de) 1986-03-27 1987-03-27 Elektrode sowie deren verwendung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3610388 1986-03-27
DE19863610388 DE3610388A1 (de) 1986-03-27 1986-03-27 Stabile elektroden auf basis makromolekularer werkstoffe und verfahren zu ihrer verwendung

Publications (2)

Publication Number Publication Date
EP0244626A1 EP0244626A1 (de) 1987-11-11
EP0244626B1 true EP0244626B1 (de) 1989-10-25

Family

ID=6297415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87104615A Expired EP0244626B1 (de) 1986-03-27 1987-03-27 Elektrode sowie deren Verwendung

Country Status (6)

Country Link
US (1) US4806212A (de)
EP (1) EP0244626B1 (de)
AT (1) ATE47529T1 (de)
DE (2) DE3610388A1 (de)
ES (1) ES2011275B3 (de)
GR (1) GR3000319T3 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT390274B (de) * 1988-03-15 1990-04-10 Steininger Karl Heinz Elektrode
FR2652943B1 (fr) * 1989-10-05 1994-07-01 Electricite De France Materiau conducteur pour electrode, composant electrique et leur procede de fabrication.
DE3943420A1 (de) * 1989-12-30 1991-07-04 Zipperling Kessler & Co Verfahren zur herstellung von antistatisch bzw. elektrisch leitfaehig ausgeruesteten polymeren zusammensetzungen
US5476612A (en) * 1989-12-30 1995-12-19 Zipperling Kessler & Co., (Gmbh & Co.). Process for making antistatic or electrically conductive polymer compositions
DE4024268A1 (de) * 1990-07-31 1992-02-06 Lehmann & Voss & Co Elektrisch leitfaehiges kunststoffelement und seine verwendung
JPH0489561A (ja) * 1990-08-01 1992-03-23 Mitsubishi Petrochem Co Ltd クーロメトリック型電気化学検出器用電極
US6623870B1 (en) * 1996-08-02 2003-09-23 The Ohio State University Electroluminescence in light emitting polymers featuring deaggregated polymers
US5955834A (en) * 1996-08-02 1999-09-21 The Ohio State University Light emitting devices utilizing high work function electrodes
US6309535B1 (en) 1996-11-07 2001-10-30 Cambridge Sensors Limited Electrodes and their use in assays
US6323659B1 (en) 1998-04-29 2001-11-27 General Electric Company Material for improved sensitivity of stray field electrodes
GB2352993B (en) * 1999-08-10 2003-12-24 Clive Alan Francis Blade sharpener
DE10058507A1 (de) * 2000-11-24 2002-06-06 Dutkewitz Wolfgang Vorrichtung zum induzierten, gerichteten Molekül- und Ionentransport in nichtkapillaren sowie insbesondere kapillaren Stoffen mittels dispergierter Elektroden und netzunabhängiger Solarstromversorgung (Sicco-Plan-System)
CA2651877A1 (en) * 2006-05-08 2007-11-22 Siemens Water Technologies Corp. Electrolytic apparatus with polymeric electrode and methods of preparation and use
DE102007062504A1 (de) * 2007-12-20 2009-07-02 Horn GmbH Fabrik für Metall-, Silicon-, und Teflonverarbeitung Körperelektrode
HUE030729T2 (en) * 2008-11-06 2017-05-29 Clariant Int Ltd Composition containing propylene olefin copolymer waxes and carbon black

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1229318A (fr) * 1958-07-04 1960-09-06 South African Council Scientif Matériaux à hautes conductivités électrique et thermique et haute inertie chimique, leurs produits de moulage et procédé pour les fabriquer
US4254727A (en) * 1959-12-30 1981-03-10 Moeller Kurt G F Shock-crush subfoundation
AT238417B (de) * 1962-02-19 1965-02-10 Curt Ing Meisel-Krone Elektrode für die Entfeuchtung bzw. Trockenlegung von Mauerwerk
DE2040510C3 (de) * 1970-08-14 1980-03-06 Dr. Karl Thomae Gmbh, 7950 Biberach Oxazole- und Thiazole eckige Klammer auf 5,4-d] azepin- Derivate
DE2503670C2 (de) * 1975-01-29 1982-06-16 Hans-Werner 8025 Unterhaching Tenge Verfahren zur Beschleunigung oder Unterbindung und Umkehr der natürlichen Bewegung von Flüssigkeiten in Feststoffen mit poröser und/oder semipermeabler Struktur und Elektroden zur Durchführung des Verfahrens
DE2705814A1 (de) * 1975-01-29 1978-08-17 Tenge Hans Werner Verfahren zur elektro-kinetischen bzw. elektro-osmotischen bewegung von polaren bzw. polarisierten fluessigkeiten in und an poroesen und/oder semipermeablen feststoffen
DE2706193A1 (de) * 1975-01-29 1978-08-17 Tenge Hans Werner Anordnung von elektroden bei elektro- physikalischen verfahren
DE2705813A1 (de) * 1975-01-29 1978-08-17 Tenge Hans Werner Anlagen fuer die durchfuehrung elektro- physikalischer verfahren zur beeinflussung von fluessigkeiten in und an feststoffen
DE2549083A1 (de) * 1975-11-03 1977-05-05 Hans Prof Dr Meier Verfahren zur herstellung von sauerstoffelektroden, insbesondere fuer brennstoffzellen
US4534889A (en) * 1976-10-15 1985-08-13 Raychem Corporation PTC Compositions and devices comprising them
DE2722985C3 (de) * 1977-05-20 1981-09-10 Institutul De Cercetari In Constructii Si Economia Constructiilor - Incerc, Bucuresti Verfahren zur Trockenlegung bzw.-haltung von Untergeschoßmauerwerk durch aktive elektroosmotische Drainage
IT1122385B (it) * 1979-08-01 1986-04-23 Oronzio De Nora Impianti Elettrodo per celle elettrochimiche ad elettrolita solido
US4265727A (en) * 1979-10-22 1981-05-05 Hitco Composite electrodes
KR830007884A (ko) * 1980-10-31 1983-11-07 앤 시이 헤릭크 삼층으로 적층된 메트릭스 전극
NL8006774A (nl) * 1980-12-13 1982-07-01 Electrochem Energieconversie Brandstofcelelectrode en werkwijze voor het vervaardigen van een brandstofcelelectrode.
AT375709B (de) * 1982-08-16 1984-09-10 Oppitz Hans Verfahren zur elektroosmotischen trockenlegung von mauerwerk od. dgl.
CH656402A5 (de) * 1983-05-06 1986-06-30 Bbc Brown Boveri & Cie Kathodischer stromkollektor.
DD234997A3 (de) * 1983-10-04 1986-04-23 Adw Ddr Elektrodenanordnung zur elektrochemischen entsalzung undtrocknung von mauerwerk
GB2169608B (en) * 1984-12-28 1988-02-24 Hoechst Gosei Kk Process for producting electrically conductive composite polymer article

Also Published As

Publication number Publication date
EP0244626A1 (de) 1987-11-11
DE3610388C2 (de) 1987-12-23
ATE47529T1 (de) 1989-11-15
DE3760843D1 (en) 1989-11-30
GR3000319T3 (en) 1991-06-07
ES2011275B3 (es) 1990-01-01
DE3610388A1 (de) 1987-10-01
US4806212A (en) 1989-02-21

Similar Documents

Publication Publication Date Title
EP0244626B1 (de) Elektrode sowie deren Verwendung
DE3440617C1 (de) Antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends,Verfahren zu deren Herstellung und deren Verwendung
DE69016459T2 (de) Elektrochemischer chlordioxidgenerator.
DE3779570T2 (de) Kohlenstoff-plastik-elektrodenelemente.
DE3000313C2 (de)
DE3871818T2 (de) Elektroden zur verwendung in elektrochemischen verfahren.
EP0333700B1 (de) Elektrode
DE3327012A1 (de) Verfahren zur elektrochemischen polymerisation von pyrrolen, anode zur durchfuehrung dieses verfahrens sowie nach diesem verfahren erhaltene produkte
DE3223545A1 (de) Copolymere von pyrrolen, verfahren zu ihrer herstellung sowie ihre verwendung
WO1995007553A2 (de) Elektrochemische zelle mit einem polymerelektrolyten und herstellungsverfahren für diesen polymerelektrolyten
DE3047147A1 (de) "verfahren zur herstellung einer graphit-einlagerungsverbindung"
DE1947899C3 (de) Brennstoffzelle
DE2451847A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
DE3605378A1 (de) Verfahren zur elektrochemischen beschichtung von kohlenstoff-fasern
DE2829031A1 (de) Zelle
DE2629028A1 (de) Elektrochemische zelle
CH619047A5 (de)
DE2606915A1 (de) Verfahren zur herstellung einer nicht-waessrigen zelle mit 3-methyl-3- oxazolidon als elektrolyt
EP0822271A2 (de) Elektrolysezelle, insbesondere zur Erzeugung von Ozon für die Abwasserbehandlung sowie dessen Verwendung
DE3855384T2 (de) Ionenhalbleitermaterial und dessen Anwendungen
DE2451846A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
EP3444884B2 (de) Elektrisch leitfähige kontaktplatte für elektrochemische zellen, elektrochemische zelle mit einer solchen kontaktplatte sowie verfahren zu deren herstellung
DE2454827A1 (de) Elektrolysezelle und verfahren zur elektrolyse ionisierbarer chemischer verbindungen
DE2557600A1 (de) Verfahren zur herstellung einer zelle mit einem nicht-waessrigen elektrolyten, der crotonsaeurenitril enthaelt
EP0123261A2 (de) Verfahren zur elektrochemischen Trennung von Ionengemischen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

RIN1 Information on inventor provided before grant (corrected)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: HILLEBERG MANFRED

Inventor name: MERKLE HOLGER

Inventor name: SIEMERS OLAF

Inventor name: VOLK HARALD DR.

Inventor name: FUNDER CHRISTIAN

Inventor name: WESSLING, BERNARD DR

17P Request for examination filed

Effective date: 19880210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WESSLING, BERNHARD, DR.

17Q First examination report despatched

Effective date: 19890412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 47529

Country of ref document: AT

Date of ref document: 19891115

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3760843

Country of ref document: DE

Date of ref document: 19891130

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19900323

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3000319

26N No opposition filed
ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19910930

EPTA Lu: last paid annual fee
REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3000319

EAL Se: european patent in force in sweden

Ref document number: 87104615.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970228

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970303

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970317

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19970318

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970324

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970325

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970327

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970331

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970521

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980327

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980327

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980328

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19980328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

BERE Be: lapsed

Owner name: WESSLING BERNHARD

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980327

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19981001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981201

EUG Se: european patent has lapsed

Ref document number: 87104615.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050327