EP0224016A1 - Aluminium-Knetlegierung des Typs A1/Cu/Mg mit hoher Festigkeit im Temperaturbereich zwischen 0 und 250o C - Google Patents
Aluminium-Knetlegierung des Typs A1/Cu/Mg mit hoher Festigkeit im Temperaturbereich zwischen 0 und 250o C Download PDFInfo
- Publication number
- EP0224016A1 EP0224016A1 EP86114458A EP86114458A EP0224016A1 EP 0224016 A1 EP0224016 A1 EP 0224016A1 EP 86114458 A EP86114458 A EP 86114458A EP 86114458 A EP86114458 A EP 86114458A EP 0224016 A1 EP0224016 A1 EP 0224016A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- alloy
- temperature
- mpa
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
Definitions
- the invention is based on a wrought aluminum alloy according to the preamble of claim 1.
- Aluminum alloys of the Al / Cu / Mg type have been known for decades. Attempts have been made again and again to improve this classic hardenable alloy with further additives and to adapt its properties optimally to the respective intended use. Alloying silver to cast alloys of this type has been proposed, inter alia, to improve strength properties (see, e.g., US-A-3,288,601; US-A-3,475,166; US-A-3,925,067). Similar proposals have also been made in the field of wrought alloys (see GB-A-1 320 271). The alloys have other additives to improve the structure, e.g. Manganese, titanium etc.
- Al / Cu / Mg wrought alloys with additions of iron and nickel have been developed for operating temperatures up to about 100 ... 150 ° C (see alloy 2618 according to US standard). These alloys are mostly made from corresponding cast alloys with nickel additives. However, since they are above 150 ° C suffer a comparatively pronounced drop in strength, in today's sense, one cannot really speak of "heat-resistant" aluminum alloys. The known alloys do not fully exploit the possibilities of improving the strength properties. In particular, they do not meet the requirements at higher temperatures (up to, for example, 250 ° C.), as are required for numerous technical uses.
- the invention is based on the object of specifying an aluminum wrought alloy which can be produced by melt metallurgy using simple, conventional methods and which in the temperature range from 0 to 250 ° C. in the hardened state has significantly higher strength properties than conventional alloys.
- the Brinell hardness as a function of the Ag content of an Al / Cu / Ag or Al / Cu / Mg / Ag alloy is shown diagrammatically in FIG. 1.
- the Mg content is plotted as a parameter.
- Curve 1 relates to a Mg-free alloy, curve 2 to a Mg content of 0.3% by weight, curve 3 to 0.4% by weight and curve 4 to 0.5% by weight.
- the alloy had a constant proportion of 6.3% by weight of Cu; Rest aluminum.
- the values refer to the state obtained after solution heat treatment, water quenching and heat curing. With increasing content of alloying elements, the Brinell hardness rose to a flat maximum.
- Fig. 3 the course of the yield point (0.2% limit, corresponding to curve 7) and the tensile strength (corresponding to curve 8) as a function of the test temperature under the assumption of a holding time of 0.5 hours at this temperature for a new alloy in Comparison with two known, commercial alloys.
- the composition of the new alloy corresponded to that which was described under Fig. 2.
- the composition of the comparative alloy No. 2618 can be found in the description of FIG. 2.
- Curve 9 relates to the course of the yield point (0.2% limit) of alloy No. 2618, curve 10 to that of alloy No. 2219.
- the values of the yield point of the new alloy are significantly higher than those of the known, commercial alloys.
- FIG. 4 shows a representation of the creep rupture strength at 180 ° C. for a new alloy in comparison to a known, commercial alloy.
- the new alloy had the composition shown in Fig. 2, while the comparative alloy was No. 2618 described above.
- Curve 11 relates to the new alloy, while curve 12 applies to the known alloy No. 2618.
- the achieved values of the new alloy are consistently approx. 20% higher than those of the comparison alloy.
- the pure elements were melted down as raw materials for the components aluminum, copper, magnesium and silver.
- the purity of the aluminum was 99.9%.
- the components manganese, zirconium and vanadium were added as aluminum master alloys, each with 50% by weight of the element in question.
- the total melted mass was approx. 2 kg.
- the melt was brought to a casting temperature of 740 ° C. and poured into a slightly conical, water-cooled copper mold.
- the raw cast ingot had a smallest diameter of approx. 70 mm and a height of approx. 160 mm. After cooling, it was homogenized at a temperature of 485 ° C. for 24 hours.
- cylindrical pressing bolts 36 mm in diameter and 36 mm high were screwed out of the ingot. These were pressed individually on an extrusion press at a temperature of 420 ° C. to form a round rod with a diameter of 9 mm.
- the effective reduction ratio was 13: 1. Sections of 50 mm in length were cut off from this bar and further processed individually. At first they were so The test specimen is subjected to solution heat treatment at a temperature of 530 ° C. for a period of 3 hours and then quenched in cold water. The test specimens were then cured for 7 hours at a temperature of 195 ° C. (hot aging).
- the strength properties were tested both at room and at elevated temperatures after a previous holding time of 0.5 h or 1000 h at the relevant test temperature.
- the results for the 0.5 hour hold time are shown in the diagrams corresponding to FIGS. 2, 3 and 4. This results in the following values: Brinell hardness HB: Flat maximum of 165 units in the range of approx. 4 to 7h curing time. Curing temperature 195 ° C. Curve 4. Yield point (0.2% limit): curve 6: Test temperature: 20 200 250 ° C Yield strength: 518 393 303 MPa The elongation was 7.5% at 20 ° C and 11.0% at 200 ° C.
- the specimens of the alloy were solution annealed at a temperature of 533 ° C and quenched in boiling water.
- the thermosetting was carried out at 175 ° C for a period of 50 hours.
- the specimens of the alloy were solution annealed at a temperature of 525 ° C and quenched in cold water. The heat curing took place at a tempera at 205 ° C for 2 hours.
- the melt was brought to a temperature of 700 ° C. and atomized to fine powder in a device using a gas jet.
- the gas was nitrogen, which was under a pressure of 60 bar.
- the fine-grained powder produced only the fractions with a particle diameter below 50 ⁇ m were used further.
- the powder was poured into aluminum cans and degassed at 450 ° C. for 5 hours. Then the filled cans were hot-pressed and the press bolts produced in this way were further processed in an extrusion press at 420 ° C. into bars with a diameter of 9 mm. The material was 100% density. Sections of the bars were then solution annealed at a temperature of 530 ° C for 3 hours and then quenched in cold water. The test specimens were aged at 195 ° C for 7 hours. The maximum strength was reached after about 5 hours. The mechanical properties of the test specimens produced by powder metallurgy were on average still slightly higher than those produced by melt metallurgy.
- the additional impurities to be accepted in the industrial manufacture of the alloys should remain as low as possible and should not exceed a total of 0.25% by weight for all elements taken together.
- the silicon content should be kept as low as possible to avoid the formation of low-melting eutectics in the grain boundaries.
- intermetallic compounds with the magnesium which would mean a loss of the latter metal for its beneficial effect together with silver, should be switched off (see FIG. 1).
- the silicon content should therefore remain below 0.10% by weight.
- the transition metals manganese, zircon and vanadium serve to refine the grain and form intermetallic phases, which, in finely divided form, cause dispersion hardening and, above all, contribute to increasing the heat resistance.
- Solution annealing is preferably carried out in the temperature range from 528 to 533 ° C., the upper temperature limit being local due to the requirement of avoidance melting is given by the appearance of low-melting phases.
- the heat curing can be carried out in various ways by using the temperature / time relationship. This is preferably done according to the following scheme:
- the wrought alloys according to the invention have been used to produce light materials which have good strength properties, in particular in the temperature range from room temperature to 250 ° C., and which can be easily produced by conventional melt metallurgical methods.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Forging (AREA)
- Continuous Casting (AREA)
- Adornments (AREA)
Abstract
Cu = 5,0 bis 7,0 Gew-%
Mg = 0,3 bis 0,8 Gew-%
Ag = 0,2 bis 1,0 Gew-%
Mn = 0,3 bis 1,0 Gew-%
Zr = 0,1 bis 0,25 Gew-%
V = 0,05 bis 0,15 Gew-%
Si < 0,10 Gew-%
Es wird im warmausgehärteten Zustand bei Raumtemperatur eine Streckgrenze (0,2%-Grenze) von über 500 MPa, bei 200°C eine solche von knapp 400 MPa und bei 250°C eine von ca. 300 MPa erreicht. Bei 180°C beträgt die Zeitstandfestigkeit nach 500h noch über 250 MPa.
Description
- Die Erfindung geht aus von einer Aluminium-Knetlegierung nach der Gattung des Oberbegriffs des Anspruchs 1.
- Aluminiumlegierungen des Typs Al/Cu/Mg sind seit Jahrzehnten bekannt. Man hat stets wieder versucht, diese klassische aushärtbare Legierung durch weitere Zusätze zu verbessern und in ihren Eigenschaften dem jeweiligen Verwendungszweck optimal anzupassen. Zur Verbesserung der Festigkeitseigenschaften ist unter anderem das Zulegieren von Silber zu Gusslegierungen dieses Typs vorgeschlagen worden (siehe z.B. US-A-3 288 601; US-A-3 475 166; US-A-3 925 067). Aehnliche Vorschläge wurden auch auf dem Gebiet der Knetlegierungen gemacht (vergl. GB-A-1 320 271). Die Legierungen weisen zur Verbesserung des Gefüges noch weitere Zusätze, z.B. Mangan, Titan etc. auf.
- Für Betriebstemperaturen bis etwa 100 ... 150°C wurden Al/Cu/Mg-Knetlegierungen mit Zusätzen an Eisen und Nickel entwickelt (vergl. Legierung 2618 nach US-Norm). Diese Legierungen sind meist aus entsprechenden Gusslegierungen mit Nickelzusätzen hervorgegangen. Da sie jedoch oberhalb 150°C einen vergleichsweise gut ausgeprägten Festigkeitsabfall erleiden, kann im heutigen Sinn nicht eigentlich von "warmfesten" Aluminiumlegierungen gesprochen werden. Die bekannten Legierungen schöpfen die Möglichkeiten der Verbesserung der Festigkeitseigenschaften nicht restlos aus. Insbesondere genügen sie den Anforderungen bei höheren Temperaturen (bis beispielsweise 250°C), wie sie für zahlreiche technische Verwendungen benötigt werden, nicht.
- Es besteht daher ein grosses Bedürfnis nach einer weiteren Verbesserung der Aluminium-Knetlegierungen, insbesondere deren Festigkeitseigenschaften bei erhöhter Temperatur.
- Der Erfindung liegt die Aufgabe zugrunde, eine Aluminium-Knetlegierung anzugeben, welche sich nach einfachen, konventionellen Verfahren schmelzmetallurgisch herstellen lässt und im Temperaturbereich von 0 bis 250°C im ausgehärteten Zustand gegenüber herkömmlichen Legierungen deutlich höhere Festigkeitseigenschaften besitzt.
- Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.
- Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben.
- Dabëi zeigt:
- Fig. 1 ein Diagramm der Brinellhärte in Funktion des Ag-Gehalts für eine Al/Cu/Mg- bzw. Al/Cu/Mg/Ag-Legierung,
- Fig. 2 ein Diagramm des Verlaufes der Brinellhärte in Funktion der Aushärtezeit für eine neue Legierung im Vergleich zu einer bekannten, kommerziellen Legierung,
- Fig. 3 ein Diagramm des Verlaufes der Streckgrenze und der Zugfestigkeit in Funktion der Prüftemperatur für eine neue Legierung im Vergleich mit zwei bekannten, kommerziellen Legierungen,
- Fig. 4 ein Diagramm der Zeitstandfestigkeit für eine neue Legierung im Vergleich mit einer bekannten, kommerziellen Legierung.
- In Fig. 1 ist die Brinellhärte in Funktion des Ag-Gehalts einer Al/Cu/Ag- bzw. Al/Cu/Mg/Ag-Legierung diagrammatisch dargestellt. Dabei ist der Mg-Gehalt als Parameter aufgetragen. Kurve 1 bezieht sich auf eine Mg-freie Legierung, Kurve 2 auf einen Mg-Gehalt von 0,3 Gew-%, Kurve 3 auf einen solchen von 0,4 Gew-% und Kurve 4 einen von 0,5 Gew-%. Die Legierung wies einen konstanten Anteil von 6,3 Gew-% Cu auf; Rest Aluminium. Die Werte bezogen sich auf den nach Lösungsglühen, Wasserabschrecken und Warmaushärten erhaltenen Zustand. Mit zunehmendem Gehalt an Legierungselementen stieg die Brinellhärte bis zu einem flachen Maximum an.
- Fig. 2 zeigt ein Diagramm des Verlaufes der Brinellhärte in Funktion der Aushärtezeit für eine neue Legierung (entsprechend Kurve 5) im Vergleich zu einer bekannten, kommerziellen Legierung (entsprechend Kurve 6). Die neue Legierung hatte die nachfolgende Zusammensetzung:
Cu = 6,0 Gew-%
Mg = 0,5 Gew-%
Ag = 0,4 Gew-%
Mn = 0,5 Gew-
Zr = 0,15 Gew-
V = 0,10 Gew-%
Si = 0,04 Gew-%
Fe = 0,15 Gew-%
Al = Rest - Die bekannte, kommerzielle Vergleichslegierung nach US-Norm Nr. 2618 hatte die folgende Zusammensetzung:
Cu = 2,3 Gew-%
Mg = 1,5 Gew-%
Fe = 1,0 Gew-%
Ni = 1,0 Gew-%
Si = 0,2 Gew-% - Beide Legierungen wurden in analoger Weise behandelt und lagen in ähnlichem Zustand vor: Lösungsglühung, Abschreckung in kaltem Wasser, Aushärtung (Warmauslagerung) bei 195°C. Die neue Legierung erreichte nach 5h Aushärtung eine maximale Härte von 165 Brinelleinheiten, während die Vergleichslegierung Nr. 2618 nach ca. 30h Aushärtung lediglich ca. 145 Brinelleinheiten erzielte.
- In Fig. 3 ist der Verlauf der Streckgrenze (0,2%-Grenze, entsprechend Kurve 7) und der Zugfestigkeit (entsprechend Kurve 8) in Funktion der Prüftemperatur unter der Voraussetzung einer Haltezeit von 0,5h auf dieser Temperatur für eine neue Legierung im Vergleich mit zwei bekannten, kommerziellen Legierungen, dargestellt. Die Zusammensetzung der neuen Legierung entsprach derjenigen, welche unter Fig. 2 beschrieben wurde. Die Zusammensetzung der Vergleichslegierung Nr. 2618 kann aus der Beschreibung der Fig. 2 entnommen werden. Die Zusammensetzung der Vergleichslegierung gemäss US-Norm Nr. 2219 ist wie folgt:
Cu = 6,3 Gew-%
Mn = 0,3 Gew-%
Zr = 0,18 Gew-%
V = 0,10 Gew-%
Fe = 0,30 Gew-% (max)
Mg = 0,02 Gew-% (max)
Si = 0,20 Gew-% (max) - Die Kurve 9 bezieht sich auf den Verlauf der Streckgrenze (0,2%-Grenze) der Legierung Nr. 2618, die Kurve 10 auf denjenigen der Legierung Nr. 2219. Die Werte der Streckgrenze der neuen Legierung liegen deutlich höher als diejenigen der bekannten, kommerziellen Legierungen.
- Fig. 4 zeigt eine Darstellung der Zeitstandfestigkeit bei 180°C für eine neue Legierung im Vergleich zu einer bekannten, kommerziellen Legierung. Die neue Legierung hatte die unter Fig. 2 angegebene Zusammensetzung, während die Vergleichslegierung die oben beschriebene Nr. 2618 war. Kurve 11 bezieht sich auf die neue Legierung, während Kurve 12 für die bekannte Legierung Nr. 2618 gilt. Die erreichten Werte der neuen Legierung liegen durchwegs ca. 20 % höher als diejenigen der Vergleichslegierung.
- In einem Tiegel im Induktionsofen wurde eine Aluminiumlegierung der nachfolgenden Zusammensetzung erschmolzen:
Cu = 6,0 Gew-%
Mg = 0,5 Gew-%
Ag = 0,4 Gew-%
Mn = 0,5 Gew-%
Zr = 0,15 Gew-%
V = 0,10 Gew-%
Si = 0,04 Gew-%
Al = Rest - Als Ausgangsstoffe wurden für die Komponenten Aluminium, Kupfer, Magnesium und Silber die reinen Elemente eingeschmolzen. Die Reinheit des Aluminiums betrug 99,9 %. Die Komponenten Mangan, Zirkon und Vanadium wurden als Aluminium-Vorlegierungen mit jeweils 50 Gew-% des betreffenden Elements zugegeben. Die totale erschmolzene Masse betrug ca. 2 kg. Die Schmelze wurde auf eine Giesstemperatur von 740°C gebracht und in eine leicht konische, wassergekühlte Kupferkokille abgegossen. Der rohe Gussbarren hatte einen kleinsten Durchmesser von ca. 70 mm bei einer Höhe von ca. 160 mm. Er wurde nach dem Erkalten bei einer Temperatur von 485°C während 24h homogenisiert. Nach mechanischer Entfernung der Gusshaut wurden aus dem Barren zylindrische Pressbolzen von 36 mm Durchmesser und 36 mm Höhe herausgedreht. Diese wurden einzeln auf einer Strangpresse bei einer Temperatur von 420°C zu einem runden Stab von 9 mm Durchmesser verpresst. Das effektive Reduktionsverhältnis betrug 13:1. Von dieser Stange wurden Abschnitte von 50 mm Länge abgetrennt und einzeln weiterbehandelt. Zunächst wurden die so erhal tenen Probekörper einer Lösungsglühung bei einer Temperatur von 530°C während einer Zeit von 3h unterworfen und danach in kaltem Wasser abgeschreckt. Daraufhin wurden die Probekörper während 7h bei einer Temperatur von 195°C ausgehärtet (Warmauslagerung).
- Die Prüfung der Festigkeitseigenschaften erfolgte sowohl bei Raum- wie bei erhöhter Temperatur nach einer jeweils vorangegangenen Haltezeit von 0,5h bzw. 1000h auf der betreffenden Prüftemperatur. Die Resultate für die 0,5h-Haltezeit sind in den Diagrammen entsprechend Figuren 2, 3 und 4 dargestellt. Daraus ergeben sich folgende Werte:
Brinellhärte HB: Flaches Maximum von 165 Einheiten im Bereich von ca. 4 bis 7h Aushärtezeit.
Aushärtetemperatur 195°C. Kurve 4.
Streckgrenze (0,2%-Grenze): Kurve 6:
Prüftemperatur: 20 200 250°C
Streckgrenze: 518 393 303 MPa
Die Dehnung betrug bei 20°C 7,5 %, bei 200°C 11,0 %. - Analog zu Beispiel 1 wurde eine Legierung gemäss nachfolgender Zusammensetzung erschmolzen und zu Stangenabschnitten weiterverarbeitet:
Cu = 5,3 Gew-%
Mg = 0,6 Gew-%
Ag = 0,3 Gew-%
Mn = 0,5 Gew-%
Zr = 0,25 Gew-%
V = 0,15 Gew-%
Si = 0,08 Gew-%
Al = Rest - Die Probekörper der Legierung wurden bei einer Temperatur von 533°C lösungsgeglüht und in kochendem Wasser abgeschreckt. Die Warmaushärtung erfolgte bei 175°C während einer Zeitdauer von 50h.
- Die Festigkeitswerte lagen dürchschnittlich ca. 5 % unter denjenigen von Beispiel 1.
Streckgrenze (0,2%-Grenze):
Prüftemperatur: 20 200 250°C
Streckgrenze: 490 374 286 MPa - Analog zu Beispiel 1 wurde eine Legierung der nachfolgenden Zusammensetzung erschmolzen und zu Stangenabschnitten weiterbearbeitet:
Cu = 6,7 Gew-%
Mg = 0,4 Gew-%
Ag = 0,8 Gew-%
Mn = 0,8 Gew-%
Zr = 0,15 Gew-%
V = 0,05 Gew-%
Si = 0,06 Gew-%
Al = Rest - Die Probekörper der Legierung wurden bei einer Temperatur von 525°C lösungsgeglüht und in kaltem Wasser abgeschreckt. Die Warmaushärtung erfolgte bei einer Tempera tur von 205°C während einer Dauer von 2h.
- Die Festigkeitswerte waren mit denjenigen von Beispiel 1 vergleichbar.
Streckgrenze (0,2%-Grenze):
Prüftemperatur: 0 200 250°C
Streckgrenze: 510 390 301 MPa - Analog zu Ausführungsbeispel 1 wurde ene diesem Beispiel entsprechende Aluminiumlegierung erschmolzen. De Schmelze wurde auf eine Temperatur von 700°C gebracht und in einer Vorrichtung mit Hilfe eines Gasstrahls zu feinem Pulver zerstäubt. Das Gas war Stickstoff, der unter einem Druck von 60 bar stand. Vom erzeugten feinkörnigen Pulver wurden nur die Fraktionen mit einem Partikeldurchmesser unter 50 µm weiter verwendet.
- Das Pulver wurde in Aluminiumdosen eingefüllt und während 5 h bei 450°C entgast. Dann wurden die gefüllten Dosen heissgepresst und die auf diese Weise hergestellten Pressbolzen in einer Strangpresse bei 420°C zu Stangen von 9 mm Durchmesser weiterverarbeitet. Das Material hatte 100 % Dichte. Abschnitte der Stangen wurden hierauf einer Lösungsglühung bei einer Temperatur von 530°C während 3 h unterworfen und dann in kaltem Wasser abgeschreckt. Die Probekörper wurden während 7 h bei 195°C warm ausgelagert. Das Maximum der Festigkeit wurde hier bereits nach ca. 5 h erreicht. Die mechanischen Eigenschaften der auf pulvermetallurgischem Weg hergestellten Probekörper lagen im Durchschnitt noch leicht über den schmelzmetallurgisch hergestellten.
- Bei Raumtemperatur wurden folgende Werte erreicht:
Streckgrenze (0,2 %-Grenze): 520 MPa
Bruchfestigkeit: 620 MPa
Dehnung: 8,5 %
Zu der legierungstechnischen Seite ist folgendes zu bemerken: - Ganz allgemein sollten die bei der industriellen Fabrikation der Legierungen in Kauf zu nehmenden zusätzlichen Verunreinigungen so niedrig wie möglich bleiben und den Wert von total 0,25 Gew-% für alle Elemente zusammen genommen nicht überschreiten. Der Siliziumgehalt ist möglichst niedrig zu halten, um die Bildung von niedrigschmelzenden Eutektika in den Korngrenzen zu vermeiden. Ausserdem sollen intermetallische Verbindungen mit dem Magnesium, welche einen Verlust an letzterem Metall für seine günstige Wirkung zusammen mit Silber bedeuten würden, ausgeschaltet werden (siehe Fig. 1). Deshalb sollte der Siliziumgehalt unterhalb 0,10 Gew-% bleiben. Die Uebergangsmetalle Mangan, Zirkon und Vanadium dienen der Kornverfeinerung und der Bildung von intermetallischen Phasen, welche in feinverteilter Form eine Dispersionshärtung bewirken und vor allem zur Steigerung der Warmi festigkeit beitragen. Weitere ähnlich wirkende Zusätze von Eisen, Nickel und Chrom zu den beanspruchten Legierungszusammensetzungen sind denkbar. Diese Elemente haben jedoch den Nachteil, dass sie mit Kupfer zusätzliche intermetallische Verbindungen eingehen, wodurch der für die Ausscheidungshärtung und die Festigkeit der Matrix verfügbare Gehalt an diesem letzteren Element herabgesetzt wird. Jedenfalls ist bei der Verwendung von Eisen und/oder Nickel, welche allenfalls in Gehalten von 0,1 bis max. 1,5 Gew-% zugesetzt werden können, Vorsicht geboten.
- Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Grundsätzlich können die Zusammensetzungen in folgenden Grenzen gewählt werden:
Cu = 5,0 bis 7,0 Gew-%
Mg = 0,3 bis 0,8 Gew-%
Ag = 0,2 bis 1,0 Gew-%
Mn = 0,3 bis 1,0 Gew-%
Zr = 0,1 bis 0,25 Gew-%
V = 0,05 bis 0,15 GEw-%
Si < 0,10 Gew-%
Al = Rest - Vorzugsweise besitzen die Aluminiumlegierungen die nachfolgenden Zusammensetzungen:
Cu = 5,5 bis 6,5 Gew-%
Mg = 0,4 bis 0,6 Gew-%
Ag = 0,2 bis 0,8 Gew-%
Mn = 0,3 bis 0,8 Gew-%
Zr = 0,1 bis 0,2 Gew-%
V = 0,05 bis 0,15 Gew-%
Si < 0,05 Gew-%
Al = Rest - Die Lösungsglühung wird vorzugsweise im Temperaturbereich von 528 bis 533°C vorgenommen, wobei die obere Temperaturgrenze durch die Forderung der Vermeidung ört licher Anschmelzungen durch Auftreten niedrigschmelzender Phasen gegeben ist. In teilweiser Abweichung zu den in den Beispielen gemachten Angaben kann die Warmaushärtung in verschiedener Weise vorgenommen werden, indem der Temperatur/Zeit-Zusammenhang ausgenutzt wird. Vorzugsweise geschieht dies gemäss nachfolgendem Schema:
Claims (4)
Cu = 5,0 bis 7,0 Gew-%
Mg = 0,3 bis 0,8 Gew-%
Ag = 0,2 bis 1,0 Gew-%
Mn = 0,3 bis 1,0 Gew-%
Zr = 0,1 bis 0,25 Gew-%
V = 0,05 bis 0,15 Gew-%
Si < 0,10 Gew-%
Al = Rest
Cu = 5,5 bis 6,5 Gew-%
Mg = 0,4 bis 0,6 Gew-%
Ag = 0,2 bis 0,8 Gew-%
Mn = 0,3 bis 0,8 Gew-%
Zr = 0,1 bis 0,2 Gew-%
V = 0,05 bis 0,15 Gew-%
Si < 0,05 Gew-%
Al = Rest
Cu = 6,0 Gew-%
Mg = 0,5 Gew-%
Ag = 0,4 Gew-%
Mn = 0,5 Gew-%
Zr = 0,15 Gew-%
V = 0,10 Gew-%
Si < 0,05 Gew-%
Al = Rest
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH4696/85A CH668269A5 (de) | 1985-10-31 | 1985-10-31 | Aluminium-knetlegierung des typs al/cu/mg mit hoher festigkeit im temperaturbereich zwischen 0 und 250 c. |
CH4696/85 | 1985-10-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0224016A1 true EP0224016A1 (de) | 1987-06-03 |
EP0224016B1 EP0224016B1 (de) | 1989-09-06 |
Family
ID=4280915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86114458A Expired EP0224016B1 (de) | 1985-10-31 | 1986-10-18 | Aluminium-Knetlegierung des Typs A1/Cu/Mg mit hoher Festigkeit im Temperaturbereich zwischen 0 und 250o C |
Country Status (5)
Country | Link |
---|---|
US (1) | US4772342A (de) |
EP (1) | EP0224016B1 (de) |
JP (1) | JPS62112748A (de) |
CH (1) | CH668269A5 (de) |
DE (1) | DE3665487D1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5259897A (en) * | 1988-08-18 | 1993-11-09 | Martin Marietta Corporation | Ultrahigh strength Al-Cu-Li-Mg alloys |
EP0756016A1 (de) | 1995-07-28 | 1997-01-29 | AEROSPATIALE Société Nationale Industrielle | Zellenbauteil, insbesondere für Überschallflugzeuge, hergestellt aus eine Aluminiumlegierung mit hohe Lebensdauer, gute Schadentoleranz und hohe Spannungskorrosionsbeständigkeit |
WO1998039494A1 (en) * | 1995-12-26 | 1998-09-11 | Aluminum Company Of America | Vanadium-free aluminum alloy suitable for sheet and plate aerospace products |
EP0989195A1 (de) * | 1998-09-25 | 2000-03-29 | Alusuisse Technology & Management AG | Warmfeste Aluminiumlegierung vom Typ AlCuMg |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5032359A (en) * | 1987-08-10 | 1991-07-16 | Martin Marietta Corporation | Ultra high strength weldable aluminum-lithium alloys |
US5122339A (en) * | 1987-08-10 | 1992-06-16 | Martin Marietta Corporation | Aluminum-lithium welding alloys |
US5455003A (en) * | 1988-08-18 | 1995-10-03 | Martin Marietta Corporation | Al-Cu-Li alloys with improved cryogenic fracture toughness |
US5512241A (en) * | 1988-08-18 | 1996-04-30 | Martin Marietta Corporation | Al-Cu-Li weld filler alloy, process for the preparation thereof and process for welding therewith |
US5462712A (en) * | 1988-08-18 | 1995-10-31 | Martin Marietta Corporation | High strength Al-Cu-Li-Zn-Mg alloys |
US5085830A (en) * | 1989-03-24 | 1992-02-04 | Comalco Aluminum Limited | Process for making aluminum-lithium alloys of high toughness |
US5211910A (en) * | 1990-01-26 | 1993-05-18 | Martin Marietta Corporation | Ultra high strength aluminum-base alloys |
US5376192A (en) * | 1992-08-28 | 1994-12-27 | Reynolds Metals Company | High strength, high toughness aluminum-copper-magnesium-type aluminum alloy |
US5800927A (en) * | 1995-03-22 | 1998-09-01 | Aluminum Company Of America | Vanadium-free, lithium-free, aluminum alloy suitable for sheet and plate aerospace products |
US5630889A (en) * | 1995-03-22 | 1997-05-20 | Aluminum Company Of America | Vanadium-free aluminum alloy suitable for extruded aerospace products |
US6368427B1 (en) | 1999-09-10 | 2002-04-09 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6645321B2 (en) | 1999-09-10 | 2003-11-11 | Geoffrey K. Sigworth | Method for grain refinement of high strength aluminum casting alloys |
US6902699B2 (en) * | 2002-10-02 | 2005-06-07 | The Boeing Company | Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom |
US7435306B2 (en) * | 2003-01-22 | 2008-10-14 | The Boeing Company | Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby |
US7229508B2 (en) * | 2003-05-28 | 2007-06-12 | Alcan Rolled Products-Ravenswood, Llc | Al—Cu—Mg—Ag—Mn-alloy for structural applications requiring high strength and high ductility |
US8043445B2 (en) | 2003-06-06 | 2011-10-25 | Aleris Aluminum Koblenz Gmbh | High-damage tolerant alloy product in particular for aerospace applications |
DE60309711T2 (de) * | 2003-09-26 | 2007-09-13 | Kabushiki Kaisha Kobe Seiko Sho, Kobe | Aluminiumlegierungsschmiedematerial mit ausgezeichneter Hochtemperaturermüdungsfestigkeit |
US7922841B2 (en) * | 2005-03-03 | 2011-04-12 | The Boeing Company | Method for preparing high-temperature nanophase aluminum-alloy sheets and aluminum-alloy sheets prepared thereby |
WO2009073794A1 (en) | 2007-12-04 | 2009-06-11 | Alcoa Inc. | Improved aluminum-copper-lithium alloys |
CA2750394C (en) | 2009-01-22 | 2015-12-08 | Alcoa Inc. | Improved aluminum-copper alloys containing vanadium |
US9347558B2 (en) | 2010-08-25 | 2016-05-24 | Spirit Aerosystems, Inc. | Wrought and cast aluminum alloy with improved resistance to mechanical property degradation |
US10266933B2 (en) | 2012-08-27 | 2019-04-23 | Spirit Aerosystems, Inc. | Aluminum-copper alloys with improved strength |
CN103725998A (zh) * | 2013-12-20 | 2014-04-16 | 合肥工业大学 | 一种提高Al-Cu-Mg合金强度的方法 |
CN109825749A (zh) * | 2019-04-10 | 2019-05-31 | 上海裕纪金属制品有限公司 | 一种可冲压铝合金型材耐热耐腐蚀热处理方法及铝合金型材 |
CN111926226B (zh) * | 2020-08-12 | 2021-12-14 | 烟台南山学院 | 一种高强塑性铝合金及其制备方法 |
US20220170138A1 (en) * | 2020-12-02 | 2022-06-02 | GM Global Technology Operations LLC | Aluminum alloy for casting and additive manufacturing of engine components for high temperature applications |
US12203159B2 (en) | 2021-04-23 | 2025-01-21 | Universal Alloy Corporation | Method for producing aluminum-copper alloys containing scandium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3288601A (en) * | 1966-03-14 | 1966-11-29 | Merton C Flemings | High-strength aluminum casting alloy containing copper-magnesium-silconsilver |
US3475166A (en) * | 1969-01-15 | 1969-10-28 | Electronic Specialty Co | Aluminum base alloy |
GB1320271A (en) * | 1971-01-29 | 1973-06-13 | Atomic Energy Authority Uk | Aluminium alloys |
US3925067A (en) * | 1974-11-04 | 1975-12-09 | Alusuisse | High strength aluminum base casting alloys possessing improved machinability |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4838282A (de) * | 1971-09-18 | 1973-06-05 | ||
JPS5128562A (ja) * | 1974-09-05 | 1976-03-10 | Mitsubishi Heavy Ind Ltd | Atsuenkyoatsukasochi |
JPS59123735A (ja) * | 1982-12-30 | 1984-07-17 | Sumitomo Light Metal Ind Ltd | 電気抵抗を高めた構造用低放射化アルミニウム合金 |
-
1985
- 1985-10-31 CH CH4696/85A patent/CH668269A5/de not_active IP Right Cessation
-
1986
- 1986-10-18 EP EP86114458A patent/EP0224016B1/de not_active Expired
- 1986-10-18 DE DE8686114458T patent/DE3665487D1/de not_active Expired
- 1986-10-24 US US06/922,680 patent/US4772342A/en not_active Expired - Fee Related
- 1986-10-30 JP JP61257080A patent/JPS62112748A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3288601A (en) * | 1966-03-14 | 1966-11-29 | Merton C Flemings | High-strength aluminum casting alloy containing copper-magnesium-silconsilver |
US3475166A (en) * | 1969-01-15 | 1969-10-28 | Electronic Specialty Co | Aluminum base alloy |
GB1320271A (en) * | 1971-01-29 | 1973-06-13 | Atomic Energy Authority Uk | Aluminium alloys |
US3925067A (en) * | 1974-11-04 | 1975-12-09 | Alusuisse | High strength aluminum base casting alloys possessing improved machinability |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5259897A (en) * | 1988-08-18 | 1993-11-09 | Martin Marietta Corporation | Ultrahigh strength Al-Cu-Li-Mg alloys |
EP0756016A1 (de) | 1995-07-28 | 1997-01-29 | AEROSPATIALE Société Nationale Industrielle | Zellenbauteil, insbesondere für Überschallflugzeuge, hergestellt aus eine Aluminiumlegierung mit hohe Lebensdauer, gute Schadentoleranz und hohe Spannungskorrosionsbeständigkeit |
WO1998039494A1 (en) * | 1995-12-26 | 1998-09-11 | Aluminum Company Of America | Vanadium-free aluminum alloy suitable for sheet and plate aerospace products |
EP0989195A1 (de) * | 1998-09-25 | 2000-03-29 | Alusuisse Technology & Management AG | Warmfeste Aluminiumlegierung vom Typ AlCuMg |
Also Published As
Publication number | Publication date |
---|---|
JPS62112748A (ja) | 1987-05-23 |
US4772342A (en) | 1988-09-20 |
CH668269A5 (de) | 1988-12-15 |
EP0224016B1 (de) | 1989-09-06 |
DE3665487D1 (en) | 1989-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0224016B1 (de) | Aluminium-Knetlegierung des Typs A1/Cu/Mg mit hoher Festigkeit im Temperaturbereich zwischen 0 und 250o C | |
DE69223194T2 (de) | Verfahren zur Herstellung von Verbundlegierungspulver mit Aluminiummatrix | |
DE69326838T3 (de) | Zähe aluminiumlegierung mit kupfer und magnesium | |
DE69117066T2 (de) | Verbessertes al-li-legierungssystem | |
DE68909544T2 (de) | Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten. | |
DE3883087T2 (de) | Aluminiumverbundlegierungen. | |
DE68907331T2 (de) | Verfahren zur Herstellung von Aluminiumlegierungen der Serie 7000 mittels Sprühabscheidung und nichtkontinuierlich verstärkten Verbundwerkstoffen, deren Matrix aus diesen Legierungen mit hoher mechanischer Festigkeit und guter Duktilität besteht. | |
DE69325804T2 (de) | Hochfeste-al-li-legierung mit niedriger dichte und hoher zähigkeit bei hohen temperaturen | |
DE69131071T2 (de) | Bauteile aus duktiler ultra-hochfester aluminiumlegierung | |
DE2264997A1 (de) | Ausscheidungshaertbare nickel-, eisenlegierung | |
DE4436481C2 (de) | Verfahren zur Herstellung eines Schmiedestücks aus einer Aluminiumlegierung | |
EP0918095A1 (de) | Strukturbauteil aus einer Aluminium-Druckgusslegierung | |
DE4103934A1 (de) | Fuer kolben geeignete aluminiumlegierung | |
DE69614788T2 (de) | Aluminium-Kupfer-Magnesium-Legierung mit hoher Kriechbeständigkeit | |
EP0554808B1 (de) | Verfahren zur Herstellung von Formteilen aus Metallegierungen | |
EP1518000A1 (de) | Al-cu-mg-ag-legierung mit si, halbzeug aus einer solchen legierung sowie verfahren zur herstellung eines solchen halbzeuges | |
DE2606632A1 (de) | Kohlenstoffstahl von sehr hohem kohlenstoffgehalt und verfahren zur herstellung desselben | |
EP2236637A2 (de) | Druckgusskörper aus einer übereutektischen Aluminium-Silizium-Gusslegierung und Verfahren zu dessen Herstellung | |
WO2017174185A1 (de) | Aluminiumlegierung, insbesondere für ein giessverfahren, sowie verfahren zum herstellen eines bauteils aus einer solchen aluminiumlegierung | |
DE69215156T2 (de) | Übereutektische Aluminium-Silicium Legierungen | |
EP1407056A2 (de) | Formteil aus einem intermetallischen gamma-ti-al-werkstoff | |
DE69120299T2 (de) | Übereutektisches aluminium-silikon-pulver und dessen herstellung | |
DE2029962A1 (de) | Nickel-Legierung | |
EP0552479B1 (de) | Verfahren zur Verbesserung der Biegewechselfestigkeit von Halbzeug aus Kupferlegierungen | |
EP1645647B1 (de) | Kaltaushärtende Aluminiumgusslegierung und Verfahren zur Herstellung eines Aluminiumgussteils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BBC BROWN BOVERI AG |
|
17P | Request for examination filed |
Effective date: 19871005 |
|
17Q | First examination report despatched |
Effective date: 19881012 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI |
|
REF | Corresponds to: |
Ref document number: 3665487 Country of ref document: DE Date of ref document: 19891012 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990913 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19990915 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19990920 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19990927 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001031 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20001018 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010703 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |