EP0227001A2 - Method for manufacturing tools - Google Patents
Method for manufacturing tools Download PDFInfo
- Publication number
- EP0227001A2 EP0227001A2 EP86117455A EP86117455A EP0227001A2 EP 0227001 A2 EP0227001 A2 EP 0227001A2 EP 86117455 A EP86117455 A EP 86117455A EP 86117455 A EP86117455 A EP 86117455A EP 0227001 A2 EP0227001 A2 EP 0227001A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- starting material
- deformation
- stellites
- temperature
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/005—Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
Definitions
- the invention relates to a method for producing tools from alloyed steels or stellites by thermoforming.
- Tool steels and stellites or hard metals are generally characterized by high levels of carbon, chromium, cobalt, molybdenum, vanadium and tungsten. Together with the corresponding carbides, these elements give the material the necessary strength, in particular wear resistance and hardness. However, this is usually at the expense of toughness and is associated with a corresponding increase in the resistance to deformation.
- the invention has for its object to provide a method which avoids the aforementioned disadvantages and allows the manufacture of finished parts from alloys, which are more normal due to their high resistance to deformation wise not to be deformed or, at most, to be deformed into a blank that requires machining.
- the solution to this problem consists in the fact that, in a process of the type mentioned at the outset, a starting material produced by powder metallurgy with over 30 vol adjusted and molded in the superplastic state.
- the small grain size ensures a low yield stress due to grain boundary sliding and thus reduces the required forming force and tool wear.
- the method according to the invention therefore runs in two stages;
- the first stage of the process is used to powder-metallurgically produce, as a result of the high cooling rate of, for example, 10 4 to 10 K / s during melt sputtering, fine crystalline, preferably already equiaxial, multi-phase structure of the alloy powder both with regard to the matrix and also with regard to the carbidic and / or boridic precipitation phase further refine in the consolidated state and thereby a thermally stable microstructure during the subsequent thermomechanical processing due to hot forming in the second process stage with a grain size of 1 to 3 pm or 0.2 to 1, which is preferably fine both for the matrix and for the precipitation phase, 0 ⁇ m.
- the material structure in the first process stage can be conditioned by thermomechanical processing, which is the case with steel alloys in austenitic Condition, for example, begins at about 900 ° C and the ⁇ / ⁇ phase conversion in the range from 750 to 820 ° C to a final rolling temperature of 650 ° C.
- thermomechanical processing which is the case with steel alloys in austenitic Condition, for example, begins at about 900 ° C and the ⁇ / ⁇ phase conversion in the range from 750 to 820 ° C to a final rolling temperature of 650 ° C.
- the material to be deformed cools down continuously and, in addition to the phase change, the carbides and / or borides are eliminated.
- the carbides and / or borides separate out during hot forming of stellites in the temperature range from 1000 to 700 ° C. during the forming and the associated continuous cooling.
- thermomechanical conditioning there is a refinement of the matrix grain, which is then equiaxial at the latest, as well as a finer dispersion of the carbide and boride particles as a result of the favorable conditions for nucleation during the phase change. Both have an impact in the direction of higher material strength.
- the conditioning of the starting material produced by powder metallurgy can also be carried out by isothermal shaping with the aim of recrystallizing the structure and setting a fine-grained structure as a prerequisite for the superplastic state.
- the isothermal deformation takes place at temperatures below the transition temperature, for example at 450 ° C., preferably at a low degree of deformation, for example with a cross-sectional decrease of about 10%, and should include a cyclic ⁇ / ⁇ phase transformation which, owing to the different volumes of the ⁇ and the ⁇ phase to internal tensions and thus to an internal one leads to strain-induced deformation of the matrix grain.
- This can be followed by a short primary recrystallization annealing, for example 20 to 60 seconds, to refine the matrix grain size of the hot isostatically pressed blank, which leads to a further grain refinement.
- the aim of the conditioning of the starting material is to establish a structure which is equiaxial for superplastic shaping in the second process stage and which is characterized by a fine structure grain which favors the forming behavior.
- the resistance to deformation is reduced and, at the same time, the rate of deformation can be increased.
- the formed material which is adjusted to a specific multiphase structure, is formed at a temperature in the order of 50 to 70% of the melting temperature of, for example, 650 to 780 ° C, which allows high degrees of deformation at low flow stresses and therefore also the production Complicated finished parts made of alloys, the composition of which does not allow shaping by forming without the special pretreatment of the first stage of the method according to the invention.
- the forming speed is preferably 10-3 to 5.10 s 1 .
- the expansion speed exponent m as it results from the equation in which s is the yield stress, K is a material constant and e is the rate of deformation or creep for Steel alloys from 0.4 to 0.5 and for stellites from 0.35 to 0.4.
- the process according to the invention particularly if the conditioning in the first process stage takes place by isothermal shaping below the transition temperature, is characterized by low costs both in terms of the outlay on equipment and in terms of energy consumption.
- the forming temperature is below the temperature of the beginning secondary crystallization or grain coarsening, since each grain growth increases the resistance to deformation and therefore requires higher deformation forces.
- the method according to the invention is particularly suitable for high-carbon cold work steels such as These have carbon contents from 1.0 to 2.5% and high alloy contents of chromium, vanadium, tungsten, molybdenum and cobalt from 4 to 17%.
- the following alloys are also suitable:
- the stellites are iron and cobalt base stellites with high boron and carbon contents of 1 to 4% and contents of the alloy elements chromium, molybdenum, tungsten from 15 to 30%, which can be formed at a relatively low temperature of 650 to 720 ° C.
- the superplastic shape can be followed by coarse grain annealing in order to increase the creep resistance or heat resistance.
- the round blank 1 shown in FIG. 1 consists of the high-strength cold work steel X 245 Cr V 5 10, which was produced by powder metallurgy by hot isostatic pressing and was set to a structure with a matrix grain size of 1 to 3 ⁇ m. It is used to manufacture the disk-shaped rotary knife shown in FIG. 2 with a cone angle c L of 150 to 160 °, a thickness of 1.0 to 1.5 mm and an inner diameter of 50 mm and an outer diameter of 100 mm.
- the circular blank 1 was produced by punching from a powder metallurgy and then rolled out at a temperature of 1150 to 1250 ° C to a thickness of 2.5 mm and measuring 100 x 200 x 8 mm. In order to create a sufficient material reserve for the formation of the cutting edges 2 of the rotary knife, the thickness of the board exceeded the finished thickness of the rotary knife by 1 mm.
- the low forming temperature saves energy, ensures minimal scaling and prevents harmful grain growth.
- superplastic forming results in a higher density because pores and cracks weld, as well as higher strength and toughness. Because there is no machining, there are no fatigue cracks in the machining grooves, which increases the tool life by 25 to 30%.
- the method according to the invention is suitable for producing cut bells and tools, shape cutting tools, knives, for example disc, filter and tobacco knives with a thickness of less than 3 mm, embossing dies, jam and pressure rings for extruders, sintering dies, extrusion dies and dies, shaping tools for the wobble extrusion and multi-hole plates each made of cold work steels, for the production of profile milling cutters, form turning steels and profile countersunk heads from high speed steels as well as for the production of glass blow molding tools, profile rods, nozzles, impellers, turbine disks and valve seats made of stellites. It is characterized by low forming temperatures and a low power requirement.
- the finely dispersed, equiaxial and texture-free microstructure guarantees constant and reproducible mechanical properties, in particular high strength with excellent ductility and good fatigue behavior.
- the dimensional accuracy and surface quality are so good that reworking is not necessary.
- the surface roughness is normally less than 1 / um.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Forging (AREA)
- Powder Metallurgy (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Turning (AREA)
Abstract
Bei einem Verfahren zum Herstellen von Werkzeugen aus mittel- und hochlegierten Stählen oder Stelliten durch superplastische Präzisionsformgebung wird ein pulvermetallurgisch hergestelltes Ausgangsmaterial mit äquiaxialem Gefüge und über 30 Vol.-% karbidischer und/oder boridischer Ausscheidungsphase einer Teilchengröße: 1 bis 0,2 µm durch thermomechanisches Prozessieren (Warmverformen) auf eine Matrixkorngröße von 1 bis 3 µm eingestellt und im superplastischen Zustand geformt. In a process for producing tools from medium and high-alloy steels or stellites by means of superplastic precision shaping, a powder-metallurgically produced starting material with an equiaxial structure and over 30 vol.% Carbide and / or boride precipitation phase of a particle size: 1 to 0.2 µm by thermomechanical Processing (hot forming) set to a matrix grain size of 1 to 3 µm and shaped in the superplastic state.
Description
Die Erfindung bezieht sich auf ein Verfahren zum Herstellen von Werkzeugen aus legierten Stählen oder Stelliten durch Warmformen.The invention relates to a method for producing tools from alloyed steels or stellites by thermoforming.
Werkzeugstähle und Stellite bzw. Hartmetalle zeichnen sich im allgemeinen durch hohe Gehalte an Kohlenstoff, Chrom, Kobalt, Molybdän, Vanadium und Wolfram aus. Diese Elemente verleihen dem Werkstoff zusammen mit den entsprechenden Karbiden die notwendige Festigkeit, insbesondere Verschleißfestigkeit und Härte. Das geht jedoch zumeist auf Kosten der Zähigkeit und ist mit einer entsprechenden Erhöhung des Verformungswiderstandes verbunden.Tool steels and stellites or hard metals are generally characterized by high levels of carbon, chromium, cobalt, molybdenum, vanadium and tungsten. Together with the corresponding carbides, these elements give the material the necessary strength, in particular wear resistance and hardness. However, this is usually at the expense of toughness and is associated with a corresponding increase in the resistance to deformation.
Bei hohem Verformungswiderstand scheidet das Kalt-, aber auch das konventionelle Warmumformen zum Erzeugen der Fertigkontur aus und kommt demzufolge nur ein Urformen durch Block- oder Stranggießen und ein anschließendes Walzen oder Schmieden, oder ein Formgießen und Pulverpressen in Frage. Diese Verfahren erfordern jedoch in aller Regel eine spanende Bearbeitung des urgeformten Teils bis zur Fertigkontur und zum Fertigmaß. Das aber stößt gerade bei verschleißfesten Teilen insofern auf Schwierigkeiten, als die spanende Bearbeitung Werkzeuge mit einer Verschleißfestigkeit erfordert, die die Verschleißfestigkeit des zu bearbeitenden Teils erheblich übersteigt. Außerdem ist spanende Bearbeitung mit einem erheblichen Materialverlust verbunden. Die Bearbeitungskosten sind daher erheblich, ohne daß sich immer eine gute Oberflächenbeschaffenheit ergibt.With high deformation resistance, cold as well as conventional hot forming to create the finished contour is ruled out and consequently only undergoes primary shaping Block or continuous casting and a subsequent rolling or forging, or a molding and powder pressing in question. However, as a rule, these processes require machining of the preformed part up to the finished contour and the finished dimension. However, this is particularly difficult with wear-resistant parts insofar as machining requires tools with a wear resistance that significantly exceeds the wear resistance of the part to be machined. In addition, machining is associated with a considerable loss of material. The processing costs are therefore considerable, without always having a good surface finish.
Hinzu kommen verfahrensspezifische Nachteile wie die hohen Energiekosten des Warmwalzens und -schmiedens oder die Beeinträchtigung der Oberflächenqualität durch intensive Oxydationsvorgänge der Legierungen. Ein weiterer Nachteil ist das gerade im Hinblick auf verwickelte Fertigformen zumeist nicht ausreichende Fließvermögen beim Urformen wie auch beim Formgießen. Das führt zu Rohlingen, die sich erheblich vom Fertigteil unterscheiden und daher eine zu einem erheblichen Materialverlust führende spanende Bearbeitung erfordern. Die damit verbundenen Kosten sind wegen der hohen Gehalte der betreffenden Werkstoffe an teuren Legierungsmitteln ganz erheblich. Hinzu kommt die aus dem hohen Verformungswiderstand resultierende Notwendigkeit hoher Verformungskräfte, die entsprechend teure Umformaggregate und hohe Energiekosten mit sich bringen.There are also process-specific disadvantages such as the high energy costs of hot rolling and forging or the impairment of the surface quality due to intensive oxidation processes of the alloys. Another disadvantage is that, especially with regard to entangled finished molds, the fluidity is usually not sufficient for primary molding as well as for molding. This leads to blanks that differ significantly from the finished part and therefore require machining that leads to a considerable loss of material. The associated costs are very considerable due to the high content of expensive alloying agents in the materials concerned. In addition, there is the need for high deformation forces resulting from the high resistance to deformation, which entails correspondingly expensive forming units and high energy costs.
Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zu schaffen, das die vorerwähnten Nachteile vermeidet und das Herstellen von Fertigteilen aus Legierungen erlaubt, die sich wegen ihres hohen Verformungswiderstandes normalerweise nicht umformen oder allenfalls zu einem Rohling verformen lassen, der eine spanende Bearbeitung erfordert.The invention has for its object to provide a method which avoids the aforementioned disadvantages and allows the manufacture of finished parts from alloys, which are more normal due to their high resistance to deformation wise not to be deformed or, at most, to be deformed into a blank that requires machining.
Die Lösung dieser Aufgabe besteht darin, daß bei einem Verfahren der eingangs erwähnten Art ein pulvermetallurgisch hergestelltes Ausgangsmaterial mit über 30 Vol.-% karbidischer und/oder boridischer Ausscheidungsphase durch thermomechanisches Prozessieren mit einem äquiaxillem Gefüge und einer Korngröße von vorzugsweise 0,2 bis 3 µm eingestellt und im superplastischen Zustand geformt wird. Die geringe Korngröße gewährleistet eine niedrige Fließspannung durch Korngrenzengleiten und verringert damit die erforderliche Umformungskraft sowie den Werkzeugverschleiß.The solution to this problem consists in the fact that, in a process of the type mentioned at the outset, a starting material produced by powder metallurgy with over 30 vol adjusted and molded in the superplastic state. The small grain size ensures a low yield stress due to grain boundary sliding and thus reduces the required forming force and tool wear.
Das erfindungsgemäße Verfahren läuft mithin zweistufig ab; die erste Verfahrensstufe dient dazu, das pulvermetallurgisch hergestellte, infolge der hohen Abkühlungsgeschwindigkeit von beispielsweise 104 bis 10 K/s beim Schmelzzerstäuben an sich schon feinkristalline, vorzugsweise bereits äquiaxiale Mehrphasengefüge der Legierungspulver sowohl hinsichtlich der Matrix als auch hinsichtlich der karbidischen und/oder boridischen Ausscheidungsphase im konsolidierten Zustand weiter zu verfeinern und dabei ein beim sich anschließenden thermomechanischen Prozessieren infolge Warmumformens in der zweiten Verfahrensstufe thermisch stabiles Mikrogefüge mit einer vorzugsweise sowohl für die Matrix als auch für die Ausscheidungsphase feinen Korngröße von 1 bis 3 pm bzw. 0,2 bis 1,0 µm einzustellen.The method according to the invention therefore runs in two stages; The first stage of the process is used to powder-metallurgically produce, as a result of the high cooling rate of, for example, 10 4 to 10 K / s during melt sputtering, fine crystalline, preferably already equiaxial, multi-phase structure of the alloy powder both with regard to the matrix and also with regard to the carbidic and / or boridic precipitation phase further refine in the consolidated state and thereby a thermally stable microstructure during the subsequent thermomechanical processing due to hot forming in the second process stage with a grain size of 1 to 3 pm or 0.2 to 1, which is preferably fine both for the matrix and for the precipitation phase, 0 µm.
Das Konditionieren des Werkstoffgefüges in der ersten Verfahrensstufe kann durch ein thermomechanisches Prozessieren geschehen, das bei den Stahllegierungen im austenitischen Zustand, beispielsweise bei etwa 900°C beginnt und die γ/α -Phasenumwandlung im Bereich von 750 bis 820°C bis zu einer Endwalztemperatur von 650°C durchläuft. Während des Warmverformens, beispielsweise eines Walzens oder Schmiedens kühlt das Verformungsgut kontinuierlich ab und kommt es neben der Phasenumwandlung zum Ausscheiden der Karbide und/oder Boride.The material structure in the first process stage can be conditioned by thermomechanical processing, which is the case with steel alloys in austenitic Condition, for example, begins at about 900 ° C and the γ / α phase conversion in the range from 750 to 820 ° C to a final rolling temperature of 650 ° C. During the thermoforming, for example rolling or forging, the material to be deformed cools down continuously and, in addition to the phase change, the carbides and / or borides are eliminated.
In ähnlicher Weise scheiden sich bei einem Warmverformen von Stelliten etwa im Temperaturbereich von 1000 bis 700°C während des Verformens und des damit verbundenen kontinuierlichen Abkühlens die Karbide und/oder Boride aus. Darüber hinaus kommt es während des thermomechanischen Konditionierens sowohl zu einer Verfeinerung des spätestens dann äquiaxialen Matrixkorns als auch infolge der günstigen Bedingungen für die Keimbildung während der Phasenumwandlung zu einer feinerdispersen Verteilung der Karbid- und Boridteilchen. Beides wirkt sich in Richtung einer höheren Werkstoffestigkeit aus.In a similar manner, the carbides and / or borides separate out during hot forming of stellites in the temperature range from 1000 to 700 ° C. during the forming and the associated continuous cooling. In addition, during thermomechanical conditioning there is a refinement of the matrix grain, which is then equiaxial at the latest, as well as a finer dispersion of the carbide and boride particles as a result of the favorable conditions for nucleation during the phase change. Both have an impact in the direction of higher material strength.
Des weiteren kann das Konditionieren des pulvermetallurgisch hergestellten Ausgangsmaterials auch durch isothermes Verformen mit dem Ziel geschehen, das Gefüge umzukristallisieren und ein feinerkörniges Gefüge als Voraussetzung für den superplastischen Zustand einzustellen. Das isotherme Verformen findet bei Temperaturen unterhalb der Umwandlungstemperatur, beispielsweise bei 450°C vorzugsweise bei einem geringen Verformungsgrad, beispielsweise bei einer Querschnittsabnahme von etwa 10% statt und sollte eine zyklische γ/α Phasenumwandlung einschließen, die infolge des unterschiedlichen Volumens der γ-und der α -Phase zu inneren Spannungen und damit zu einer durch innere Eigenspannungen induzierten Verformung des Matrixkorns führt. Dem kann sich zur Verfeinerung der Matrixkorngröße des heißisostatisch gepreßten Rohlings ein kurzes, beispielsweise 20 bis 60 Sekunden dauerndes Primärrekristallisationsglühen anschließen, das zu einer weiteren Kornverfeinerung führt.Furthermore, the conditioning of the starting material produced by powder metallurgy can also be carried out by isothermal shaping with the aim of recrystallizing the structure and setting a fine-grained structure as a prerequisite for the superplastic state. The isothermal deformation takes place at temperatures below the transition temperature, for example at 450 ° C., preferably at a low degree of deformation, for example with a cross-sectional decrease of about 10%, and should include a cyclic γ / α phase transformation which, owing to the different volumes of the γ and the α phase to internal tensions and thus to an internal one leads to strain-induced deformation of the matrix grain. This can be followed by a short primary recrystallization annealing, for example 20 to 60 seconds, to refine the matrix grain size of the hot isostatically pressed blank, which leads to a further grain refinement.
Insgesamt zielt das Konditionieren des Ausgangsmaterials darauf ab, ein für die superplastische Formgebung in der zweiten Verfahrensstufe äquiaxiales Gefüge einzustellen, das sich durch ein das Umformverhalten begünstigendes feines Gefügekorn auszeichnet. Mit abnehmender Korngröße verringert sich nämlich der Verformungswiderstand und läßt sich gleichzeitig die Verformungsgeschwindigkeit erhöhen.Overall, the aim of the conditioning of the starting material is to establish a structure which is equiaxial for superplastic shaping in the second process stage and which is characterized by a fine structure grain which favors the forming behavior. With decreasing grain size, the resistance to deformation is reduced and, at the same time, the rate of deformation can be increased.
In der zweiten Verfahrensstufe wird der umgeformte und auf ein bestimmtes Mehrphasen-Gefüge eingestellte Werkstoff bei einer Temperatur in der Größenordnung von 50 bis 70% der Schmelztemperatur von beispielsweise 650 bis 780°C geformt, die bei niedrigen Fließspannungen hohe Verformungsgrade erlaubt und daher auch das Herstellen komplizierter Fertigteile aus Legierungen ermöglicht, deren Zusammensetzung ohne die spezielle Vorbehandlung der ersten Stufe des erfindungsgemäßen Verfahrens eine Formgebung durch Umformen nicht erlaubt. Die Umformgeschwindigkeit liegt vorzugsweise bei 10-3 bis 5.10 s 1. Dabei kann der Dehngeschwindigkeitsexponent m, wie er sich aus der Gleichung
Die Umformtemperatur liegt dabei unterhalb der Temperatur der beginnenden Sekundärkristallisation bzw. Kornvergröberung, da jedes Kornwachstum den Verformungswiderstand erhöht und damit höhere Verformungskräfte erfordert.The forming temperature is below the temperature of the beginning secondary crystallization or grain coarsening, since each grain growth increases the resistance to deformation and therefore requires higher deformation forces.
Das erfindungsgemäße Verfahren eignet sich besonders für die hoch kohlenstoffhaltigen Kaltarbeitsstähle wie
Weiterhin eignen sich die folgenden Legierungen:
Der superplastischen Formgebung kann sich ein Grobkornglühen anschließen, um die Kriechfestigkeit bzw. Warmfestigkeit zu erhöhen.The superplastic shape can be followed by coarse grain annealing in order to increase the creep resistance or heat resistance.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels des näheren erläutert. In der Zeichnung zeigen:
- Fig. 1 die Seitenansicht einer Ronde zum Herstellen eines Rotationsmessers, teilweise im Schnitt und
- Fig. 2 das aus der Ronde der Fig. 1 durch superplastische Formgebung hergestellte Rotationsmesser teilweise im Schnitt.
- Fig. 1 is a side view of a circular blank for producing a rotary knife, partly in section and
- Fig. 2 shows the rotary knife made from the blank of Fig. 1 by superplastic shaping partially in section.
Die in Fig. 1 dargestellte Ronde 1 besteht aus dem hochfesten Kaltarbeitsstahl X 245 Cr V 5 10, der pulvermetallurgisch durch isostatisches Heißpressen hergestellt wurde und auf ein Gefüge mit einer Matrixkorngröße von 1 bis 3 µm eingestellt wurde. Sie dient zum Herstellen des in Fig. 2 dargestellten scheibenförmigen Rotationsmessers mit einem Kegelwinkel cL von 150 bis 160°, einer Dicke von 1,0 bis 1,5 mm und einem Innendurchmesser von 50 mm sowie einem Außendurchmesser von 100 mm.The round blank 1 shown in FIG. 1 consists of the high-strength cold work steel X 245 Cr V 5 10, which was produced by powder metallurgy by hot isostatic pressing and was set to a structure with a matrix grain size of 1 to 3 μm. It is used to manufacture the disk-shaped rotary knife shown in FIG. 2 with a cone angle c L of 150 to 160 °, a thickness of 1.0 to 1.5 mm and an inner diameter of 50 mm and an outer diameter of 100 mm.
Die Ronde 1 wurde durch Stanzen aus einer pulvermetallurgisch hergestellten und alsdann bei einer Temperatur von 1150 bis 1250°C auf eine Dicke von 2,5 mm ausgewalzten Platine der Abmessung 100 x 200 x 8 mm hergestellt. Um eine ausreichende Materialreserve für die Ausbildung der Schneiden 2 des Rotationsmessers zu schaffen, überstieg die Dicke der Platine die Fertigdicke des Rotationsmessers um 1 mm.The circular blank 1 was produced by punching from a powder metallurgy and then rolled out at a temperature of 1150 to 1250 ° C to a thickness of 2.5 mm and measuring 100 x 200 x 8 mm. In order to create a sufficient material reserve for the formation of the
Die Ronde 1 besaß einen Durchmesser von 95 mm und eine Dicke von 2,5 mm, er wurde nach dem Stanzen auf eine Temperatur von 760 C erwärmt und mit Hilfe eines üblichen, auf 350°C vorgewärmten Werkzeugs aus Ober- und Untergesenk mit einer Umformgeschwindigkeit von 5.10-3 s-1 in einer Preßzeit von 25 s zu dem in Fig 2 dargestellten Rotationsmesser umgeformt, wie sich aus der Gleichung
Die geringe Umformtemperatur spart Energie, gewährleistet eine minimale Verzunderung und verhindert ein schädliches Kornwachstum. Außerdem ergibt sich beim superplastischen Umformen eine höhere Dichte, weil Poren und Risse verschweißen, sowie eine höhere Festigkeit und Zähigkeit. Wegen des Wegfalls einer spanenden Bearbeitung kommt es auch nicht zu Ermüdungsrisse auslösendem Bearbeitungsriefen, wodurch sich die Standzeit eines Werkzeugs um 25 bis 30% erhöht.The low forming temperature saves energy, ensures minimal scaling and prevents harmful grain growth. In addition, superplastic forming results in a higher density because pores and cracks weld, as well as higher strength and toughness. Because there is no machining, there are no fatigue cracks in the machining grooves, which increases the tool life by 25 to 30%.
Experimentell ergab sich in guter Übereinstimmung mit dem rechnerisch ermittelten Wert eine Umformzeit von 25 s. Rechnet man dazu eine Zustellzeit für das Werkzeug von 35 s hinzu, so ergibt sich je Rotationsmesser eine Fertigungszeit von 60 s, die weit unter der Bearbeitungszeit beim spanenden Bearbeiten eines Rohlings liegt.Experimentally, in good agreement with the calculated value, a forming time of 25 s was found. If you add a delivery time for the tool of 35 s, this results in a production time of 60 s for each rotary knife, which is far less than the machining time for machining a blank.
Das erfindungsgemäße Verfahren eignet sich zum Herstellen von Schnittglocken und -werkzeugen, Formschneidwerkzeugen, Messern, beispielsweise Scheiben-, Filter- und Tabakmessern mit einer Dicke unter 3 mm, Prägestempeln, Stau- und Druckringen für Extruder, Sinterformpreßwerkzeugen, Fließpreßwerkzeugen und -stempeln, Formwerkzeugen für das Taumelfließpressen und Viellochplatten jeweils aus Kaltarbeitsstählen, zum Herstellen von Profilfräsern, Formdrehstählen und Profilsenkköpfen aus Schnellarbeitsstählen sowie zum Herstellen von Glasblasformwerkzeugen, Profilstangen, Düsen, Laufrädern, Turbinenscheiben und Ventilsitzen aus Stelliten. Es zeichnet sich durch niedrige Umformtemperaturen und einen geringen Kraftbedarf aus. Das feindisperse, äquiaxiale und texturfreie Mikrogefüge gewährleistet gleichbleibende und reproduzierbare mechanische Eigenschaften, insbesondere eine hohe Festigkeit bei ausgezeichneter Duktilität und gutem Ermüdungsverhalten. Die Maßhaltigkeit und Oberflächenbeschaffenheit sind dabei so gut, daß ein Nachbearbeiten nicht erforderlich ist. So liegt die Oberflächenrauhigkeit normalerweise unter 1/um.The method according to the invention is suitable for producing cut bells and tools, shape cutting tools, knives, for example disc, filter and tobacco knives with a thickness of less than 3 mm, embossing dies, jam and pressure rings for extruders, sintering dies, extrusion dies and dies, shaping tools for the wobble extrusion and multi-hole plates each made of cold work steels, for the production of profile milling cutters, form turning steels and profile countersunk heads from high speed steels as well as for the production of glass blow molding tools, profile rods, nozzles, impellers, turbine disks and valve seats made of stellites. It is characterized by low forming temperatures and a low power requirement. The finely dispersed, equiaxial and texture-free microstructure guarantees constant and reproducible mechanical properties, in particular high strength with excellent ductility and good fatigue behavior. The dimensional accuracy and surface quality are so good that reworking is not necessary. The surface roughness is normally less than 1 / um.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT86117455T ATE90899T1 (en) | 1985-12-18 | 1986-12-16 | PROCESS FOR MAKING TOOLS. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3544759 | 1985-12-18 | ||
DE19853544759 DE3544759A1 (en) | 1985-12-18 | 1985-12-18 | METHOD FOR PRODUCING TOOLS |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0227001A2 true EP0227001A2 (en) | 1987-07-01 |
EP0227001A3 EP0227001A3 (en) | 1988-05-04 |
EP0227001B1 EP0227001B1 (en) | 1993-06-23 |
Family
ID=6288747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86117455A Expired - Lifetime EP0227001B1 (en) | 1985-12-18 | 1986-12-16 | Method for manufacturing tools |
Country Status (6)
Country | Link |
---|---|
US (1) | US5028386A (en) |
EP (1) | EP0227001B1 (en) |
JP (1) | JPS62156203A (en) |
AT (1) | ATE90899T1 (en) |
DE (1) | DE3544759A1 (en) |
ES (1) | ES2041242T3 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838124A (en) * | 1986-06-30 | 1989-06-13 | Toyota Jidosha Kabushiki Kaisha | System for integrally controlling automatic transmission and engine |
US4890515A (en) * | 1986-07-07 | 1990-01-02 | Toyota Jidosha Kabushiki Kaisha | System for integrally controlling automatic transmission and engine |
US4945481A (en) * | 1986-05-08 | 1990-07-31 | Toyota Jidosha Kabushiki Kaisha | System for integrally controlling automatic transmission and engine |
US4969099A (en) * | 1986-03-11 | 1990-11-06 | Toyota Jidosha Kabushiki Kaisha | Double-detecting, trouble-judging and failsafe devices in system for integrally controlling automatic transmission and engine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060032333A1 (en) * | 2004-03-24 | 2006-02-16 | Steel Russell J | Solid state processing of industrial blades, edges and cutting elements |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2127082A5 (en) * | 1971-02-22 | 1972-10-13 | Charbonnages De France | |
JPS5510642B2 (en) * | 1973-10-31 | 1980-03-18 | ||
US4073648A (en) * | 1974-06-10 | 1978-02-14 | The International Nickel Company, Inc. | Thermoplastic prealloyed powder |
US3976482A (en) * | 1975-01-31 | 1976-08-24 | The International Nickel Company, Inc. | Method of making prealloyed thermoplastic powder and consolidated article |
US3951697A (en) * | 1975-02-24 | 1976-04-20 | The Board Of Trustees Of Leland Stanford Junior University | Superplastic ultra high carbon steel |
JPS5485106A (en) * | 1977-12-20 | 1979-07-06 | Seiko Epson Corp | Magnet made from inter-rare-earth-metallic compound |
JPS5887204A (en) * | 1981-11-17 | 1983-05-25 | Kobe Steel Ltd | Constant temperature forging method for superalloy using quickly soldified powder |
JPS5893802A (en) * | 1981-11-30 | 1983-06-03 | Sumitomo Electric Ind Ltd | Manufacturing method of difficult-to-work alloy wire rod |
US4533390A (en) * | 1983-09-30 | 1985-08-06 | Board Of Trustees Of The Leland Stanford Junior University | Ultra high carbon steel alloy and processing thereof |
DE3346089A1 (en) * | 1983-12-21 | 1985-07-18 | Dr. Weusthoff GmbH, 4000 Düsseldorf | METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS |
US4582536A (en) * | 1984-12-07 | 1986-04-15 | Allied Corporation | Production of increased ductility in articles consolidated from rapidly solidified alloy |
JPS62134130A (en) * | 1985-12-05 | 1987-06-17 | Agency Of Ind Science & Technol | Super-plastic worm die pack forging method for high strength/hard-to-work material |
-
1985
- 1985-12-18 DE DE19853544759 patent/DE3544759A1/en active Granted
-
1986
- 1986-12-16 ES ES198686117455T patent/ES2041242T3/en not_active Expired - Lifetime
- 1986-12-16 AT AT86117455T patent/ATE90899T1/en not_active IP Right Cessation
- 1986-12-16 EP EP86117455A patent/EP0227001B1/en not_active Expired - Lifetime
- 1986-12-18 JP JP61302756A patent/JPS62156203A/en active Pending
-
1990
- 1990-10-17 US US07/600,135 patent/US5028386A/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4969099A (en) * | 1986-03-11 | 1990-11-06 | Toyota Jidosha Kabushiki Kaisha | Double-detecting, trouble-judging and failsafe devices in system for integrally controlling automatic transmission and engine |
US4945481A (en) * | 1986-05-08 | 1990-07-31 | Toyota Jidosha Kabushiki Kaisha | System for integrally controlling automatic transmission and engine |
US4838124A (en) * | 1986-06-30 | 1989-06-13 | Toyota Jidosha Kabushiki Kaisha | System for integrally controlling automatic transmission and engine |
US4890515A (en) * | 1986-07-07 | 1990-01-02 | Toyota Jidosha Kabushiki Kaisha | System for integrally controlling automatic transmission and engine |
Also Published As
Publication number | Publication date |
---|---|
JPS62156203A (en) | 1987-07-11 |
US5028386A (en) | 1991-07-02 |
EP0227001B1 (en) | 1993-06-23 |
EP0227001A3 (en) | 1988-05-04 |
DE3544759C2 (en) | 1989-08-03 |
ATE90899T1 (en) | 1993-07-15 |
ES2041242T3 (en) | 1993-11-16 |
DE3544759A1 (en) | 1987-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3228724B1 (en) | Tool steel, in particular hot-work steel, and steel object | |
DE69710898T2 (en) | METHOD FOR PRODUCING AXIS-SYMMETRICAL PARTS | |
DE2621472C2 (en) | Use of a hard alloy for cutting, shearing or deforming tools | |
DE60313065T2 (en) | Thin products of beta or quasi-beta titanium alloys, forging production | |
EP2359951A1 (en) | Tools with a thermo-mechanically modified working region and methods of forming such tools | |
DE69814896T2 (en) | STEEL AND HEAT-TREATED TOOL MADE IN AN INTEGRATED POWDER METALLURGICAL PROCESS AND THE USE OF SUCH STEEL FOR TOOLS | |
WO2008125525A1 (en) | Tool | |
EP3409801B1 (en) | Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material | |
EP3994289B1 (en) | Nickel based alloy for powder and method to produce such powder | |
EP1568486A1 (en) | Method for manufacturing of workpieces or semifinished products containing titanium aluminide alloys and products made thereby | |
DE69906782T2 (en) | STEEL, USE OF THE STEEL, PRODUCT MADE THEREOF AND METHOD FOR THE PRODUCTION THEREOF | |
DE2060605C3 (en) | Powder metallurgy produced by sintering, precipitation hardenable, corrosion and high temperature resistant nickel-chromium alloy | |
US4860567A (en) | Ring forging process | |
WO2003000457A1 (en) | Strip-shaped cutting tools | |
EP1407056A2 (en) | Moulded piece made from an intermetallic gamma-ti-al material | |
EP0227001B1 (en) | Method for manufacturing tools | |
DE602004002906T2 (en) | High temperature resistant member for use in gas turbines | |
EP0545145B1 (en) | Manufacture of a porous copper-based material as a preform for a machining process | |
EP1985390B1 (en) | Tools with a thermo-mechanically modified working region and methods of forming such tools | |
DE4436670C2 (en) | Objects made of nickel-based superalloys with improved machinability and method for producing a machined workpiece from such a superalloy | |
AT413544B (en) | HIGH-HARD NICKEL BASE ALLOY FOR WEAR-RESISTANT HIGH-TEMPERATURE TOOLS | |
DE2840935C2 (en) | Process for producing a cemented carbide | |
EP1129803B1 (en) | Material prepared by powder metallurgy with improved isotropy of the mechanical properties | |
AT401778B (en) | USE OF MOLYBDENUM ALLOYS | |
AT394325B (en) | METAL MOLD FOR EXTRUDING AND METHOD FOR PRODUCING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19881010 |
|
17Q | First examination report despatched |
Effective date: 19900323 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 90899 Country of ref document: AT Date of ref document: 19930715 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930630 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3008898 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2041242 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19931125 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19931216 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19931217 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19931221 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19931222 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19931227 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19931231 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940104 Year of fee payment: 8 |
|
EPTA | Lu: last paid annual fee | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19941216 Ref country code: GB Effective date: 19941216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19941217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19941231 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 86117455.5 |
|
BERE | Be: lapsed |
Owner name: FROMMEYER GEORG Effective date: 19941231 Owner name: ROBERT ZAPP WERKSTOFFTECHNIK G.M.B.H. & CO K.G. Effective date: 19941231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19950630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19941216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950831 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3008898 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19950701 |
|
EUG | Se: european patent has lapsed |
Ref document number: 86117455.5 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19951217 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19960113 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20041227 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20041229 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051216 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051231 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |