EP0230694A1 - Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier - Google Patents
Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier Download PDFInfo
- Publication number
- EP0230694A1 EP0230694A1 EP86202323A EP86202323A EP0230694A1 EP 0230694 A1 EP0230694 A1 EP 0230694A1 EP 86202323 A EP86202323 A EP 86202323A EP 86202323 A EP86202323 A EP 86202323A EP 0230694 A1 EP0230694 A1 EP 0230694A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- multiplier
- opening
- metal plate
- hole
- electron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims description 6
- 238000005192 partition Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 3
- 229910000952 Be alloy Inorganic materials 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005658 nuclear physics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J43/00—Secondary-emission tubes; Electron-multiplier tubes
- H01J43/04—Electron multipliers
- H01J43/06—Electrode arrangements
- H01J43/18—Electrode arrangements using essentially more than one dynode
- H01J43/22—Dynodes consisting of electron-permeable material, e.g. foil, grid, tube, venetian blind
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/12—Manufacture of electrodes or electrode systems of photo-emissive cathodes; of secondary-emission electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/32—Secondary emission electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/34—Photoemissive electrodes
- H01J2201/342—Cathodes
- H01J2201/3421—Composition of the emitting surface
- H01J2201/3425—Metals, metal alloys
Definitions
- the present invention relates to an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and an outlet opening, and whose wall is endowed with emissive power, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, said auxiliary hole, disposed opposite the outlet opening of the hole multiplier, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate.
- the invention also relates to an electron multiplier device comprising N multiplier elements in accordance with the preamble, an application of said electron multiplier device to a photomultiplier tube and a method for producing said electron multiplier element.
- the invention finds a particularly advantageous application in the field of photomultiplier tubes.
- a multiplier element of the type described in the preamble is known from French patent application No. 2,549,288.
- This patent application shows a multiplier element whose multiplier holes are either symmetrical, that is to say that the openings inlet and outlet are coaxial or asymmetrical, that is to say that the inlet and outlet openings are offset from each other, the outlet opening however remaining opposite the entrance opening.
- This element structure electron multiplier has the disadvantage of offering a collection efficiency limited by the fact that many incident electrons can pass through the multiplier element without undergoing multiplication on the wall of the multiplier holes, passing directly through the openings of entry and exit.
- an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and a outlet opening, and the wall of which is endowed with emissive power, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, said auxiliary hole, disposed opposite the opening outlet of the multiplier hole, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate, is particularly remarkable in that the straight projection of the outlet opening of the multiplier hole on a plane parallel to the first metal plate is at least partially located outside the corresponding projection of the inlet opening.
- said first metal plate is pierced with a plurality of multiplier holes arranged in a regular plane network.
- This regular planar network can be square or hexagonal, just as the inlet and outlet openings are circular, square or hexagonal.
- the multiplier element according to the invention can be advantageously used to make an electron multiplier device comprising N multiplier elements according to the invention, remarkable in that the second metal plate of the ith multiplier element is brought to an electrical potential identical to the potential electric of the first metal plate of the (i + l) th multiplier element.
- the electron multiplier device also offers the possibility of image formation.
- Two types of geometry can be envisaged, one in which said N multiplying elements are in parallel configuration with respect to each other.
- said N multiplying elements are in head-to-tail configuration relative to each other, which allows, with each multiplication, to fold the electron beam on himself.
- the multiplier device according to the invention advantageously applies to a photomultiplier tube comprising a photocathode and n adjacent anodes.
- said multiplier device is placed near the photocathode and is divided into n secondary multiplier devices by electron-tight partitions, located substantially opposite the zones of separation of two anodes. contiguous so as to produce n secondary photomultiplier tubes in the same photomultiplier tube.
- a method of producing a first metal plate of an electron multiplier element according to the invention is mainly remarkable in that the two faces of the same metal plate are simultaneously attacked, each using sets of masks, the successive windows of which increase in size and are offset with respect to each other, the windows of the last set of masks reproducing respectively the shape of the entry opening and the exit opening of the multiplier hole.
- Figures la and Ib show, in section and in top view, a first embodiment of an electron multiplier element according to the invention.
- Figures 2a and 2b show, in section and in top view, a second embodiment of an electron multiplier element according to the invention.
- Figures 3a and 3b show, in section and in top view, a third embodiment of an electron multiplier element according to the invention.
- Figure 4 is a sectional view of a first electron multiplier device according to the invention.
- Figure 5 is a sectional view of a second electron multiplier device according to the invention.
- FIG. 6 shows in section a photomultiplier tube comprising a multiplier device similar to that of FIG. 5.
- FIG. 7 illustrates by a sectional view a process for producing a first plate of a multiplier element according to the invention.
- FIGS. 1, 2 and 3 show in section (FIGS. 1a, 2a, 3a) and in plan view (FIGS. 1b, 2b, 3b), an electron multiplier element 10 with secondary emission, composed, on the one hand, a first metal plate 11 pierced with holes 12, called multiplier holes, having an opening 13 for entry and an opening 14 for exit.
- the inner wall 15 of the multiplier holes 12 is endowed with emissive power.
- the first metal plate 11 is made of a material capable of secondary emission such as the copper-beryllium alloy, after heating, migration of the beryllium and oxidation. It can also be made of an inexpensive material, such as mild steel, covered with a secondary emission material: layer of oxidized copper-beryllium alloy or layer of manganese oxide.
- the multiplier element 10 is composed of a second metal plate 16, parallel to the first, pierced with holes 17, called auxiliary holes, arranged opposite the openings 14 for the exit of the multiplier holes 12.
- This second plate metallic 16 is electrically isolated from the first plate 11, the electrical insulation of the two plates 11 and 16 can be achieved, for example, using small glass beads 30, 100 to 200 ⁇ m in diameter, sealed with the periphery of said plates.
- the second metal plate 16 is brought to an electrical potential Vl greater than the electrical potential VO of said first plate 11, the second plate 16 thus playing the role of accelerating electrode.
- the straight projection 18 of the outlet opening 14 of the multiplier hole 12 on a plane P parallel to the first metal plate 11 is at least partially, here entirely, located outside the corresponding projection 19 of the inlet opening 13.
- This configuration offers the incident electrons 50 whose angle of incidence is not too large a maximum surface for capture by the multiplier wall 15.
- most of the electrons entering the multiplier hole 12 through the inlet opening 13 will not be able to exit directly from the outlet opening 14, but will give rise to secondary emission thereby contributing to a significant increase in the collection efficiency of the multiplier 10, as the Applicant has observed experimentally. This suggests that electrons which strike the multiplier wall 15 relatively far from the outlet opening 14 and which do not exit directly after multiplication can bounce without loss on the wall before exiting through said outlet opening.
- said first metal plate 11 is pierced with a plurality of multiplier holes 12 arranged in a regular plane network.
- said regular planar network is a hexagonal network and said inlet and outlet openings (13,14) are circular.
- FIGS. 2b and 3b give two configurations which make it possible to increase the useful multiplication surface of the first plate 11.
- the regular plane network of multiplier holes (12) is a hexagonal network, said inlet openings 13 are hexagonal and the circular outlet openings 14 while with reference to FIG. 3b, the regular plane array of multiplier holes 12 is a square array, the inlet openings 13 are square and the outlet openings 14 circular.
- the electrical potentials applied to each of the first 11 and second 16 plates of each multiplier element are such that the second metal plate 16 of the ith multiplier element is brought to an electrical potential V l i identical to the electrical potential VO (i + 1) of the (i + l) th multiplier element. So we have the equality:
- the multiplier device of FIG. 4 is such that the multiplier elements 10 are in parallel configuration with respect to each other. This configuration, if it maintains a one-to-one correspondence between the electrons leaving the (i + 2) th multiplier element and the electrons entering the th multiplier element, however, leads to a spatial offset between incoming electrons and electrons leaving the multiplier device.
- the device shown in FIG. 5 makes it possible to avoid this offset, in the sense that the multiplier elements 10 are in head-to-tail configuration consecutively with respect to each other.
- said multiplier device 22 is placed near the photocathode 20 and is divided into n secondary multiplier devices 23 by electron-tight partitions 24, situated substantially opposite the separation zones of two contiguous anodes 21 so as to produce n secondary photomultiplier tubes in the same photomultiplier tube.
- Tubes of the type shown in FIG. 6 can advantageously be used in nuclear physics for the precise localization of detected elementary particles.
- the watertight partitions 24 are produced in a conventional manner by masking and photoengraving of a metal plate.
- FIG. 7 illustrates a process for producing a first metal plate 11 of an electron multiplier element of the kind described above.
- the two faces of the same metal plate 11 are simultaneously attacked, by photoengraving, using sets of masks, 31/41, 32/42 and 33/43, the successive windows of which increase by size and are offset from each other, the windows of the last set of masks 33/43 reproducing respectively the shape of the opening 13 of entry and the opening 14 of exit of the multiplier hole 12.
- the Applicant has realized , by this method, a metal plate with multiplier holes whose thickness was 0.15 mm, for respective dimensions dl, d2 of openings of 0.6 mm and 0.3 mm.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Electron Tubes For Measurement (AREA)
- External Artificial Organs (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Multiplication électronique par émission secondaire. Elément multiplicateur (10) d'électrons à émission secondaire composé, d'une part, d'une première plaque métallique (11) percée d'au moins un trou (12) multiplicateur, présentant une ouverture (13) d'entrée et une ouverture (14) de sortie, et, d'autre part, une deuxième plaque métallique (16), parallèle à la première (11), percée d'au moins un trou (17) auxilliaire disposé en regard de l'ouverture (14) de sortie du trou multiplicateur (12), la deuxième plaque (16) étant portée à un potentiel électrique (VI), supérieur au potentiel électrique (VO) de ladite première plaque. Les ouvertures (13, 14) sont telles que la projection droite (18) de l'ouverture (14) de sortie du trou multiplicateur (12) sur un plan parallèle à la première plaque métallique (11) est au moins partiellement située à l'extérieur de la projection correspondante (19) de l'ouverture (13) d'entrée. Application aux tubes photomultiplicateurs.Electronic multiplication by secondary emission. Secondary emission electron multiplier element (10) composed, on the one hand, of a first metal plate (11) pierced with at least one multiplier hole (12), having an inlet opening (13) and a outlet opening (14), and, on the other hand, a second metal plate (16), parallel to the first (11), pierced with at least one auxiliary hole (17) disposed opposite the opening (14 ) output from the multiplier hole (12), the second plate (16) being brought to an electrical potential (VI), greater than the electrical potential (VO) of said first plate. The openings (13, 14) are such that the straight projection (18) of the outlet opening (14) of the multiplier hole (12) on a plane parallel to the first metal plate (11) is at least partially located at the exterior of the corresponding projection (19) of the opening (13). Application to photomultiplier tubes.
Description
La présente invention concerne un élément multiplicateur d'électrons à émission secondaire composé, d'une part, d'une première plaque métallique percée d'au moins un trou, dit trou multiplicateur, présentant une ouverture d'entrée et une ouverture de sortie, et dont la paroi est douée de pouvoir émissif, et, d'autre part, une deuxième plaque métallique, parallèle à la première, percée d'au moins un trou, dit trou auxilliaire, disposé en regard de l'ouverture de sortie du trou multiplicateur, la deuxième plaque, électriquement isolée de la première, étant portée à un potentiel électrique supérieur au potentiel électrique de ladite première plaque.The present invention relates to an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and an outlet opening, and whose wall is endowed with emissive power, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, said auxiliary hole, disposed opposite the outlet opening of the hole multiplier, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate.
L'invention concerne également un dispositif multiplicateur d'électrons comportant N éléments multiplicateurs conformes au préambule, une application dudit dispositif multiplicateur d'électrons à un tube photomultiplicateur et un procédé de réalisation dudit élément multiplicateur d'électrons.The invention also relates to an electron multiplier device comprising N multiplier elements in accordance with the preamble, an application of said electron multiplier device to a photomultiplier tube and a method for producing said electron multiplier element.
L'invention trouve une application particulièrement avantageuse dans le domaine des tubes photomultiplicateurs.The invention finds a particularly advantageous application in the field of photomultiplier tubes.
Un élément multiplicateur du type de celui décrit dans le préambule est connu de la demande de brevet français N° 2 549 288. Cette demande de brevet montre un élément multiplicateur dont les trous multiplicateurs sont, soit symétriques, c'est à dire que les ouvertures d'entrée et de sortie sont coaxiales, soit dissymétriques, c'est à dire que les ouvertures d'entrée et de sortie sont décalées l'une par rapport à l'autre, l'ouverture de sortie restant cependant en regard de l'ouverture d'entrée. Cette structure d'élément multiplicateur d'électrons présente l'inconvénient d'offrir une efficacité de collection limitée par le fait que de nombreux électrons incidents peuvent traverser l'élément multiplicateur sans subir de multiplication sur la paroi des trous multiplicateurs, en passant directement à travers les ouvertures d'entrée et de sortie. D'autre part, cette perte d'efficacité de collection se reproduit à chaque étage d'un dispositif multiplicateur comportant N éléments multiplicateurs du type connu, et se traduit donc par une perte de gain, un défaut de linéarité et un allongement du temps de réponse, par exemple lorsque ledit dispositif multiplicateur est incorporé à un tube photomultiplicateur.A multiplier element of the type described in the preamble is known from French patent application No. 2,549,288. This patent application shows a multiplier element whose multiplier holes are either symmetrical, that is to say that the openings inlet and outlet are coaxial or asymmetrical, that is to say that the inlet and outlet openings are offset from each other, the outlet opening however remaining opposite the entrance opening. This element structure electron multiplier has the disadvantage of offering a collection efficiency limited by the fact that many incident electrons can pass through the multiplier element without undergoing multiplication on the wall of the multiplier holes, passing directly through the openings of entry and exit. On the other hand, this loss of collection efficiency is reproduced on each stage of a multiplier device comprising N multiplier elements of the known type, and therefore results in a loss of gain, a lack of linearity and an extension of the time of response, for example when said multiplier device is incorporated into a photomultiplier tube.
Le but de l'invention est de remédier à ces inconvénients en proposant un élément multiplicateur d'électrons présentant une efficacité de collection augmentée. En effet, selon la présente invention, un élément multiplicateur d'électrons à émission secondaire composé, d'une part, d'une première plaque métallique percée d'au moins un trou, dit trou multiplicateur, présentant une ouverture d'entrée et une ouverture de sortie, et dont la paroi est douée de pouvoir émissif, et, d'autre part, une deuxième plaque métallique, parallèle à la première, percée d'au moins un trou, dit trou auxilliaire, disposé en regard de l'ouverture de sortie du trou multiplicateur, la deuxième plaque, électriquement isolée de la première, étant portée à un potentiel électrique supérieur au potentiel électrique de ladite première plaque, est notamment remarquable en ce que la projection droite de l'ouverture de sortie du trou multiplicateur sur un plan parallèle à la première plaque métallique est au moins partiellement située à l'extérieur de la projection correspondante de l'ouverture d'entrée.The object of the invention is to remedy these drawbacks by proposing an electron multiplier element having an increased collection efficiency. Indeed, according to the present invention, an electron multiplier element with secondary emission composed, on the one hand, of a first metal plate pierced with at least one hole, called multiplier hole, having an inlet opening and a outlet opening, and the wall of which is endowed with emissive power, and, on the other hand, a second metal plate, parallel to the first, pierced with at least one hole, said auxiliary hole, disposed opposite the opening outlet of the multiplier hole, the second plate, electrically isolated from the first, being brought to an electrical potential greater than the electrical potential of said first plate, is particularly remarkable in that the straight projection of the outlet opening of the multiplier hole on a plane parallel to the first metal plate is at least partially located outside the corresponding projection of the inlet opening.
Ainsi, la plupart des électrons incidents arrivant sur l'élément multiplicateur d'électrons selon l'invention, à l'exception de ceux, peu nombreux, se présentant sous une incidence trop grande, rencontrent la paroi du trou multiplicateur et y subissent donc une multiplication. Des essais effectués par la Demanderesse sur des trous multiplicateurs à ouvertures totalement décalées ont montre que l'efficacité de collection d'un tel élément multiplicateur était très sensiblement augmentée, et ceci bien que l'on puisse penser que, compte-tenu des dimensions relativement grandes du trou multiplicateur, des électrons multipliés pourraient revenir sur la paroi dudit trou et seraient ainsi perdus. Ce fait expérimental accrédite l'idée d'une possibilité de rebond sans perte des électrons sur la paroi du trou multiplicateur.Thus, most of the incident electrons arriving on the electron multiplier element according to the invention, with the exception of those, few in number, occurring under too great an incidence, meet the wall of the multiplier hole and therefore undergo a multiplication. Tests carried out by the Applicant on multiplier holes with totally offset openings have shown that the collection efficiency of such a multiplier element was very significantly increased, and this although one might think that, given the relatively small dimensions large of the multiplier hole, multiplied electrons could return to the wall of said hole and would thus be lost. This experimental fact accredits the idea of a possibility of rebound without loss of the electrons on the wall of the multiplier hole.
Dans un mode très général de réalisation de l'élement multiplicateur selon l'invention, ladite première plaque métallique est percée d'une pluralité de trous multiplicateurs disposés selon un réseau plan régulier. Ce réseau plan régulier peut être carré ou hexagonal, de même que les ouvertures d'entrée et de sortie sont circulaires, carrées ou hexagonales.In a very general embodiment of the multiplier element according to the invention, said first metal plate is pierced with a plurality of multiplier holes arranged in a regular plane network. This regular planar network can be square or hexagonal, just as the inlet and outlet openings are circular, square or hexagonal.
L'élément multiplicateur selon l'invention peut être avantageusement utilisé pour réaliser un dispositif multiplicateur d'électrons comportant N éléments multiplicateurs selon l'invention, remarquable en ce que la deuxième plaque métallique du ième élément multiplicateur est portée à un potentiel électrique identique au potentiel électrique de la première plaque métallique du (i+l)ièmes élément multiplicateur.The multiplier element according to the invention can be advantageously used to make an electron multiplier device comprising N multiplier elements according to the invention, remarkable in that the second metal plate of the ith multiplier element is brought to an electrical potential identical to the potential electric of the first metal plate of the (i + l) th multiplier element.
On assure ainsi une meilleure collection des électrons entre un élément multiplicateur et le suivant, lorsque ceux-ci sont relativement éloignés. Outre une efficacité de collection améliorée, le dispositif multiplicateur d'électrons selon l'invention offre également la possibilité de formation d'image. Deux types de géométrie peuvent être envisagés, l'une dans laquelle lesdits N éléments multiplicateurs sont en configuration parallèle les uns par rapport aux autres. Dans une autre géométrie plus avantageuse, lesdits N éléments multiplicateurs sont en configuration tête-bêche les uns par rapport aux autres, ce qui permet, à chaque multiplication, de replier le faisceau électronique sur lui-même.This ensures a better collection of electrons between a multiplier element and the next, when these are relatively far apart. In addition to improved collection efficiency, the electron multiplier device according to the invention also offers the possibility of image formation. Two types of geometry can be envisaged, one in which said N multiplying elements are in parallel configuration with respect to each other. In another more advantageous geometry, said N multiplying elements are in head-to-tail configuration relative to each other, which allows, with each multiplication, to fold the electron beam on himself.
Le dispositif multiplicateur selon l'invention s'applique de façon avantageuse à un tube photomultiplicateur comportant une photocathode et n anodes adjacentes. Dans cette application, il est prévu, selon l'invention, que ledit dispositif multiplicateur est placé à proximité de la photocathode et est divisé en n dispositifs multiplicateurs secondaires par des cloisons étanches aux électrons, situées sensiblement en regard des zones de séparation de deux anodes contigües de façon à réaliser n tubes photomultiplicateurs secondaires dans le même tube photomultiplicateur.The multiplier device according to the invention advantageously applies to a photomultiplier tube comprising a photocathode and n adjacent anodes. In this application, it is provided, according to the invention, that said multiplier device is placed near the photocathode and is divided into n secondary multiplier devices by electron-tight partitions, located substantially opposite the zones of separation of two anodes. contiguous so as to produce n secondary photomultiplier tubes in the same photomultiplier tube.
Enfin, un procédé de réalisation d'une première plaque métallique d'un élément multiplicateur d'électrons selon l'invention est principalement remarquable en ce que les deux faces d'une même plaque métallique sont simultanément attaquées, chacune à l'aide de jeux de masques dont les fenêtres successives vont en augmentant de taille et sont décalées les unes par rapport aux autres, les fenêtres du dernier jeu de masques reproduisant respectivement la forme de l'ouverture d'entrée et de l'ouverture de sortie du trou multiplicateur.Finally, a method of producing a first metal plate of an electron multiplier element according to the invention is mainly remarkable in that the two faces of the same metal plate are simultaneously attacked, each using sets of masks, the successive windows of which increase in size and are offset with respect to each other, the windows of the last set of masks reproducing respectively the shape of the entry opening and the exit opening of the multiplier hole.
La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.The description which follows with reference to the appended drawings, given by way of nonlimiting examples, will make it clear what the invention consists of and how it can be implemented.
Les figures la et Ib montrent, en coupe et en vue de dessus, un premier mode de réalisation d'un élément multiplicateur d'électrons selon l'invention.Figures la and Ib show, in section and in top view, a first embodiment of an electron multiplier element according to the invention.
Les figures 2a et 2b montrent, en coupe et en vue de dessus, un deuxième mode de réalisation d'un élément multiplicateur d'électrons selon l'invention.Figures 2a and 2b show, in section and in top view, a second embodiment of an electron multiplier element according to the invention.
Les figures 3a et 3b montrent, en coupe et en vue de dessus, un troisième mode de réalisation d'un élément multiplicateur d'électrons selon l'invention.Figures 3a and 3b show, in section and in top view, a third embodiment of an electron multiplier element according to the invention.
La figure 4 est une vue en coupe d'un premier dispositif multiplicateur d'électrons selon l'invention.Figure 4 is a sectional view of a first electron multiplier device according to the invention.
La figure 5 est une vue en coupe d'un deuxième dispositif multiplicateur d'électrons selon l'invention.Figure 5 is a sectional view of a second electron multiplier device according to the invention.
La figure 6 montre en coupe un tube photomultiplicateur comportant un dispositif multiplicateur analogue à celui de la figure 5.FIG. 6 shows in section a photomultiplier tube comprising a multiplier device similar to that of FIG. 5.
La figure 7 illustre par une vue en coupe un procédé de réalisation d'une première plaque d'un élément multiplicateur conforme à l'invention.FIG. 7 illustrates by a sectional view a process for producing a first plate of a multiplier element according to the invention.
Les figures 1, 2 et 3 montrent en coupe (figures la, 2a, 3a) et en vue de dessus (figures Ib, 2b, 3b), un élément multiplicateur 10 d'électrons à émission secondaire, composé, d'une part, d'une première plaque métallique 11 percée de trous 12, dits trous multiplicateurs, présentant une ouverture 13 d'entrée et une ouverture 14 de sortie. La paroi intérieure 15 des trous multiplicateurs 12 est douée de pouvoir émissif. Pour cela, la première plaque métallique 11 est réalisée dans un matériau susceptible d'émission secondaire comme l'alliage cuivre-béryllium, après chauffage, migration du béryllium et oxydation. Elle peut être également réalisée dans un matériau peu coûteux, comme l'acier doux, recouvert d'un matériau à émission secondaire : couche d'alliage cuivre-béryllium oxydé ou couche d'oxyde de manganèse.FIGS. 1, 2 and 3 show in section (FIGS. 1a, 2a, 3a) and in plan view (FIGS. 1b, 2b, 3b), an
D'autre part, l'élément multiplicateur 10 est composé d'une deuxième plaque métallique 16, parallèle à la première, percée de trous 17, dits trous auxilliaires, disposés en regard des ouvertures 14 de sortie des trous multiplicateurs 12. Cette deuxième plaque métallique 16 est électriquement isolée de la première plaque 11, l'isolation électrique des deux plaques 11 et 16 pouvant être réalisée, par exemple, à l'aide de petites billes 30 de verre, de 100 à 200 um de diamètre, scellées à la périphérie desdites plaques. La deuxième plaque métallique 16 est portée à un potentiel électrique Vl supérieur au potentiel électrique VO de ladite première plaque 11, la deuxième plaque 16 jouant ainsi le rôle d'électrode accélératrice.On the other hand, the
Comme on peut le voir sur l'ensemble des figures la, lb, 2a, 2b et 3a, 3b, la projection droite 18 de l'ouverture 14 de sortie du trou multiplicateur 12 sur un plan P parallèle à la première plaque métallique 11 est au moins partiellement, ici entièrement, située à l'extérieur de la projection correspondante 19 de l'ouverture 13 d'entrée. Cette configuration offre aux électrons incidents 50 dont l'angle d'incidence n'est pas trop grand une surface maximale de capture par la paroi 15 multiplicatrice. En d'autres termes, la plupart des électrons pénétrant dans le trou multiplicateur 12 par l'ouverture 13 d'entrée ne pourront en sortir directement par l'ouverture 14 de sortie, mais donneront lieu à émission secondaire contribuant ainsi à une augmentation sensible de l'efficacité de collection de l'élément multiplicateur 10, comme la Demanderesse l'a observé expérimentalement. Ceci permet de penser que des électrons qui frappent la paroi multiplicatrice 15 relativement loin de l'ouverture 14 de sortie et qui ne sortent pas directement après multiplication peuvent rebondir sans perte sur la paroi avant de sortir par ladite ouverture de sortie.As can be seen in all of FIGS. 1a, 1b, 2a, 2b and 3a, 3b, the
Ainsi qu'on peut le voir aux figures Ib, 2b et 3b, ladite première plaque métallique 11 est percée d'une pluralité de trous multiplicateurs 12 disposés selon un réseau plan régulier. Conformément à la figure Ib, ledit réseau plan régulier est un réseau hexagonal et lesdites ouvertures (13,14) d'entrée et de sortie sont circulaires. Les figures 2b et 3b donnent deux configurations que permettent d'augmenter la surface utile de multiplication de la première plaque 11. Selon la figure 2b, le réseau plan régulier de trous multiplicateurs (12) est un réseau hexagonal, lesdites ouvertures 13 d'entrée sont hexagonales et les ouvertures 14 de sortie circulaires tandis qu'en référence à la figure 3b, le réseau plan régulier de trous multiplicateurs 12 est un réseau carré, les ouvertures 13 d'entrée sont carrées et les ouvertures 14 de sortie circulaires.As can be seen in Figures Ib, 2b and 3b, said
Les figures 4 et 5 montrent en coupe deux dispositifs multiplicateurs d'électrons comportant N (ici N=3) éléments multiplicateurs du type de ceux décrits précédemment aux figures 1, 2 et 3. Les potentiels électriques appliqués à chacune des première 11 et deuxième 16 plaques de chaque élément multiplicateur sont tels que la deuxième plaque métallique 16 du ième élément multiplicateur est portée à un potentiel électrique Vli identique au potentiel électrique VO(i+1) du (i+l)ème élément multiplicateur. Nous avons donc les égalités :
Le dispositif multiplicateur de la figure 4 est tel que les éléments multiplicateurs 10 sont en configuration parallèle les uns par rapport aux autres. Cette configuration, si elle maintient une-correspondance univoque entre les électrons sortant du (i+2) ième élément multiplicateur et les électrons entrant dans le ième élément multiplicateur conduit cependant à un décalage spacial entre électrons entrant et électrons sortant du dispositif multiplicateur. Le dispositif montré à la figure 5 permet d'éviter ce décalage, en ce sens que les éléments multiplicateurs 10 sont en configuration tête-bêche consécutivement les uns par rapport aux autres.The multiplier device of FIG. 4 is such that the
Le dispositif multiplicateur d'électrons selon l'invention trouve une application particulièrement avantageuse dans le domaine des tubes photomultiplicateurs, notamment des tubes dits à focalisation de proximité. La figure 6 montre, par une vue en coupe, un exemple d'une telle application à un tube photomultiplicateur comportant une photocathode 20 et n (ici n=2) anodes adjacentes 21. Conformément à la figure 6, ledit dispositif multiplicateur 22 est placé à proximité de la photocathode 20 et est divisé en n dispositifs multiplicateurs secondaires 23 par des cloisons 24 étanches aux électrons, situés sensiblement en regard des zones de séparation de deux anodes 21 contigües de façon à réaliser n tubes photomultiplicateurs secondaires dans le même tube photomultiplicateur. Les tubes du type de celui représenté à la figure 6 peuvent être avantageusement utilisés en physique nucléaire pour la localisation précise des particules élémentaires détectées. Les cloisons étanches 24 sont réalisées de façon classique par masquage et photogravure d'une plaque métallique.The electron multiplier device according to the invention finds a particularly advantageous application in the field of photomultiplier tubes, in particular so-called proximity focusing tubes. FIG. 6 shows, in a sectional view, an example of such an application to a photomultiplier tube comprising a
La figure 7 illustre un procédé de réalisation d'une première plaque métallique 11 d'un élément multiplicateur d'électrons du genre de ceux décrits ci-dessus. Selon ce procédé, les deux faces d'une même plaque métallique 11 sont simultanément attaquées, par photogravure, à l'aide de jeux de masques, 31/41, 32/42 et 33/43, dont les fenêtres successives vont en augmentant de taille et sont décalées les unes par rapport aux autres, les fenêtres du dernier jeu de masques 33/43 reproduisant respectivement la forme de l'ouverture 13 d'entrée et de l'ouverture 14 de sortie du trou multiplicateur 12. La Demanderesse a réalisé, par ce procédé, une plaque métallique à trous multiplicateurs dont l'épaisseur était de 0,15 mm, pour des dimensions respectives dl, d2 d'ouvertures de 0,6 mm et 0,3 mm.FIG. 7 illustrates a process for producing a
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8519482 | 1985-12-31 | ||
FR8519482A FR2592523A1 (en) | 1985-12-31 | 1985-12-31 | HIGH EFFICIENCY COLLECTION MULTIPLIER ELEMENT |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0230694A1 true EP0230694A1 (en) | 1987-08-05 |
EP0230694B1 EP0230694B1 (en) | 1990-06-06 |
Family
ID=9326358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86202323A Expired - Lifetime EP0230694B1 (en) | 1985-12-31 | 1986-12-18 | Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier |
Country Status (5)
Country | Link |
---|---|
US (1) | US4806827A (en) |
EP (1) | EP0230694B1 (en) |
JP (1) | JPS62160652A (en) |
DE (1) | DE3671810D1 (en) |
FR (1) | FR2592523A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014146673A1 (en) * | 2013-03-22 | 2014-09-25 | Cern - European Organization For Nuclear Research | A wall-less electron multiplier assembly |
WO2023232199A2 (en) | 2022-06-03 | 2023-12-07 | P+S Pulverbeschichtungs- Und Staubfilteranlagen Gmbh | Method for applying powder and powder spray nozzle for carrying out the method |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5086248A (en) * | 1989-08-18 | 1992-02-04 | Galileo Electro-Optics Corporation | Microchannel electron multipliers |
US5205902A (en) * | 1989-08-18 | 1993-04-27 | Galileo Electro-Optics Corporation | Method of manufacturing microchannel electron multipliers |
US5818500A (en) * | 1991-05-06 | 1998-10-06 | Eastman Kodak Company | High resolution field emission image source and image recording apparatus |
JP3078905B2 (en) * | 1991-12-26 | 2000-08-21 | 浜松ホトニクス株式会社 | Electron tube with electron multiplier |
US5237180A (en) * | 1991-12-31 | 1993-08-17 | Eastman Kodak Company | High resolution image source |
US5656807A (en) * | 1995-09-22 | 1997-08-12 | Packard; Lyle E. | 360 degrees surround photon detector/electron multiplier with cylindrical photocathode defining an internal detection chamber |
JP4108905B2 (en) * | 2000-06-19 | 2008-06-25 | 浜松ホトニクス株式会社 | Manufacturing method and structure of dynode |
US7154086B2 (en) * | 2003-03-19 | 2006-12-26 | Burle Technologies, Inc. | Conductive tube for use as a reflectron lens |
TWI224352B (en) * | 2003-06-17 | 2004-11-21 | Ind Tech Res Inst | Field emission display |
TWI267104B (en) * | 2005-11-14 | 2006-11-21 | Tatung Co | Illumination module of field emission device |
US20080073516A1 (en) * | 2006-03-10 | 2008-03-27 | Laprade Bruce N | Resistive glass structures used to shape electric fields in analytical instruments |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3265916A (en) * | 1963-12-10 | 1966-08-09 | William H Johnston Lab Inc | Focused mesh electron multiplier |
EP0131335A1 (en) * | 1983-07-08 | 1985-01-16 | Philips Electronics Uk Limited | Cathode ray tube |
EP0131339A1 (en) * | 1983-07-11 | 1985-01-16 | Hyperelec | Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube |
EP0165119A1 (en) * | 1984-05-09 | 1985-12-18 | ANVAR Agence Nationale de Valorisation de la Recherche | Electron multiplier device with electric field localisation |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2872721A (en) * | 1956-04-12 | 1959-02-10 | Mcgee James Dwyer | Electron image multiplier apparatus |
US4041343A (en) * | 1963-07-12 | 1977-08-09 | International Telephone And Telegraph Corporation | Electron multiplier mosaic |
US3374380A (en) * | 1965-11-10 | 1968-03-19 | Bendix Corp | Apparatus for suppression of ion feedback in electron multipliers |
US3612946A (en) * | 1967-08-01 | 1971-10-12 | Murata Manufacturing Co | Electron multiplier device using semiconductor ceramic |
JPS4724714B1 (en) * | 1967-11-14 | 1972-07-07 | Matsushita Electric Ind Co Ltd | |
US3513345A (en) * | 1967-12-13 | 1970-05-19 | Westinghouse Electric Corp | High speed electron multiplier |
US4031423A (en) * | 1969-04-30 | 1977-06-21 | American Optical Corporation | Channel structure for multi-channel electron multipliers and method of making same |
GB1321022A (en) * | 1971-04-22 | 1973-06-20 | Standard Telephones Cables Ltd | Channel plate |
GB1368753A (en) * | 1972-05-19 | 1974-10-02 | Mullard Ltd | Electron multiplers |
GB1361006A (en) * | 1971-08-02 | 1974-07-24 | Mullard Ltd | Electron multipliers |
US3939375A (en) * | 1971-09-14 | 1976-02-17 | U.S. Philips Corporation | Cathode ray tube having channel multiplier and electron reflecting system for energizing color phosphor strips |
GB1434053A (en) * | 1973-04-06 | 1976-04-28 | Mullard Ltd | Electron multipliers |
GB1446774A (en) * | 1973-04-19 | 1976-08-18 | Mullard Ltd | Electron beam devices incorporating electron multipliers |
US3873867A (en) * | 1974-01-25 | 1975-03-25 | Rca Corp | Support and focus structure for photomultiplier |
FR2260863B1 (en) * | 1974-02-13 | 1977-09-16 | Labo Electronique Physique | |
CA1046127A (en) * | 1974-10-14 | 1979-01-09 | Matsushita Electric Industrial Co., Ltd. | Secondary-electron multiplier including electron-conductive high-polymer composition |
-
1985
- 1985-12-31 FR FR8519482A patent/FR2592523A1/en not_active Withdrawn
-
1986
- 1986-10-03 US US06/914,848 patent/US4806827A/en not_active Expired - Fee Related
- 1986-12-18 EP EP86202323A patent/EP0230694B1/en not_active Expired - Lifetime
- 1986-12-18 DE DE8686202323T patent/DE3671810D1/en not_active Expired - Lifetime
- 1986-12-26 JP JP61308933A patent/JPS62160652A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3265916A (en) * | 1963-12-10 | 1966-08-09 | William H Johnston Lab Inc | Focused mesh electron multiplier |
EP0131335A1 (en) * | 1983-07-08 | 1985-01-16 | Philips Electronics Uk Limited | Cathode ray tube |
EP0131339A1 (en) * | 1983-07-11 | 1985-01-16 | Hyperelec | Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube |
EP0165119A1 (en) * | 1984-05-09 | 1985-12-18 | ANVAR Agence Nationale de Valorisation de la Recherche | Electron multiplier device with electric field localisation |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014146673A1 (en) * | 2013-03-22 | 2014-09-25 | Cern - European Organization For Nuclear Research | A wall-less electron multiplier assembly |
WO2023232199A2 (en) | 2022-06-03 | 2023-12-07 | P+S Pulverbeschichtungs- Und Staubfilteranlagen Gmbh | Method for applying powder and powder spray nozzle for carrying out the method |
DE102023114613A1 (en) | 2022-06-03 | 2023-12-14 | P+S Pulverbeschichtungs- u. Staubfilteranlagen GmbH | Method for dispensing powder and powder spray nozzle for carrying out the method |
Also Published As
Publication number | Publication date |
---|---|
JPS62160652A (en) | 1987-07-16 |
FR2592523A1 (en) | 1987-07-03 |
EP0230694B1 (en) | 1990-06-06 |
DE3671810D1 (en) | 1990-07-12 |
US4806827A (en) | 1989-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0131339B1 (en) | Electron multiplier element, electron multiplying device made up of this element and its application to a photomultiplier tube | |
EP0230694B1 (en) | Multiplying element with high collection efficiency, multiplying device equipped with such an element and application to a photomultiplier | |
DE69328818T2 (en) | Hybrid photomultiplier tube with high sensitivity | |
EP0742954B1 (en) | Ionising radiation detector having proportional microcounters | |
JP4639379B2 (en) | Detector for bipolar time-of-flight mass spectrometer | |
FR2693592A1 (en) | Photomultiplier tube segmented in N independent channels arranged around a central axis. | |
EP0428215B1 (en) | Segmented photomultiplier tube with high collection efficiency and reduced cross-talk | |
EP0350111B1 (en) | Sheet-type dynode, electron multiplier and photomultiplier having such dynodes | |
EP0230818A1 (en) | Photo cathode with internal amplification | |
EP0264992A1 (en) | Segmented photomultiplier tube | |
FR2735900A1 (en) | FIELD EMISSION TYPE ELECTRON SOURCE AND METHOD FOR MANUFACTURING SAME | |
EP0389051B1 (en) | Photomultiplier tube with a large collection homogeneity | |
FR2480497A1 (en) | MULTI-STAGE DEPRESSED COLLECTOR FOR HYPERFREQUENCY TUBE AND HYPERFREQUENCY TUBE HAVING SUCH A COLLECTOR | |
FR2578356A1 (en) | DEVICE PROVIDED WITH A SEMICONDUCTOR CATHODE | |
EP0044239B1 (en) | Microchannels image intensifier tube and image pick-up assembly comprising such a tube | |
EP0379243A1 (en) | Photomultiplier tube provided with a big first dynode and a stacked dynodes multiplier | |
FR2599557A1 (en) | MULTIPLICATION DIRECTED MULTIPLICATION ELECTRONIC PLATE, MULTIPLIER ELEMENT COMPRISING SAID PLATE, MULTIPLIER DEVICE COMPRISING SAID ELEMENT AND APPLICATION OF SAID DEVICE TO A PHOTOMULTIPLIER TUBE | |
EP0423886A1 (en) | Multi-path photomultiplier with high inter-signal resolution | |
EP0345888B1 (en) | Coupling device between the first dynode of a photomultiplier and a sheet multiplier | |
WO2016162351A1 (en) | Multiband photocathode and associated detector | |
FR2504728A1 (en) | Electron multiplier for photomultiplier tube - has electron deflecting grid assembly having elements repeated at same or sub-multiple of dynode structure spacing | |
EP0956581B1 (en) | Photoelectric multiplier tube of reduced length | |
FR2616587A1 (en) | IONS SOURCE AT FOUR ELECTRODES | |
WO1994007258A3 (en) | Electron energy spectrometer | |
FR2699003A1 (en) | Collector cooled by conduction with high vacuum and high thermal capacity. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19871118 |
|
17Q | First examination report despatched |
Effective date: 19890131 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: N.V. PHILIPS' GLOEILAMPENFABRIEKEN Owner name: PHILIPS COMPOSANTS |
|
REF | Corresponds to: |
Ref document number: 3671810 Country of ref document: DE Date of ref document: 19900712 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19911202 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19911218 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920224 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19921218 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19921218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19930831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19930901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |