EP0224174A2 - Organic polymers with electrical properties - Google Patents
Organic polymers with electrical properties Download PDFInfo
- Publication number
- EP0224174A2 EP0224174A2 EP86115947A EP86115947A EP0224174A2 EP 0224174 A2 EP0224174 A2 EP 0224174A2 EP 86115947 A EP86115947 A EP 86115947A EP 86115947 A EP86115947 A EP 86115947A EP 0224174 A2 EP0224174 A2 EP 0224174A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sulfur
- pyropolymer
- organic polymers
- weight
- conductivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
Definitions
- the invention relates to organic polymers, such as plastics and paints, with increased electrical conductivity.
- This increased electrical conductivity is achieved by adding a sulfur-containing pyropolymer, which was obtained by pyrolysis of a sulfur-containing condensation product from aromatic compounds, which may contain heterocyclic rings with O, S or N as heteroatoms, and sulfur or sulfur-donating compounds.
- inorganic conductive fillers For example, metals, alloys, metal oxides, metal sulfides, metallized fillers or carbon, preferably in the form of carbon black or graphite, are used as inorganic conductive fillers.
- the conductivity-increasing fillers are used in the form of powders, beads, fibers or flakes. These conductive fillers ha ben, however, the disadvantage that they must be used in order to achieve the desired electrical conductivity in amounts that lead to an impairment of the mechanical properties of the organic polymers.
- this special polyacetylene modification With this special polyacetylene modification, a useful increase in the conductivity of the organic polymer is achieved even with additions of 0.1% by weight.
- this special polyacetylene modification has the disadvantage that it is not stable and that the conductivity decreases considerably when exposed to air and often when the polyacetylene is incorporated into the molten plastics.
- DE-OS 3 324 768 discloses condensation products of aromatic compounds with sulfur or sulfur-releasing compounds which have an electrical conductivity.
- the conductivity of these condensation products is not sufficient for use as conductive fillers in organic polymers.
- these condensation products have the disadvantage that the addition can lead to a sharp increase in the viscosity of the polymer melts, so that these melts can no longer be processed.
- organic polymers with increased electrical conductivity which remains unchanged even over long periods of time, are obtained, which also conduct under the influence of air, heat and shear forces Ability to remain unchanged if a sulfur-containing pyropolymer is added to these organic polymers, which was obtained by pyrolysis of a sulfur-containing condensation product from aromatic compounds, which may contain heterocyclic rings with O, S or N as heteroatoms, and sulfur or sulfur-donating compounds.
- the invention therefore relates to organic polymers with increased electrical conductivity, which are characterized in that they contain a sulfur-containing pyropolymer, which is obtained by pyrolysis of a sulfur-containing condensation product from aromatic compounds which optionally contain heterocyclic rings with O, S or N as heteroatoms, and sulfur or sulfur-donating compounds was obtained.
- the sulfur-containing pyropolymers to be used according to the invention are preferably obtained by condensing an aromatic compound with, sulfur or sulfur-releasing compounds such as polysulfides in a known manner, optionally in the presence of a solvent, at temperatures of 80-500 ° in a first reaction step and the sulfur-containing condensation product obtained is pyrolyzed in a second reaction stage at temperatures of 500-2000 ° C.
- This thermal treatment increases the electrical conductivity of the sulfur-containing condensation products by several powers of ten.
- the obtained sulfur-containing pyropolymers usually have an electrical conductivity of> 10 ⁇ 2S / cm without doping (i.e. without being oxidized or reduced). They are also extremely stable chemically and thermally.
- the sulfur-containing condensation products to be used as starting compounds for the preparation of the sulfur-containing pyropolymers and their preparation are known, e.g. from EP-A2-0131189 or EP-A1-0037829 and US Pat. No. 4,375,427. Because of their easy accessibility, the sulfur-containing condensation products described in EP-A2-0131189 are preferred.
- Aromatic compounds which contain 2 -9 carbocyclic rings and optionally 1 -3 heterocyclic rings with O, S or N as hetero atom are particularly suitable as starting compounds for the preparation of the sulfur-containing condensation products; preferred are the condensation products from the easily accessible, polycondensed aromatics, such as anthracene, chrysene, pyrene and the easily accessible heteroaromatics, such as carbazole.
- Mixtures of aromatic compounds, such as those present in the distillation residues of technical products, for example from the production of anthracene, antrachinone or bisphenol, and in the distillation residues from cracking processes or from petroleum processing, can also be used as starting compounds.
- the sulfur-containing pyropolymers are obtained in the form of shiny black masses. These are crushed to the desired grain size using conventional means; this is usually less than 600 ⁇ ; the grain size of the pyropolymers is preferably in the range from 0.1 to 100 ⁇ m.
- Suitable organic polymers whose conductivity can be increased by the addition of the sulfur-containing pyropolymers according to the invention are thermoplastics, thermosets, elastomers and paints.
- thermoplastics polymers and copolymers of monoolefinically unsaturated monomers, for example high-pressure or low-pressure polyethylene, polypropylene, polyisobutylene, polyvinyl chloride, and also as a copolymer with vinyl acetate, polyvinyl alcohol, polyvinyl acetate, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic
- thermosets e.g. Reaction products of formaldehyde with phenol, cresols, urea, melamine or their mixtures or casting resins made from unsaturated polyesters, epoxies, polyurethanes or silicones.
- Suitable elastomers are, for example, natural rubber, optionally chlorinated or brominated polybutadiene, polyisoprene, isobutylene polymers, ethylene, propylene copolymers, sulfochlorinated polyethylene, elastomeric polyurethanes or silicone rubbers.
- Suitable varnishes whose conductivity can be increased by the addition of sulfur-containing pyropolymer according to the invention are both varnish systems which are drying or crosslinking at room temperature and stoving varnishes.
- the varnish systems to be used at room temperature include alkyd resins, unsaturated polyester resins, polyurethane resins, epoxy resins, modified fats and Oils, polymers or copolymers based on vinyl chloride, vinyl ether, vinyl ester, styrene, acrylic acid, acrylonitrile or acrylic ester, cellulose derivatives.
- the stoving lacquers are the lacquer systems which crosslink at higher temperatures, such as, for example, polyurethanes made of hydroxyl-containing polyethers, polyesters or Polyacrylates and masked polyisocyanates, melamine resins made of etherified melamine-formaldehyde resins and hydroxyl group-containing polyethers, polyesters or polyacrylates, epoxy resins made of polyepoxides and polycarboxylic acids, carboxyl group-containing polyacrylates and carboxyl group-containing polyesters, stoving lacquers made of polyester, polyester imides, polyester amide amides and polyamide imides, polyamideimides suitable. These stoving lacquers can usually be applied both as powder and from solution.
- the organic polymers to be finished according to the invention can also be in the form of copolymers, polymer blends or polymer alloys.
- the sulfur-containing pyropolymers can also be added to polymers that already show intrinsic electrical conductivity, e.g. Polyacetylene, polyparaphenylene, polythiophene, polypyrrole, polyphenylene vinylene, polyphthalocyanines or polyanilines.
- the intrinsically conductive polymers can be present in undoped or doped form. Suitable dopants are preferably oxidizing agents such as AsF5, SbCl5, FeCl3 or halogens, or reducing agents such as alkali metals, optionally as alkali naphthalide.
- the conductivity of the pyropolymers to be used according to the invention can be increased even further by treating the pyropolymers with chemical or physical methods.
- partial oxidation or reduction of the sulfur-containing pyropolymers can lead to high levels conductive intercalation connections are made.
- Suitable oxidizing agents are halogens such as fluorine, chlorine, bromine or iodine, metal chlorides such as FeCl3, AsF5, SbCl5, SbF5 or oxidizing acids such as HNO3 or H2SO4.
- the alkali and alkaline earth metals serve as reducing agents. Oxidation and reduction can also be carried out electrochemically in the presence of a suitable conductive salt.
- the pyropolymers to be used according to the invention can be incorporated into the organic polymers by methods customary for the incorporation of fillers into organic polymers.
- they can be mixed with thermoplastics by dry mixing and subsequent extrusion in a commercially available screw or directly in a screw by metering them in together.
- Pellets are preferably produced from the thermoplastic and the sulfur-containing pyropolymer in a first stage, which are then processed in a second stage to give the desired shaped articles.
- the pyropolymer can be stirred directly into the polymer solution and then homogenized, for example with a dissolver or a ball mill.
- the pyropolymer can also be dispersed in a suitable solvent and, if appropriate, additionally ground, and then the organic polymer, if appropriate dissolved in a suitable solvent, added and, if appropriate, homogenized again with suitable equipment.
- air that has been stirred in must be removed by suitable measures, for example applying a vacuum.
- Can be used to manufacture thermosets the pyropolymer is stirred directly into the liquid or melted mass and then comminuted and homogenized, for example with a dissolver or a ball mill. It is also possible to homogenize the pyropolymer and the thermosetting resin as a solution or suspension, the solvent having to be removed again, for example under reduced pressure, in a second operation.
- the organic polymers can contain conventional additives, such as fillers, pigments, antioxidants, UV stabilizers, hydrolysis stabilizers, plasticizers and / or other conductivity-increasing additives.
- the pyropolymers to be used according to the invention are usually used in amounts of 5-80% by weight, preferably 10-70% by weight, particularly preferably in amounts of 20-60% by weight, based on the total weight of the conductive polymer.
- a significant advantage of the pyropolymers to be used according to the invention over carbon black is the possibility of being able to incorporate even amounts above 30% by weight without any problems. Even the incorporation of 50% by weight of pyropolymer into thermoplastic materials does not pose any difficulties. Rather, the sulfur-containing pyropolymers to be used according to the invention have the surprising property that they not only improve the conductivity but - in contrast to carbon black, for example - also improve the mechanical properties of the organic polymers, for example of polyamides.
- the pyropolymer to be used according to the invention can also be used as a black pigment; if the temperature falls below a certain minimum amount, which may vary depending on the polymer system and processing conditions, the conductivity will no longer increase.
- the polymer compounds according to the invention show specific conductivities between 10 ⁇ 12 and 100 Siemens / cm. They can be used to manufacture antistatic, semiconducting or conductive plastic parts, foils or coatings. They are used as electrodes, for example in electrolysis cells or in batteries, as heat conductors, as non-rechargeable housings and for shielding electromagnetic waves.
- This condensation product is heated to 1000 ° C. in the face grinding cup described in Example 1 within 12 hours and kept at this temperature for 10 hours. 1461 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic mass (specific conductivity: 14.3 S / cm; sulfur content: 7.4% by weight).
- This condensation product is heated for 7 hours at 350 ° C. in the flat ground cup made of quartz glass described for the heart position of the pyropolymer A. The mixture is then heated to 1000 ° C. in the course of 6 hours and kept at this temperature for 10 hours. 1364 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic mass (conductivity: 12.8 S / cm; sulfur content: 7.8% by weight.)
- the table below shows the amounts of pyropolymer A used and the surface resistance of the polycarbonate films finished with the stated amounts of pyropolymer A.
- Elastomer's vinyl polybutadiene (made from butadiene1.2) is cooled to -80 ° C and comminuted in a granulating machine. 55 parts by weight of this granulate are mixed with 45 parts by weight of pyropolymer E (particle size: 5 - 25 ⁇ ). The mixture is pressed into a plate under a pressure of 450 kg / cm2. The elastomeric plate has a specific conductivity of 2.4 ⁇ 10 ⁇ 1 S / cm.
- 250 parts by weight of polypropylene are mixed with 750 parts by weight of pyropolymer A (particle size: ⁇ 65 ⁇ ) and processed into a strand in an extruder at 220 ° C.
- a plate made from this strand at 200 ° C and a pressure of 500 Kp / cm2 has a specific conductivity of 6.9 ⁇ 10 ⁇ 4 S / cm.
- 300 parts by weight of polymerized methyl methacrylate are mixed with 250 parts by weight of pyropolymer C (particle size: ⁇ 500 ⁇ ) mixed with 100 mg of bis (4-chlorobenzoyl) peroxide and then at 160 ° C. and a pressure of 570 Kp / cm2 pressed.
- the plate thus obtained has a specific conductivity of 8.7 ⁇ 10 ⁇ 1 S / cm.
- the table below shows the amounts of copolymer and pyropolymer used in the individual experiments and the specific conductivities of the polymer plates obtained from these components.
- the table below shows the amounts of pyropolymer A added and the surface resistance of the coatings obtained with these amounts.
- a plate made of 100 parts by weight of polyparaphenylene sulfide and 100 parts by weight of pyropolymer A (particle size: ⁇ 63 ⁇ ) (dimensions: 25 ⁇ 25 ⁇ 2 mm) was provided with 2 electrical contacts, coated with a polyhydantoin varnish and in a vessel covered with 50 g of water. After applying a DC voltage of 24 V / 30 V / 36 V, the water warms up to 47 ° C / 53 ° C / 56 ° C. I.e. the plate acted as a heating plate.
- 100 g of a liquid epoxy resin made from technical bisglycidyl hexahydrophthalate (epoxy value: 0.58) and 100 g of melted hexahydrophthalic anhydride are mixed with 100 g of pyropolymer C (particle size: ⁇ 63 ⁇ ) and mixed with 2 g of dimethylbenzylamine as a catalyst. After degassing, the mass is poured into a mold and heated to 80 ° C for 4 hours and then to 160 ° C for 16 hours.
- the cast resin molded body obtained in this way has a specific conductivity of 1.8 ⁇ 10 ⁇ 5 S / cm.
- 50 parts by weight of powdered pyropolymer A (particle size: ⁇ 63 ⁇ ) and 50 parts by weight of polyphenylene sulfide (Ryton P 4 from Phillips Petroleum Comp.) are first mixed mechanically with one another. This mixture is dried in vacuo at 130 ° C. and then melt-compounded at 330 ° C. using a twin-screw extruder (ZSK 32 from Werner & Pfleiderer). The melt strand emerging from the extruder is granulated after cooling. After predrying at 130 ° C. at a melt temperature of 340 ° C.
- round plates (diameter: 800 mm, thickness: 2 mm) are injected from the granules obtained in this way.
- the electrical resistance values of the round plates obtained in this way are: volume resistivity: 110 ⁇ ⁇ cm specific surface resistance: 560 ⁇
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Paints Or Removers (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
Organische Polymere, z.B. Thermoplaste, Duromere, Elastomere oder Lacke mit erhöhter elektrischer Leitfähigkeit, gekennzeichnet durch einen Gehalt an schwefelhaltigen Pyropolymeren, die durch Pyrolyse schwefelhaltiger Kondendsationsprodukte aus aromatischen Verbindungen, die gegebenenfalls heterocyclische Ringe mit O, S oder N als Heteroatome enthalten, und Schwefel oder Schwefel abgebenden Verbindungen, erhalten wurden.Organic polymers, e.g. Thermoplastics, thermosets, elastomers or lacquers with increased electrical conductivity, characterized by a content of sulfur-containing pyropolymers which are obtained by pyrolysis of sulfur-containing condensation products from aromatic compounds, which may contain heterocyclic rings with O, S or N as heteroatoms, and compounds which give off sulfur or sulfur, were obtained.
Description
Die Erfindung betrifft organische Polymere, wie Kunststoffe und Lacke, mit erhöhter elektrischer Leitfähigkeit. Diese erhöhte elektrische Leitfähigkeit wird durch Zusatz eines schwefelhaltigen Pyropolymers erreicht, das durch Pyrolyse eines schwefelhaltigen Kondensationsproduktes aus aromatischen Verbindungen, die gegebenenfalls heterocyclische Ringe mit O, S oder N als Heteroatome enthalten, und Schwefel oder schwefelabgebenden Verbindungen erhalten wurde.The invention relates to organic polymers, such as plastics and paints, with increased electrical conductivity. This increased electrical conductivity is achieved by adding a sulfur-containing pyropolymer, which was obtained by pyrolysis of a sulfur-containing condensation product from aromatic compounds, which may contain heterocyclic rings with O, S or N as heteroatoms, and sulfur or sulfur-donating compounds.
Es ist bekannt, die elektrische Leitfähigkeit von Kunststoffen und Lacken durch Zusatz von anorganischen leitfähigen Füllstoffen zu erhöhen. Als anorganische leitfähige Füllstoffe werden zum Beispiel Metalle, Legierungen, Metalloxide, Metallsulfide, metallisierte Füllstoffe oder Kohlenstoff, vorzugsweise in Form von Ruß oder Graphit, verwendet. Die leitfähigkeitserhöhenden Füllstoffe werden in Form von Pulvern, Kügelchen, Fasern oder Flakes angewendet. Diese leitfähigen Füllstoffe ha ben jedoch den Nachteil, daß sie zur Erzielung der gewünschten elektrischen Leitfähigkeit in Mengen eingesetzt werden müssen, die zu einer Beeinträchtigung der mechanischen Eigenschaften der organischen Polymere führen.It is known to increase the electrical conductivity of plastics and paints by adding inorganic conductive fillers. For example, metals, alloys, metal oxides, metal sulfides, metallized fillers or carbon, preferably in the form of carbon black or graphite, are used as inorganic conductive fillers. The conductivity-increasing fillers are used in the form of powders, beads, fibers or flakes. These conductive fillers ha ben, however, the disadvantage that they must be used in order to achieve the desired electrical conductivity in amounts that lead to an impairment of the mechanical properties of the organic polymers.
Zwar wird mit hochwertigen und deshalb sehr teuren Leitfähigkeitsrußen bereits mit Mengen von 5 Gew.-% eine brauchbare Erhöhung der Leitfähigkeit der organischen Polymeren erreicht. Diese Zusätze von 5 Gew.-% bewirken jedoch eine starke Erhöhung der Viskosität des Kunststoffs, unabhängig davon ob dieser aus einer Lösung oder in der Schmelze verarbeitet wird, und führen daher zu einer starken Beeinträchtigung der Verarbeitungseigenschaften des Kunststoffs. Die Viskositätszunahme kann in einzelnen Fällen außerdem dazu führen, daß bei der Verarbeitung des organischen Polymers infolge der erforderlichen hohen Scherkräfte die für die gute Leitfähigkeit verantwortlichen speziellen Strukturen des Leitfähigkeitsrußes zerstört werden und infolgedessen auch seine leitfähigkeitserhöhende Wirkung herabgesetzt wird.With high-quality and therefore very expensive conductivity carbon blacks, a useful increase in the conductivity of the organic polymers is achieved with amounts of 5% by weight. However, these additions of 5% by weight bring about a sharp increase in the viscosity of the plastic, regardless of whether it is processed from a solution or in the melt, and therefore lead to a severe impairment of the processing properties of the plastic. In individual cases, the increase in viscosity can also result in the fact that the special structures of the conductive carbon black responsible for good conductivity are destroyed during processing of the organic polymer due to the high shear forces required, and consequently its conductivity-increasing effect is also reduced.
Es wurden auch bereits bestimmte organische Verbindungen als Füllstoffe zu Erhöhung der elektrischen Leitfähigkeit von organischen Polymeren empfohlen. So wird z.B. im Europäischen Patent 0 034 200 der Zusatz elektrisch leitfähiger, nadelförmiger Charge-Transfer-Komplexe (Radikal-Anionsalze) zu organischen Polymeren beschrieben. Diese CT-Komplexe haben jedoch den Nachteil, daß sie aus den organischen Polymeren herausdiffundieren und/oder sich langsam zersetzen können und daß deshalb die durch sie in den organischen Polymeren erzeugte Leitfähigkeit nicht über längere Zeiträume konstant bleibt.Certain organic compounds have also already been recommended as fillers for increasing the electrical conductivity of organic polymers. For example, European Patent 0 034 200 describes the addition of electrically conductive, acicular charge transfer complexes (radical anion salts) to organic polymers. However, these CT complexes have the disadvantage that they diffuse out of the organic polymers and / or can decompose slowly, and that they can therefore break through the conductivity generated in the organic polymers does not remain constant over long periods of time.
In der DE-OS 3 113 331 (=USP 4 397 971) ist die Verwendung einer speziellen Polyacetylen-Modifikation, des sogenannten kletten-bzw. faserförmigen Polyacetylens, beschrieben. Mit dieser speziellen Polyacetylen-Modifikation wird zwar bereits mit Zusätzen von 0,1 Gew.-% eine brauchbare Erhöhung der Leitfähigkeit des organischen Polymeren erreicht. Diese spezielle Polyacetylen-Modifikation hat jedoch, ebenso wie die üblichen Polyacetylene, den Nachteil, daß sie nicht stabil ist, und daß die Leitfähigkeit bei Lufteinwirkung und häufig bereits beim Einarbeiten des Polyacetylens in die geschmolzenen Kunststoffe stark abnimmt.In DE-OS 3 113 331 (= USP 4,397,971) the use of a special polyacetylene modification, the so-called burdock or. fibrous polyacetylene. With this special polyacetylene modification, a useful increase in the conductivity of the organic polymer is achieved even with additions of 0.1% by weight. However, like the usual polyacetylenes, this special polyacetylene modification has the disadvantage that it is not stable and that the conductivity decreases considerably when exposed to air and often when the polyacetylene is incorporated into the molten plastics.
Aus der DE-OS 3 324 768 sind Kondensationsprodukte von aromatischen Verbindungen mit Schwefel oder schwefelabspaltenden Verbinden bekannt, die eine elektrische Leitfähigkeit aufweisen. Die Leitfähigkeit dieser Kondensationsprodukte reicht jedoch für eine Verwendung als leitfähige Füllstoffe in organischen Polymeren nicht aus. Ferner haben diese Kondensationsprodukte den Nachteil, daß der Zusatz zu einem starken Anstieg der Viskosität der Polymerschmelzen führen kann, so daß diese Schmelzen nich mehr verarbeitbar sind.DE-OS 3 324 768 discloses condensation products of aromatic compounds with sulfur or sulfur-releasing compounds which have an electrical conductivity. However, the conductivity of these condensation products is not sufficient for use as conductive fillers in organic polymers. Furthermore, these condensation products have the disadvantage that the addition can lead to a sharp increase in the viscosity of the polymer melts, so that these melts can no longer be processed.
Es wurde nun gefunden, daß man organische Polymere mit erhöhter, auch über lange Zeiträume unveränderter elektrischer Leitfähigkeit erhält, die auch bei der Einwirkung von Luft, Wärme und Scherkräften ihre Leit fähigkeit unverändert beibehalten, wenn man diesen organischen Polymeren ein schwefelhaltiges Pyropolymer zusetzt, das durch Pyrolyse eines schwefelhaltigen Kondensationsproduktes aus aromatischen Verbindungen, die gegebenenfalls heterocyclische Ringe mit O, S oder N als Heteroatome enthalten, und Schwefel oder Schwefel abgebenden Verbindungen erhalten wurde.It has now been found that organic polymers with increased electrical conductivity, which remains unchanged even over long periods of time, are obtained, which also conduct under the influence of air, heat and shear forces Ability to remain unchanged if a sulfur-containing pyropolymer is added to these organic polymers, which was obtained by pyrolysis of a sulfur-containing condensation product from aromatic compounds, which may contain heterocyclic rings with O, S or N as heteroatoms, and sulfur or sulfur-donating compounds.
Die Erfindung betrifft daher organische Polymere mit erhöhter elektrischer Leitfähigkeit, die dadurch gekennzeichnet sind, das sie ein Schwefel enthaltendes Pyropolymer enthalten, das durch Pyrolyse eines schwefelhaltigen Kondensationsproduktes aus aromatischen Verbindungen, die gegebenenfalls heterocyclische Ringe mit O, S oder N als Heteroatome enthalten, und Schwefel oder Schwefel abgebenden Verbindungen erhalten wurde.The invention therefore relates to organic polymers with increased electrical conductivity, which are characterized in that they contain a sulfur-containing pyropolymer, which is obtained by pyrolysis of a sulfur-containing condensation product from aromatic compounds which optionally contain heterocyclic rings with O, S or N as heteroatoms, and sulfur or sulfur-donating compounds was obtained.
Die erfindungsgemäß zu verwendenden schwefelhaltigen Pyropolymere werden vorzugsweise dadurch erhalten, daß man in einer ersten Reaktionsstufe eine aromatische Verbindung mit, Schwefel oder Schwefel abgebenden Verbindungen wie Polysulfiden in an sich bekannter Weise, gegebenenfalls in Gegenwart eines Lösungsmittels, bei Temperaturen von 80 - 500° kondensiert und das erhaltene schwefelhaltige Kondensationsprodukt in einer zweiten Reaktionsstufe bei Temperaturen von 500 - 2000°C pyrolysiert.The sulfur-containing pyropolymers to be used according to the invention are preferably obtained by condensing an aromatic compound with, sulfur or sulfur-releasing compounds such as polysulfides in a known manner, optionally in the presence of a solvent, at temperatures of 80-500 ° in a first reaction step and the sulfur-containing condensation product obtained is pyrolyzed in a second reaction stage at temperatures of 500-2000 ° C.
Die elektrische Leitfähigkeit der schwefelhaltigen Kondensationsprodukte steigt durch diese thermische Behandlung um mehrere Zehner-Potenzen an. Die erhaltenen schwefelhaltigen Pyropolymere weisen in der Regel bereits ohne Dotierung (d.h. ohne oxidiert oder reduziert worden zu sein), eine elektrische Leitfähigkeit von >10⁻²S/cm auf. Außerdem sind sie chemisch und thermisch außerordentlich stabil.This thermal treatment increases the electrical conductivity of the sulfur-containing condensation products by several powers of ten. The obtained sulfur-containing pyropolymers usually have an electrical conductivity of> 10⁻²S / cm without doping (i.e. without being oxidized or reduced). They are also extremely stable chemically and thermally.
Die für die Herstellung der schwefelhaltigen Pyropolymere als Ausgangsverbindungen zu verwendenden schwefelhaltigen Kondensationsprodukte und ihre Herstellung sind bekannt, z.B. aus der EP-A2-0131189 oder EP-A1-0037829 und der US-PS 4 375 427. Wegen ihrer leichten Zugänglichkeit werden die in der EP-A2-0131189 beschriebenen schwefelhaltigen Kondensationsprodukte bevorzugt.The sulfur-containing condensation products to be used as starting compounds for the preparation of the sulfur-containing pyropolymers and their preparation are known, e.g. from EP-A2-0131189 or EP-A1-0037829 and US Pat. No. 4,375,427. Because of their easy accessibility, the sulfur-containing condensation products described in EP-A2-0131189 are preferred.
Besonders geeignet sind als Ausgangsverbindungen für die Herstellung der schwefelhaltigen Kondensationsprodukte aromatische Verbindungen, die 2 -9 carbocyclische Ringe und gegebenenfalls 1 -3 heterocyclische Ringe mit O, S oder N als Heteroatom enthalten; bevorzugt sind die Kondensationsprodukte aus den leicht zugänglichen, polykondensierten Aromaten, wie Anthracen, Chrysen, Pyren und den leicht zugänglichen Heteroaromaten, wie Carbazol. Es können auch Gemische aromatischer Verbindungen, wie sie in den Destillationsrückständen von technischen Produkten, z.B. aus der Anthracen-, Antrachinon- oder Bisphenol-Herstellung, und in den Destillationsrückständen aus Crackprozessen oder aus der Erdölverarbeitung vorliegen, als Ausgangsverbindungen eingesetzt werden.Aromatic compounds which contain 2 -9 carbocyclic rings and optionally 1 -3 heterocyclic rings with O, S or N as hetero atom are particularly suitable as starting compounds for the preparation of the sulfur-containing condensation products; preferred are the condensation products from the easily accessible, polycondensed aromatics, such as anthracene, chrysene, pyrene and the easily accessible heteroaromatics, such as carbazole. Mixtures of aromatic compounds, such as those present in the distillation residues of technical products, for example from the production of anthracene, antrachinone or bisphenol, and in the distillation residues from cracking processes or from petroleum processing, can also be used as starting compounds.
Die schwefelhaltigen Pyropolymere fallen in Form metallisch glänzender, schwarzer Massen an. Diese werden mit konventionellen Mitteln auf die gewünschte Korngröße zerkleinert; diese liegt üblicherweise unter 600 µ; vorzugsweise liegt die Korngröße der Pyropolymere im Bereich von 0,1 - 100 µ.The sulfur-containing pyropolymers are obtained in the form of shiny black masses. These are crushed to the desired grain size using conventional means; this is usually less than 600 µ; the grain size of the pyropolymers is preferably in the range from 0.1 to 100 μm.
Die erfindungsgemäß zu verwendenden schwefelhaltigen Pyropolymere und deren Herstellung sind in der älteren Deutschen Patentanmeldung P 35 30 819.2 beschrieben.The sulfur-containing pyropolymers to be used according to the invention and their preparation are described in the earlier German patent application P 35 30 819.2.
Geeignete organische Polymere, deren Leitfähigkeit durch den erfindungsgemäßen Zusatz der schwefelhaltigen Pyropolymere erhöht werden kann sind Thermoplaste, Duroplaste, Elastomere und Lacke.Suitable organic polymers whose conductivity can be increased by the addition of the sulfur-containing pyropolymers according to the invention are thermoplastics, thermosets, elastomers and paints.
Vorzugsweise kommen als Thermoplaste in Betracht: Polymerisate und Copolymerisate aus monoolefinisch ungesättigten Monomeren, z.B. Hochdruck- oder Niederdruck-polyethylen, Polypropylen, Polyisobutylen, Polyvinylchlorid, auch als Copolymerisat mit Vinylacetat, Polyvinylalkohol, Polyvinylacetat, Polyvinylidenchlorid, Polyvinylidenfluorid, Polytetrafluorethylen, Polyacrylsäure, Polyacrylamid, Polyacrylnitril, Polymethylmethacrylat, Polyvinylcarbazol, Polyvinylpyrrolidon, Polystyrol; Copolymerisate wie ABS; Polykondensate wie Polyoxymethylen, Celluloseacetat, Celluloseethylether, Cellulosehydrat, Celluloid, Polycarbonate, Polyester (wie Polyethylenterephthalat und Polybutylenterephthalat), Polyphenylenoxid oder dessen Mischungen mit Polystyrol; Polyphenylensulfid, Polyimide, Polyesterimide, Polyetherimide, Polyamide wie Polyamid 6, Polyamid 66, Polyamid 6,10, Polyamidimide, Polyesteramide, Polyhydantoine, Polyparabansäuren, Polysulfone, Polyethersulfone, Polyetherketone.The following are preferably suitable as thermoplastics: polymers and copolymers of monoolefinically unsaturated monomers, for example high-pressure or low-pressure polyethylene, polypropylene, polyisobutylene, polyvinyl chloride, and also as a copolymer with vinyl acetate, polyvinyl alcohol, polyvinyl acetate, polyvinylidene chloride, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid, polyacrylic acid and polyacrylic acid, , Polymethyl methacrylate, polyvinyl carbazole, polyvinyl pyrrolidone, polystyrene; Copolymers such as ABS; Polycondensates such as polyoxymethylene, cellulose acetate, cellulose ethyl ether, cellulose hydrate, celluloid, polycarbonates, polyesters (such as polyethylene terephthalate and polybutylene terephthalate), polyphenylene oxide or mixtures thereof with polystyrene; Polyphenylene sulfide, polyimides, polyesterimides, Polyetherimides, polyamides such as polyamide 6, polyamide 66, polyamide 6.10, polyamideimides, polyesteramides, polyhydantoins, polyparabanic acids, polysulfones, polyether sulfones, polyether ketones.
Als Duroplaste können Preßmassen oder Gießharze eingesetzt werden, z.B. Umsetzungsprodukte des Formaldehyds mit Phenol, Kresolen, Harnstoff, Melamin bzw. deren Mischungen oder Gießharze aus ungesättigten Polyestern, Epoxiden, Polyurethanen oder Siliconen.Molding compounds or casting resins can be used as thermosets, e.g. Reaction products of formaldehyde with phenol, cresols, urea, melamine or their mixtures or casting resins made from unsaturated polyesters, epoxies, polyurethanes or silicones.
Geeignete Elastomere sind beispielsweise Naturkautschuk, gegebenenfalls chloriertes oder bromiertes Polybutadien, Polyisopren, Isobutylenpolymerisate, Ethylen-, Propylen-Copolymerisate, sulfochloriertes Polyethylen, elastomere Polyurethane oder Siliconkautschuke.Suitable elastomers are, for example, natural rubber, optionally chlorinated or brominated polybutadiene, polyisoprene, isobutylene polymers, ethylene, propylene copolymers, sulfochlorinated polyethylene, elastomeric polyurethanes or silicone rubbers.
Als Lacke, deren Leitfähigkeit durch den erfindungsgemäßen Zusatz an schwefelhaligem Pyropolymer erhöht werden kann, kommen sowohl bei Raumtemperatur tocknende oder vernetzende Lacksysteme als auch Einbrennlacke in Betracht.Die bei Raumtemperatur zu verwendenden Lacksysteme sind z.B. Alkydharze, ungesättigte Polyesterharze, Polyurethanharze, Epoxidharze, modifizierte Fette und Öle, Polymerisate oder Copolymerisate auf Basis Vinylchlorid, Vinylether, Vinylester, Styrol, Acrylsäure, Acrylnitril oder Acrylester, Cellulosederivate. Als Einbrennlacke sind die bei höherer Temperatur vernetzenden Lacksysteme wie z.B. Polyurethane aus hydroxylgruppenhaltigen Polyethern, Polyestern oder Polyacrylaten und verkappten Polyisocyanaten, Melaminharze aus veretherten Melamin-Formaldehydharzen und hydroxylgruppenhaltigen Polyethern, Polyestern oder Polyacrylaten, Epoxidharze aus Polyepoxiden und Polycarbonsäuren, carboxylgruppenhaltigen Polyacrylaten und carboxylgruppenhaltigen Polyestern, Einbrennlacke aus Polyester, Polyesterimiden, Polyesteramidimiden, Polyamidimiden, Polyamiden, Polyhydantoinen und Polyparabansäuren geeignet. Diese Einbrennlacke können in der Regel sowohl als Pulver als auch aus Lösung appliziert werden.Suitable varnishes whose conductivity can be increased by the addition of sulfur-containing pyropolymer according to the invention are both varnish systems which are drying or crosslinking at room temperature and stoving varnishes. The varnish systems to be used at room temperature include alkyd resins, unsaturated polyester resins, polyurethane resins, epoxy resins, modified fats and Oils, polymers or copolymers based on vinyl chloride, vinyl ether, vinyl ester, styrene, acrylic acid, acrylonitrile or acrylic ester, cellulose derivatives. The stoving lacquers are the lacquer systems which crosslink at higher temperatures, such as, for example, polyurethanes made of hydroxyl-containing polyethers, polyesters or Polyacrylates and masked polyisocyanates, melamine resins made of etherified melamine-formaldehyde resins and hydroxyl group-containing polyethers, polyesters or polyacrylates, epoxy resins made of polyepoxides and polycarboxylic acids, carboxyl group-containing polyacrylates and carboxyl group-containing polyesters, stoving lacquers made of polyester, polyester imides, polyester amide amides and polyamide imides, polyamideimides suitable. These stoving lacquers can usually be applied both as powder and from solution.
Die erfindungsgemäß auszurüstenden organischen Polymeren können auch in Form von Copolymerisaten, Polymermischungen oder Polymerlegierungen vorliegen. Die schwefelhaltigen Pyropolymeren können auch Polymeren zugesetzt werden, die bereits intrinsische elektrische Leitfähigkeit zeigen, wie z.B. Polyacetylen, Polyparaphenylen, Polythiophen, Polypyrrol, Polyphenylenvinylene, Polyphthalocyanine oder Polyanilinen. Dabei können die intrinsisch leitfähigen Polymere in undotierter oder dotierter Form vorliegen. Geeignete Dotierungsmittel sind vorzugsweise Oxidationsmittel wie AsF₅, SbCl₅, FeCl₃ oder Halogene, bzw. Reduktionsmittel wie Alkalimetalle, gegebenenfalls als Alkalinaphthalid.The organic polymers to be finished according to the invention can also be in the form of copolymers, polymer blends or polymer alloys. The sulfur-containing pyropolymers can also be added to polymers that already show intrinsic electrical conductivity, e.g. Polyacetylene, polyparaphenylene, polythiophene, polypyrrole, polyphenylene vinylene, polyphthalocyanines or polyanilines. The intrinsically conductive polymers can be present in undoped or doped form. Suitable dopants are preferably oxidizing agents such as AsF₅, SbCl₅, FeCl₃ or halogens, or reducing agents such as alkali metals, optionally as alkali naphthalide.
Die Leitfähigkeit der erfindungsgemäß zu verwendenden Pyropolymere kann durch ein Behandeln der Pyropolymeren mit chemischen oder physikalischen Methoden noch weiter erhöht werden. So können z.B. durch partielle Oxidation oder Reduktion der schwefelhaltigen Pyropolymere hoch leitfähige Intercalationsverbindungen hergestellt werden. Geeignete Oxidationsmittel sind Halogene wie Fluor, Chlor, Brom oder Iod, Metallchloride wie FeCl₃, AsF₅, SbCl₅, SbF₅ oder oxidierende Säuren wie HNO₃ oder H₂SO₄. Als Reduktionsmittel dienen insbesondere die Alkali- und Erdalkalimetalle. Oxidation und Reduktion können in Gegenwart eines geeigneten Leitsalzes auch elektrochemisch durchgeführt werden.The conductivity of the pyropolymers to be used according to the invention can be increased even further by treating the pyropolymers with chemical or physical methods. For example, partial oxidation or reduction of the sulfur-containing pyropolymers can lead to high levels conductive intercalation connections are made. Suitable oxidizing agents are halogens such as fluorine, chlorine, bromine or iodine, metal chlorides such as FeCl₃, AsF₅, SbCl₅, SbF₅ or oxidizing acids such as HNO₃ or H₂SO₄. In particular, the alkali and alkaline earth metals serve as reducing agents. Oxidation and reduction can also be carried out electrochemically in the presence of a suitable conductive salt.
Die erfindungsgemäß zu verwendenden Pyropolymere können nach für die Einarbeitung von Füllstoffen in organische Polymere üblichen Methoden in die organischen Polymere eingearbeitet werden. So könnon sie z.B. mit Thermoplasten durch trockenes Vermischen und nachfolgendem Extrudieren in einer handelsüblichen Schnecke oder direkt in einer Schnecke durch gemeinsames Zudosieren vermischt werden. Vorzugsweise werden in einer ersten Stufe Pellets aus dem Thermoplasten und dem schwefelhaltigen Pyropolymer hergestellt, die dann in einer zweiten Stufe zu den gewünschten Formkörpern verarbeitet werden. Zur Herstellung von Lacklösungen bzw. Polymerlösungen kann das Pyropolymer direkt in die Polymerlösung eingerührt und dann, z.B. mit einem Dissolver oder einer Kugelmühle, homogenisiert werden. Es kann aber auch das Pyropolymer in einem geeigneten Lösungsmittel dispergiert und gegebenenfalls zusätzlich noch gemahlen und dann das organische Polymer, gegebenenfalls in einem geeigneten Lösungsmittel gelöst, zugesetzt und gegebenenfalls nochmals mit geeigneten Geräten homogenisiert werden. Selbstverständlich muß dabei eingerührte Luft durch geeignete Maßnahmen, z.B. Anlegen von Vakuum, entfernt werden. Zur Herstellung von Duroplasten kann das Pyropolymer direkt in die flüssige oder aufgeschmolzene Masse eingerührt und dann z.B. mit einem Dissolver oder einer Kugelmühle zerkleinert und homogenisiert werden. Es ist auch möglich, das Pyropolymer und das duroplastisch zu verarbeitende Harz als Lösung oder Suspension zu homogenisieren, wobei in einem zweiten Arbeitsgang das Lösungsmittel, z.B unter vermindertem Druck, wieder entfernt werden muß.The pyropolymers to be used according to the invention can be incorporated into the organic polymers by methods customary for the incorporation of fillers into organic polymers. For example, they can be mixed with thermoplastics by dry mixing and subsequent extrusion in a commercially available screw or directly in a screw by metering them in together. Pellets are preferably produced from the thermoplastic and the sulfur-containing pyropolymer in a first stage, which are then processed in a second stage to give the desired shaped articles. To prepare lacquer solutions or polymer solutions, the pyropolymer can be stirred directly into the polymer solution and then homogenized, for example with a dissolver or a ball mill. However, the pyropolymer can also be dispersed in a suitable solvent and, if appropriate, additionally ground, and then the organic polymer, if appropriate dissolved in a suitable solvent, added and, if appropriate, homogenized again with suitable equipment. Of course, air that has been stirred in must be removed by suitable measures, for example applying a vacuum. Can be used to manufacture thermosets the pyropolymer is stirred directly into the liquid or melted mass and then comminuted and homogenized, for example with a dissolver or a ball mill. It is also possible to homogenize the pyropolymer and the thermosetting resin as a solution or suspension, the solvent having to be removed again, for example under reduced pressure, in a second operation.
Die organischen Polymere können außer dem erfindungsgemäß zu verwendenden Pyropolymer übliche Zusatzstoffe, wie Füllstoffe, Pigmente, Antioxidantien, UV-Stabilisatoren, Hydrolyse-Stabilisatoren, Weichmacher und/oder andere Leitfähigkeitserhöhende Zusätze enthalten.In addition to the pyropolymer to be used according to the invention, the organic polymers can contain conventional additives, such as fillers, pigments, antioxidants, UV stabilizers, hydrolysis stabilizers, plasticizers and / or other conductivity-increasing additives.
Die erfindungsgemäß zu verwendenden Pyropolymere werden üblicherweise in Mengen von 5 - 80 Gew.-%, vorzugsweise von 10 - 70 Gew.-%, besonders bevorzugt in Mengen von 20 - 60 Gew.-% bezogen auf das Gesamtgewicht des leitfähigen Polymeren angewendet. Ein wesentlicher Vorteil der erfindungsgemäß zu verwendenden Pyropolymere gegenüber Ruß liegt in der Möglichkeit, auch Mengen über 30 % Gew.-% problemlos einarbeiten zu können. Selbst die Einarbeitung von 50 Gew.-% Pyropolymer in thermoplastische Kunststoffe bereitet keinerlei Schwierigkeiten. Die erfindungsgemäß zu verwendenden schwefelhaltigen Pyropolymere weisen vielmehr die überraschende Eigenschaft auf, daß sie nicht nur die Leitfähigkeit sondern - im Gegensatz zum Beispiel zu Ruß - sogar auch die mechanischen Eigenschaften der organischen Polymere, z.B. von Polyamiden, verbessern. Während der Zusatz größerer Ruß mengen zu einer Verschlechterung der mechanischen Eigenschaften der organischen Polymere, z.B. von Polyamiden führt, wird bei Zusatz größerer Mengen erfindungsgemäß zu verwendenden Polymers eine Verbesserung der mechanischen Eigenschaften des organischen Polymers erhalten. Diese Verbesserung der mechanischen Eigenschaften tritt besonders bei der Einarbeitung der erfindungsgemäßen Pyropolymere in Polyamide auf.The pyropolymers to be used according to the invention are usually used in amounts of 5-80% by weight, preferably 10-70% by weight, particularly preferably in amounts of 20-60% by weight, based on the total weight of the conductive polymer. A significant advantage of the pyropolymers to be used according to the invention over carbon black is the possibility of being able to incorporate even amounts above 30% by weight without any problems. Even the incorporation of 50% by weight of pyropolymer into thermoplastic materials does not pose any difficulties. Rather, the sulfur-containing pyropolymers to be used according to the invention have the surprising property that they not only improve the conductivity but - in contrast to carbon black, for example - also improve the mechanical properties of the organic polymers, for example of polyamides. While adding larger soot amounts lead to a deterioration in the mechanical properties of the organic polymers, for example polyamides, an improvement in the mechanical properties of the organic polymer is obtained when larger amounts of polymer to be used according to the invention are added. This improvement in the mechanical properties occurs particularly when the pyropolymers according to the invention are incorporated into polyamides.
In geringen Konzentrationen kann das erfindungsgemäß zu verwendende Pyropolymer auch als Schwarzpigment eingesetzt werden; bei Unterschreitung einer bestimmten Mindestmenge, die je nach Polymersystem und Verarbeitungsbedingungen verschieden sein kann, tritt jedoch dann keine Erhöhung der Leitfähigkeit mehr ein.In low concentrations, the pyropolymer to be used according to the invention can also be used as a black pigment; if the temperature falls below a certain minimum amount, which may vary depending on the polymer system and processing conditions, the conductivity will no longer increase.
Die erfindungsgemäßen Polymercompounds zeigen spezifische Leitfähigkeiten zwischen 10⁻¹² und 100 Siemens/cm. Sie können zur Herstellung antistatischer, halbleitender oder leitender Kunststoffteile, Folien oder Überzüge dienen. Sie finden Anwendung als Elektroden, z.B. in Elektrolysezellen oder in Batterien, als Heizleiter, als nicht aufladbare Gehäuse sowie zur Abschirmung elektromagnetischer Wellen.The polymer compounds according to the invention show specific conductivities between 10⁻¹² and 100 Siemens / cm. They can be used to manufacture antistatic, semiconducting or conductive plastic parts, foils or coatings. They are used as electrodes, for example in electrolysis cells or in batteries, as heat conductors, as non-rechargeable housings and for shielding electromagnetic waves.
Herstellung der in den Beispielen verwendeten Pyropolymere:Preparation of the pyropolymers used in the examples:
In einen mit Ankerrührer, Luftkühler, Gasableitungsrohr und Thermometer versehenen 6 l-Planschliffbecher gibt man 1328 g Fluoren und 1536 g Schwefel. Man erhitzt unter Rühren innerhalb von 90 Min. auf 250 - 270°C und hält 3 Stunden auf dieser Temperatur. Dann wird das Reaktionsgemisch, ohne zu rühren, auf 350°C erhitzt und 6 Stunden auf dieser Temperatur gehalten. Nach dem Abkühlen wird das Kondensationsprodukt gemahlen. Man erhält 2490 g eines metallisch glänzenden Kondensationsproduktes. Dieses wird in einem mit Thermometer, Gaseinleitungs- und Gasableitungsrohr versehenen Planschliffbecher aus Quarzglas unter Überleiten von Stickstoff innerhalb von 12 Stunden auf 1000°C erhitzt und 10 Stunden auf dieser Temperatur gehalten. Man erhält 1323 g schwefelhaltiges Pyropolymer in Form einer metallisch glänzenden schwarzen Masse (spezifische Leitfähigkeit: 14,7 S/cm; Schwefelgehalt: 7,2 Gew.-%).1328 g of fluorene and 1536 g of sulfur are placed in a 6 l flat ground cup equipped with an anchor stirrer, air cooler, gas discharge pipe and thermometer. The mixture is heated to 250-270 ° C. in the course of 90 minutes and kept at this temperature for 3 hours. The reaction mixture is then heated to 350 ° C. without stirring and kept at this temperature for 6 hours. After cooling, the condensation product is ground. 2490 g of a shiny metallic condensation product are obtained. This is heated in a flat ground beaker made of quartz glass equipped with a thermometer, gas inlet and gas outlet pipe while passing nitrogen over 12 hours to 1000 ° C and held at this temperature for 10 hours. 1323 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic black mass (specific conductivity: 14.7 S / cm; sulfur content: 7.2% by weight).
In einem mit Ankerrührer, Thermometer, Gaseinleitungsund Gasableitungsrohr versehenen 4-l-Planschliffbecher werden 1780 g Anthracen und 640 g Schwefel in einer Stickstoffatmosphäre miteinander verschmolzen und anschließend innerhalb von 3 Stunden auf 350°C erhitzt. Man hält 5 Stunden auf dieser Temperatur, wobei nach 4 Stunden der Rührer abgestellt wird. Nach dem Abkühlen wird das Kondensationprodukt gemahlen. Man erhält 1930 g eines metallisch glänzenden Kondensationsproduktes (Schwefelgehalt: 12,6 Gew.-%).1780 g of anthracene and 640 g of sulfur are melted together in a nitrogen atmosphere in a 4-liter flat beaker equipped with an anchor stirrer, thermometer, gas inlet and gas outlet pipe and then heated to 350 ° C within 3 hours. It is kept at this temperature for 5 hours, after 4 hours the stirrer is turned off. After cooling, the condensation product is ground. 1930 g of a shiny metallic condensation product are obtained (sulfur content: 12.6% by weight).
Dieses Kondensationsprodukt wird in dem in Beispiel 1 beschriebenen Planschliffbecher innerhalb von 12 Stunden auf 1000°C erhitzt und 10 Stunden auf dieser Temperatur gehalten. Es werden 1461 g schwefelhaltiges Pyropolymer in Form einer metallisch glänzenden Masse erhalten (spezifische Leitfähigkeit: 14,3 S/cm; Schwefelgehalt: 7,4 Gew.-%).This condensation product is heated to 1000 ° C. in the face grinding cup described in Example 1 within 12 hours and kept at this temperature for 10 hours. 1461 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic mass (specific conductivity: 14.3 S / cm; sulfur content: 7.4% by weight).
In einem mit Ankerrührer, Thermometer, Gaseinleitungsund Gasableitungsrohr versehenen 6 l-Planschliffbecher werden 1 kg flüssiger Crackölrückstand und 2 kg Schwefel innerhalb von 2 Stunden auf 250 °C erhitzt. Anschließend wird das Reaktionsgemisch innerhalb einer Stunde auf 350°C erhitzt und dann, ohne zu rühren, 4 Stunden auf dieser Temperatur gehalten. Nach dem Abkühlen erhält man 2384 g eines schwarzen Kondensationsproduktes (Schwefelgehalt: 61,5 gew.-%).1 kg of liquid cracking oil residue and 2 kg of sulfur are heated to 250 ° C within 2 hours in a 6 l flat ground cup equipped with anchor stirrer, thermometer, gas inlet and gas discharge pipe. The reaction mixture is then heated to 350 ° C. within one hour and then kept at this temperature for 4 hours without stirring. After cooling, 2384 g of a black condensation product (sulfur content: 61.5% by weight) are obtained.
2,2 kg dieses Produktes werden in dem für die Herstellung des Pyropolymer A verwendeten Planschliffbecher innerhalb von 4 Stunden auf 1000°C erhitzt und 15 Stunden auf dieser Temperatur gehalten. Es werden 630 g schwefelhaltiges Pyropolymer in Form einer metallisch glänzenden Masse erhalten (spezifische Leitfähigkeit: 17.9 S/cm; Schwefelgehalt: 7,0 Gew.-%).2.2 kg of this product are heated in the ground cup used for the production of pyropolymer A to 1000 ° C. within 4 hours and kept at this temperature for 15 hours. 630 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic mass (specific conductivity: 17.9 S / cm; sulfur content: 7.0% by weight).
In einem mit Ankerrührer, Thermometer, Gaseinleitungsund Gasableitungsrohr versehenen 6 l-Planschliffbecher werden in einer Stickstoffatmosphäre 1500 g Anthracen und 1500 g Schwefel miteinander verschmolzen, dann innerhalb einer Stunde auf 250°C erhitzt und 2,5 Stunden bei dieser Temperatur gerührt. Anschließend wird das Reaktionsgemisch innerhalb einer Stunde unter Rühren auf 350°C erhitzt und ohne zu rühren 4 Stunden auf dieser Temperatur gehalten. Man erhält 2463 g eines metallisch glänzenden Kondensationsproduktes (Schwefelgehalt; 42,8 Gew.-%).1500 g of anthracene and 1500 g of sulfur are melted together in a nitrogen atmosphere in a 6 l flat ground beaker provided with an anchor stirrer, thermometer, gas inlet and gas outlet tube, then heated to 250 ° C. within one hour and stirred at this temperature for 2.5 hours. The reaction mixture is then heated to 350 ° C. in the course of one hour with stirring and kept at this temperature for 4 hours without stirring. 2463 g of a shiny metallic condensation product (sulfur content; 42.8% by weight) are obtained.
Dieses Kondensationsprodukt wird in dem für die Herztellung des Pyropolymers A beschriebenen Planschliffbecher aus Quarzglas 7 Stunden auf 350°C erhitzt. Danach wird innerhalb von 6 Stunden auf 1000°C erhitzt und 10 Stunden bei dieser Temperatur gehalten. Man erhält 1364 g schwefelhaltiges Pyropolymer in Form einer metallisch glänzenden Masse (Leitfähigkeit: 12,8 S/cm; Schwefelgehalt: 7,8 Gew.-%.)This condensation product is heated for 7 hours at 350 ° C. in the flat ground cup made of quartz glass described for the heart position of the pyropolymer A. The mixture is then heated to 1000 ° C. in the course of 6 hours and kept at this temperature for 10 hours. 1364 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic mass (conductivity: 12.8 S / cm; sulfur content: 7.8% by weight.)
In einem mit Ankerrührer, Thermometer, Gaseinleitungsund Gasableitungsrohr versehenen 4-l-Planschliffbecher werden 832 g Anthrachinon und 2176 g Schwefel in einer Stickstoffatmosphäre verschmolzen. Das Reaktionsgemisch wird innerhalb einer Stunde auf 250°C erhitzt und 3 Stunden bei dieser Temperatur gerührt. Dann wird das Reaktionsgemisch innerhalb einer Stunde auf 350°C er hitzt und ohne zu rühren 4 Stunden auf dieser Temperatur gehalten. Man erhält 2491 g eines schwefelhaltigen Kondensationsproduktes.832 g of anthraquinone and 2176 g of sulfur are melted in a nitrogen atmosphere in a 4-liter flat beaker equipped with an anchor stirrer, thermometer, gas inlet and gas outlet pipe. The reaction mixture is heated to 250 ° C. in the course of one hour and stirred at this temperature for 3 hours. Then the reaction mixture to 350 ° C within an hour heated and kept at this temperature for 4 hours without stirring. 2491 g of a sulfur-containing condensation product are obtained.
Dieses wird in dem für die Herstellung des Pyropolymers A beschriebenen Planschliffbecher aus Quarzglas 7 Stunden auf 350°C erhitzt. Danach wird innerhalb von 6 Stunden auf 1000°C erhitzt und 15 Stunden auf dieser Temperatur gehalten. Man erhält 814 g schwefelhaltiges Pyropolymer in Form eines metallisch glänzenden Produktes (spezifische Leitfähigkeit: 9,8 S/cm; Schwefelgehalt: 10,5 Gew.-%.).This is heated to 350 ° C. for 7 hours in the flat ground beaker made of quartz glass described for the production of pyropolymer A. The mixture is then heated to 1000 ° C. within 6 hours and kept at this temperature for 15 hours. 814 g of pyropolymer containing sulfur are obtained in the form of a shiny metallic product (specific conductivity: 9.8 S / cm; sulfur content: 10.5% by weight).
Jeweils 1 kg einer 10 Gew.-%igen Lösung von Bisphenol-A-Polycarbonat (Makrolon 5705®) in Methylenchlorid werden mit einer bestimmten Menge Pyropolymer A (Korngröße: (12 µ) vermischt. Aus den so erhaltenen schwarzen Suspensionen werden Folien einer Naßdicke von 1000 µ gezogen. Von den nach dem Trocknen erhaltenen antistatischen Polycarbonatfolien werden die Oberflächenwiderstände (nach DIN 53482) bestimmt.1 kg of a 10% strength by weight solution of bisphenol A polycarbonate (Makrolon 5705®) in methylene chloride is mixed with a certain amount of pyropolymer A (particle size: (12 μ). Films of a wet thickness are obtained from the black suspensions thus obtained The surface resistances (according to DIN 53482) are determined from the antistatic polycarbonate films obtained after drying.
In der nachstehenden Tabelle sind die eingesetzten Mengen an Pyropolymer A und der Oberflächenwiderstand der mit den angegebenen Mengen Pyropolymer A ausgerüsteten Polycarbonatfolien zusammengestellt.
100 Gew.-Teile Bisphenol-A-Polycarbonat-Pulver (Makrolon 2808®) werden 100 Gew.-Teilen Pyropolymer A (Korngröße: 5 - 25 µ) gemischt und bei 240°C unter einem Druck von 1440 Kp/cm² zu einer Platte verpreßt. Die so erhaltene stabile Platte weist eine spezifische Leitfähigkeit von 5,4 × 10⁻³ S/cm auf.100 parts by weight of bisphenol A polycarbonate powder (Makrolon 2808®), 100 parts by weight of pyropolymer A (particle size: 5 - 25 µ) are mixed and at 240 ° C under a pressure of 1440 Kp / cm² to a plate pressed. The stable plate thus obtained has a specific conductivity of 5.4 × 10 -3 S / cm.
100 Gew.-Teile pulverförmiges Poly-(2,6-dimethyl-p-phenylenoxid) und 100 Gew.-Teile Pyropolymer B (Korngröße: 5 - 25 µ) werden miteinander vermischt und das Gemisch 10 Minuten bei 300 °C und einem Druck von 1100 Kp/m² zu einer Platte gepreßt. Die erhaltene Stabile Platte weist eine spezifsche Leitfähigkeit von 2,4 × 10⁻³ S/cm auf.100 parts by weight of powdered poly- (2,6-dimethyl-p-phenylene oxide) and 100 parts by weight of pyropolymer B (particle size: 5 - 25 μ) are mixed together and the mixture for 10 minutes at 300 ° C. and a pressure of 1100 Kp / m² pressed into a plate. The stable plate obtained has a specific conductivity of 2.4 × 10 -3 S / cm.
100 Gew.-Teile Polyparaphenylensulfid und 100 Gew.-Teile Pyropolymer A (Korngröße: <12 µ) werden miteinander gemischt und bei 300°C und einem Druck von 750 Kp/cm² 5 Minuten verpreßt. Die so erhaltene Platte weist eine spezifische Leitfähigkeit von 2,8 × 10⁻³ S/cm auf.100 parts by weight of polyparaphenylene sulfide and 100 parts by weight of pyropolymer A (particle size: <12 μ) are mixed with one another and pressed at 300 ° C. and a pressure of 750 kg / cm² for 5 minutes. The plate thus obtained has a specific conductivity of 2.8 × 10⁻³ S / cm.
Elastomers Vinylpolybutadien (hergestellt aus Butadien1,2) wird auf -80°C abgekühlt und in einer Granuliermaschine zerkleinert. 55 Gew.-Teile dieses Granulates werden mit 45 Gew.-Teilen Pyropolymer E (Korngröße: 5 - 25 µ) vermischt. Die Mischung wird unter einem Druck von 450 Kp/ cm² zu einer Platte verpreßt. Die elastomere Platte weist eine spezifische Leitfähigkeit von 2,4 × 10⁻¹ S/cm auf.Elastomer's vinyl polybutadiene (made from butadiene1.2) is cooled to -80 ° C and comminuted in a granulating machine. 55 parts by weight of this granulate are mixed with 45 parts by weight of pyropolymer E (particle size: 5 - 25 μ). The mixture is pressed into a plate under a pressure of 450 kg / cm². The elastomeric plate has a specific conductivity of 2.4 × 10⁻¹ S / cm.
250 Gew.-Teile Polypropylen werden mit 750 Gew.-Teilen Pyropolymer A (Korngröße: <65 µ) gemischt und in einem Extruder bei 220°C zu einem Strang verarbeitet. Eine aus diesem Strang bei 200°C und einem Druck von 500 Kp/cm² hergestellte Platte weist eine spezifische Leitfähigkeit von 6,9 × 10⁻⁴ S/cm auf.250 parts by weight of polypropylene are mixed with 750 parts by weight of pyropolymer A (particle size: <65 μ) and processed into a strand in an extruder at 220 ° C. A plate made from this strand at 200 ° C and a pressure of 500 Kp / cm² has a specific conductivity of 6.9 × 10⁻⁴ S / cm.
300 Gew-Teile anpolymerisiertes Methylmethacrylat werden mit 250 Gew.-Teilen Pyropolymer C (Korngröße: <500 µ) vermischt kund mit 100 mg Bis-(4-chlorbenzoyl)-peroxid versetzt und anschließend bei 160°C und einem Druck von 570 Kp/cm² verpreßt. Die so erhaltene Platte weist eine spezifische Leitfähigkeit von 8,7 × 10⁻¹ S/cm auf.300 parts by weight of polymerized methyl methacrylate are mixed with 250 parts by weight of pyropolymer C (particle size: <500 μ) mixed with 100 mg of bis (4-chlorobenzoyl) peroxide and then at 160 ° C. and a pressure of 570 Kp / cm² pressed. The plate thus obtained has a specific conductivity of 8.7 × 10⁻¹ S / cm.
50 Gew.-Teile eines Copolymerisates aus 95 Gew.-% Methacrylsäuremethylester und 5 Gew.-% Acrylsäureethylester werden mit 100 Gew.-Teilen Pyropolymer A (Korngröße: <50 µ) gemischt und in 70 Gew.-Teile Methacrylsäuremethylester eingerührt. Die so erhaltene Masse wird mit 100 mg Bis-(4-Chlorbenzoyl)-peroxid versetzt, auf ein Aluminium-Blech gegossen und anschließend 18 Stunden bei 80°C zum Aushärten aufbewahrt. Das Rohprodukt wird anschließend durch 10-minütiges Pressen bei 160°C unter einem Druck von 566 Kp/cm² zu einer Platte verpreßt. Die so erhaltene Platte von 4 mm Dicke weist eine spezifische Leitfähigkeit von 3,8 × 10⁻¹ S/cm auf.50 parts by weight of a copolymer of 95% by weight of methyl methacrylate and 5% by weight of ethyl acrylate are mixed with 100 parts by weight of pyropolymer A (particle size: <50 μ) and stirred into 70 parts by weight of methyl methacrylate. The mass obtained in this way is mixed with 100 mg of bis (4-chlorobenzoyl) peroxide, poured onto an aluminum sheet and then stored at 80 ° C. for 18 hours for curing. The crude product is then pressed into a plate by pressing for 10 minutes at 160 ° C. under a pressure of 566 Kp / cm². The plate of 4 mm thickness thus obtained has a specific conductivity of 3.8 × 10⁻¹ S / cm.
X Gew.-Teile Copolymerisat aus 95 Gew.-% Methacrylsäuremethylester und 5 Gew.-% Acrylsäureethylester und Y Gew.-Teile Pyropolymer D (Korngröße: <25 µ) werden miteinander vermischt und 10 Minuten bei 160° C unter einem Druck von 560 Kp/cm² verpreßt.X parts by weight of copolymer of 95% by weight of methyl methacrylate and 5% by weight of ethyl acrylate and Y parts by weight of pyropolymer D (particle size: <25 μ) are mixed together and 10 minutes at 160 ° C. under a pressure of 560 Kp / cm² pressed.
In der nachstehenden Tabelle sind die in den einzelnen Versuchen eingesetzten Mengen an Copolymerisat und Pyropolymer und die spezifischen Leitfähigkeiten der aus diesen Komponenten erhaltenen Polymerisat-Platten zusammengestellt.
Je 100 Gew.-Teile einer 40 Gew.-%igen wässrigen Polyurethandispersion (DLN® der BAYER AG) werden mit X Gew.-Teilen Pyropolymer A (Korngröße: <63 µ) gut verrührt. Die Gemische werden auf Glasplatten gegossen und bilden dort einen elastischen Überzug.100 parts by weight of a 40% by weight aqueous polyurethane dispersion (DLN® from BAYER AG) are thoroughly mixed with X parts by weight of Pyropolymer A (particle size: <63 μ). The mixtures are poured onto glass plates and form an elastic coating there.
In der nachstehenden Tabelle sind die zugesetzten Mengen an Pyropolymer A und der mit diesen Mengen erreichte Oberflächenwiderstand der erhaltenen Überzüge zusammengestellt.
Eine aus 100 Gew.-Teilen Polyparaphenylensulfid und 100 Gew.-Teilen Pyropolymer A (Korngröße: <63 µ) hergestellte Platte (Abmessungen: 25 × 25 × 2 mm) wurde mit 2 elektrischen Kontakten versehen, mit einem Polyhydantoinlack überzogen und in einem Gefäß mit 50 g Wasser bedeckt. Nach dem Anlegen einer Gleichspannung von 24 V/30 V/36 V erwärmt sich das Wasser auf 47°C/53°C/56°C. D.h. die Platte wirkte als Heizplatte.A plate made of 100 parts by weight of polyparaphenylene sulfide and 100 parts by weight of pyropolymer A (particle size: <63 μ) (dimensions: 25 × 25 × 2 mm) was provided with 2 electrical contacts, coated with a polyhydantoin varnish and in a vessel covered with 50 g of water. After applying a DC voltage of 24 V / 30 V / 36 V, the water warms up to 47 ° C / 53 ° C / 56 ° C. I.e. the plate acted as a heating plate.
500 g einer 10 gew.-%gen Lösung eines aus der wiederkehrenden Struktureinheit
100 g einer 30 %igen Lösung eines Polyhydantoins in einem Phenol/Kresol-Gemisch (Resistherm PH20®) werden mit 15 g Pyropolymer C (Korngröße: <18 µ) vermischt und mit 50 g eines 1:1-Gemisches aus Xylol/Phenol verdünnt. Nach dem Homogenisieren mit einem Dissolver werden auf Glasplatten Naßfilme von 200 µ Dicke aufgetragen. Diese Filme werden 20 Minuten bei 200°C und 10 Minuten bei 300°C eingebrannt. Die auf diese Weise erhaltenenen elastischen Beschichtungen weisen einen Oberflächenwiderstand von 6,8 × 10⁴ Ω auf.100 g of a 30% solution of a polyhydantoin in a phenol / cresol mixture (Resistherm PH20®) are mixed with 15 g pyropolymer C (particle size: <18 µ) and diluted with 50 g of a 1: 1 mixture of xylene / phenol . After homogenization with a dissolver, wet films 200 μm thick are applied to glass plates. These films are baked at 200 ° C for 20 minutes and at 300 ° C for 10 minutes. The elastic coatings obtained in this way have a surface resistance of 6.8 × 10⁴ Ω.
100 g eines flüssigen Epoxidharzes aus technischem Hexahydrophthalsäurebisglycidylester (Epoxidwert: 0,58) und 100 g aufgeschmolzenes Hexahydrophthalsäureanhydrid werden mit 100 g Pyropolymer C (Korngröße: <63 µ) vermischt und mit 2 g Dimethylbenzylamin als Katalysator versetzt. Nach dem Entgasen wird die Masse in eine Form gegossen und 4 Stunden auf 80°C und anschließend 16 Stunden auf 160°C erwärmt. Der auf diese Weise erhaltene Gießharz Formkörper weist eine spezifische Leitfähigkeit von 1,8 × 10⁻⁵ S/cm auf.100 g of a liquid epoxy resin made from technical bisglycidyl hexahydrophthalate (epoxy value: 0.58) and 100 g of melted hexahydrophthalic anhydride are mixed with 100 g of pyropolymer C (particle size: <63 μ) and mixed with 2 g of dimethylbenzylamine as a catalyst. After degassing, the mass is poured into a mold and heated to 80 ° C for 4 hours and then to 160 ° C for 16 hours. The cast resin molded body obtained in this way has a specific conductivity of 1.8 × 10⁻⁵ S / cm.
100 g eines lufttrocknenden Alkydharzes werden mit 50 g Pyropolymer A (Korngröße: <12 µ) vermischt. Nach dem Homogenisieren mit einem Dissolver werden Glasplatten mit dem Gemisch bestrichen. Die nach dem Trocknen über Nacht entstandenen Lackfilme weisen einen Oberflächenwiderstand von 6,1 × 10⁶ Ω auf.100 g of an air-drying alkyd resin are mixed with 50 g of Pyropolymer A (particle size: <12 µ). After homogenization with a dissolver, glass plates are coated with the mixture. The paint films formed after drying overnight have a surface resistance of 6.1 × 10⁶ Ω.
50 Gew.-Teile pulverförmiges Pyropolymer A (Korngröße: <63 µ) und 50 Gew.-Teile Polyphenylensulfid (Ryton P 4 der Phillips Petroleum Comp.) werden zunächst mechanisch miteinander vermischt. Dieses Gemisch wird im Vakuum bei 130°C getrocknet und anschließend unter Verwendung eines Doppelwellenextruders (ZSK 32 der Fa. Werner & Pfleiderer) bei 330°C schmelzcompoundiert. Der aus dem Extruder austretende Schmelzenstrang wird nach dem Erkalten granuliert. Aus dem so erhaltenen Granulat werden nach Vortrocknen bei 130°C bei einer Schmelzentemperatur von 340°C und einer Werkzeugtemperatur von 130°C Rundplatten (Durchmesser: 800 mm, Dicke: 2 mm) gespritzt. Die elektrischen Widerstandswerte der so erhaltenen Rundplatten betragen:
spezifischer Durchgangswiderstand: 110 Ω × cm
spezifischer Oberflächenwiderstand: 560 Ω50 parts by weight of powdered pyropolymer A (particle size: <63 μ) and 50 parts by weight of polyphenylene sulfide (Ryton P 4 from Phillips Petroleum Comp.) Are first mixed mechanically with one another. This mixture is dried in vacuo at 130 ° C. and then melt-compounded at 330 ° C. using a twin-screw extruder (ZSK 32 from Werner & Pfleiderer). The melt strand emerging from the extruder is granulated after cooling. After predrying at 130 ° C. at a melt temperature of 340 ° C. and a mold temperature of 130 ° C., round plates (diameter: 800 mm, thickness: 2 mm) are injected from the granules obtained in this way. The electrical resistance values of the round plates obtained in this way are:
volume resistivity: 110 Ω × cm
specific surface resistance: 560 Ω
Unter Verwendung eines Zweiwalzenstuhles, dessen Walzen auf 150°C aufgeheizt sind, werden 40 Gew.-Teile Pyropolymer A (Korngröße: <25 µ) in 60 Gew.-Teile Polystyrol (Polystyrol 168 N der BASF) eingearbeitet. Das als Walzfell anfallende Compound wird anschließend in einer auf 170°C aufgeheizten Presse zu quadratischen Platten (Abmessungen: 120 × 120 mm; Dicke: 4 mm) verpreßt. Der spezifische Durchgangswiderstand der Platten beträgt 1000 Ω × cm.Using a two-roll chair, the rolls of which are heated to 150 ° C., 40 parts by weight of pyropolymer A (grain size: <25 μ) are incorporated into 60 parts by weight of polystyrene (polystyrene 168 N from BASF). The compound obtained as rolled skin is then pressed into square plates (dimensions: 120 × 120 mm; thickness: 4 mm) in a press heated to 170 ° C. The volume resistivity of the plates is 1000 Ω × cm.
In 50 Teile Polyamid 6 mit einer relativen Lösungsviskosität von 2,9 (gemessen an einer Lösung von 1 g Polyamid in 100 ml m-Cresol bei 25°C) werden 50 Teile Pyropolymer B (Korngröße: <63 µ) auf einem Doppelwellen-Extruder (ZSK 53 der Fa. Werner & Pfleiderer) bei einer Massetemperatur von 250°C und einem Durchsatz von 24 kg/h eingearbeitet. Der abgezogene Strang wird gekühlt, granuliert und getrocknet. Anschließend wird das Granulat auf einer Spritzgießmaschine (A 270 der Firma Arburg) zu Probekörpern der Abmessung 80 × 10 × 4 mm und 127 × 12,7 × 1,6 mm verarbeitet.In 50 parts of polyamide 6 with a relative solution viscosity of 2.9 (measured on a solution of 1 g of polyamide in 100 ml of m-cresol at 25 ° C.), 50 parts of pyropolymer B (particle size: <63 μ) on a twin-screw extruder (ZSK 53 from Werner & Pfleiderer) at a melt temperature of 250 ° C and a throughput of 24 kg / h. The drawn off strand is cooled, granulated and dried. The granules are then processed on an injection molding machine (A 270 from Arburg) to test specimens measuring 80 × 10 × 4 mm and 127 × 12.7 × 1.6 mm.
In der nachstehenden Tabelle sind die Eigenschaften dieser Probekörper sowie die Eigenschaften der aus reinem Polyamid hergestellten Probekörper zusammengestellt.The properties of these test specimens and the properties of the test specimens made from pure polyamide are summarized in the table below.
Auf den Oberflächen der Prüfkörper war weder während oder nach dem Spritzvorgang, noch nach 7-tägiger Lagerung bei 70°C im Trockenschrank irgendeine Abscheidung des Pyropolymers B feststellbar; der Oberflächenglanz der Prüfkörper war unverändert.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19853542231 DE3542231A1 (en) | 1985-11-29 | 1985-11-29 | ORGANIC POLYMERS WITH ELECTRICAL PROPERTIES |
DE3542231 | 1985-11-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0224174A2 true EP0224174A2 (en) | 1987-06-03 |
EP0224174A3 EP0224174A3 (en) | 1988-11-02 |
Family
ID=6287178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86115947A Withdrawn EP0224174A3 (en) | 1985-11-29 | 1986-11-18 | Organic polymers with electrical properties |
Country Status (4)
Country | Link |
---|---|
US (1) | US4798686A (en) |
EP (1) | EP0224174A3 (en) |
JP (1) | JPS62131068A (en) |
DE (1) | DE3542231A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101384168B (en) * | 2006-02-17 | 2011-08-17 | 德拉瓦尔控股股份有限公司 | A device including a milk-conveying tubular member |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5210213A (en) | 1983-06-17 | 1993-05-11 | The Boeing Company | Dimensional, crosslinkable oligomers |
US5705598A (en) | 1985-04-23 | 1998-01-06 | The Boeing Company | Polyester sulfone oligomers and blends |
US5780583A (en) * | 1991-01-09 | 1998-07-14 | The Boeing Company | Reactive polyarylene sulfide oligomers |
US5516876A (en) | 1983-09-27 | 1996-05-14 | The Boeing Company | Polyimide oligomers and blends |
US5693741A (en) | 1988-03-15 | 1997-12-02 | The Boeing Company | Liquid molding compounds |
US5969079A (en) | 1985-09-05 | 1999-10-19 | The Boeing Company | Oligomers with multiple chemically functional end caps |
US5512676A (en) | 1987-09-03 | 1996-04-30 | The Boeing Company | Extended amideimide hub for multidimensional oligomers |
US5618907A (en) | 1985-04-23 | 1997-04-08 | The Boeing Company | Thallium catalyzed multidimensional ester oligomers |
US5610317A (en) | 1985-09-05 | 1997-03-11 | The Boeing Company | Multiple chemically functional end cap monomers |
US5817744A (en) | 1988-03-14 | 1998-10-06 | The Boeing Company | Phenylethynyl capped imides |
US5431998A (en) * | 1993-05-14 | 1995-07-11 | Lockheed Corporation | Dimensionally graded conductive foam |
US5464570A (en) * | 1993-10-25 | 1995-11-07 | Delco Electronics Corporation | THFA/PDP thermoset thick films for printed circuits |
US7163746B2 (en) * | 2002-06-12 | 2007-01-16 | Eastman Kodak Company | Conductive polymers on acicular substrates |
DE102005053646A1 (en) * | 2005-11-10 | 2007-05-16 | Starck H C Gmbh Co Kg | Polymer coatings with improved solvent resistance |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2834390A1 (en) * | 1978-08-05 | 1980-02-14 | Preh Elektro Feinmechanik | Electrically conductive resin moulding compsn. - comprises thermosetting resin, stabiliser, electrically conductive particles and talc as filler |
EP0131189A2 (en) * | 1983-07-08 | 1985-01-16 | Bayer Ag | Process for the preparation of electrically conductive polymers |
EP0214506A1 (en) * | 1985-08-29 | 1987-03-18 | Bayer Ag | Electrically conductive polymers and process for their manufacture |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4375427A (en) * | 1979-12-13 | 1983-03-01 | Allied Corporation | Thermoplastic conductive polymers |
DE3005849A1 (en) * | 1980-02-16 | 1981-09-03 | Bayer Ag, 5090 Leverkusen | ELECTRICALLY CONDUCTIVE AND ANTISTATIC MOLDS |
DE3018459A1 (en) * | 1980-05-14 | 1981-11-19 | Basf Ag, 6700 Ludwigshafen | METHOD FOR THE PRODUCTION OF ELECTRICALLY CONDUCTIVE SOLUBLE HETEROPOLYPHENYLENE AND THEIR USE IN ELECTROTECHNICS AND FOR THE ANTISTATIC EQUIPMENT OF PLASTICS |
DE3113331A1 (en) * | 1981-04-02 | 1982-10-28 | Bayer Ag, 5090 Leverkusen | CLIMBING OR FIBER-SHAPED, DOPED POLYACETYLENE PARTICLES CONTAINING THERMOPLASTIC PLASTICS AND METHOD FOR THEIR PRODUCTION |
-
1985
- 1985-11-29 DE DE19853542231 patent/DE3542231A1/en not_active Withdrawn
-
1986
- 1986-11-18 EP EP86115947A patent/EP0224174A3/en not_active Withdrawn
- 1986-11-18 US US06/932,077 patent/US4798686A/en not_active Expired - Fee Related
- 1986-11-25 JP JP61278896A patent/JPS62131068A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2834390A1 (en) * | 1978-08-05 | 1980-02-14 | Preh Elektro Feinmechanik | Electrically conductive resin moulding compsn. - comprises thermosetting resin, stabiliser, electrically conductive particles and talc as filler |
EP0131189A2 (en) * | 1983-07-08 | 1985-01-16 | Bayer Ag | Process for the preparation of electrically conductive polymers |
EP0214506A1 (en) * | 1985-08-29 | 1987-03-18 | Bayer Ag | Electrically conductive polymers and process for their manufacture |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101384168B (en) * | 2006-02-17 | 2011-08-17 | 德拉瓦尔控股股份有限公司 | A device including a milk-conveying tubular member |
Also Published As
Publication number | Publication date |
---|---|
US4798686A (en) | 1989-01-17 |
DE3542231A1 (en) | 1987-06-04 |
EP0224174A3 (en) | 1988-11-02 |
JPS62131068A (en) | 1987-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69321959T2 (en) | Electrically conductive compositions with soot particles and process for making the same | |
DE3855678T2 (en) | INTRINSICALLY CONDUCTIVE POLYMER IN THE FORM OF A DISPERSIBLE BODY, ITS PRODUCTION AND APPLICATION | |
US5595689A (en) | Highly conductive polymer blends with intrinsically conductive polymers | |
EP0224174A2 (en) | Organic polymers with electrical properties | |
EP0168620B1 (en) | Method of producing mouldable polymer blends from electrically conductive organic polymers and use of said polymer blends | |
DE69522222T2 (en) | PROCESSABLE, ELECTRICALLY CONDUCTIVE POLYAMILINE COMPOSITIONS AND METHOD FOR THEIR PRODUCTION | |
EP0181587B1 (en) | Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use | |
Yang et al. | Preparation of low density polyethylene-based polyaniline conducting polymer composites with low percolation threshold via extrusion | |
DE69321673T3 (en) | Conductive plastic material and method for its production | |
DE102004003784B4 (en) | Dispersion of intrinsically conductive polyaniline and their use | |
DE3543301A1 (en) | ELECTRICALLY CONDUCTIVE SOLID PLASTICS | |
DE69422108T2 (en) | Electrically conductive compositions | |
DE69229727T2 (en) | THERMOPLASTIC CONDUCTIVE POLYMER MIXTURES BASED ON FIBRILLS OF DIFFICULT TO PROCESS POLYMERS | |
DE2625674A1 (en) | Means for making plastics flame retardant | |
DE2059329A1 (en) | Durable epoxy resin compound | |
DE4234688A1 (en) | METHOD FOR PRODUCING AN ELECTRICALLY CONDUCTIVE COMPOSITE MATERIAL | |
EP0446172A2 (en) | Electrical conductive press masses and polyheteroaromates and polymere sulfate fillers | |
DE2625692A1 (en) | Means for making plastics flame retardant | |
EP0566536A1 (en) | Electrically conducting polymer compositions and their use | |
DE69522246T2 (en) | Conductive polymer and process for its manufacture | |
DE19742865C1 (en) | Thermosetting moulding material for direct electrophoretic coating | |
EP0335184A1 (en) | Organic plastics with increased electric conductivity | |
EP0566533A1 (en) | Sulfated vinylphenol polymers, compositions containing sulfated vinylphenol polymers and the use thereof | |
DE3609137A1 (en) | FILMS OF ELECTRICALLY CONDUCTIVE POLYMERS AND ELECTRODE MATERIALS COATED WITH THESE FILMS | |
DE2166805A1 (en) | Conductive paints contg. silicate - polymer binders - and conducting particles, with improved ageing and temp. resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19861118 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): CH DE FR GB IT LI |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19900119 |
|
R18W | Application withdrawn (corrected) |
Effective date: 19900119 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HOCKER, JUERGEN, DR. Inventor name: FUELLMANN, HEINZ-JOSEF, DR. Inventor name: ROTTMAIER, LUDWIG, ING.-GRAD. Inventor name: KIRSCH, JUERGEN, DR. Inventor name: REINKING, KLAUS, DR. |