EP0215043B1 - Method for making a coil of a solenoidal magnet - Google Patents
Method for making a coil of a solenoidal magnet Download PDFInfo
- Publication number
- EP0215043B1 EP0215043B1 EP86901414A EP86901414A EP0215043B1 EP 0215043 B1 EP0215043 B1 EP 0215043B1 EP 86901414 A EP86901414 A EP 86901414A EP 86901414 A EP86901414 A EP 86901414A EP 0215043 B1 EP0215043 B1 EP 0215043B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- indium
- disks
- assembled
- parts
- annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/20—Electromagnets; Actuators including electromagnets without armatures
- H01F7/202—Electromagnets for high magnetic field strength
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S29/00—Metal working
- Y10S29/022—Method or apparatus using indium
Definitions
- the invention relates to a method of manufacturing a Bitter type coil, more particularly forming a large magnet capable of being used in a nuclear magnetic resonance (NMR) imaging installation; the invention also relates to a solenoidal magnet comprising at least one coil of the Bitter type constructed by implementing this method.
- NMR nuclear magnetic resonance
- NMR imaging installations require a large magnet capable of generating a uniform magnetic field in a determined region of space. Typically, it is necessary to generate a magnetic field of 0.15 to 0.5 teslas with a homogeneity of 1 to 10 parts per million (ppm) in a sphere of at least 40 cm in diameter.
- Bitter coils are well known for the production of strong magnetic fields.
- the structure proposed by Bitter is a coil made up of metallic annular discs (generally made of copper or aluminum), split to form as many turns and connected to define a substantially helical winding with flat turns.
- the stack of discs is maintained by a plurality of tie rods.
- This structure is advantageous because it allows efficient cooling of the magnet, by making turns in the discs (and in the insulators separating these discs), these holes being arranged in the same configuration from one disc to another to materialize as a set of channels parallel to the axis of the coil, in which circulates a cooling fluid, for example deionized water, kerosene or oil.
- a cooling fluid for example deionized water, kerosene or oil.
- the invention mainly relates to a method of manufacturing a Bitter type coil consisting in forming a helical winding of turns in the form of split flat metal annular discs, in producing a contiguous stack of such discs, and in connecting end to end at the other ends of such discs or of parts of such discs by welding with addition of indium, characterized in that the addition of indium is carried out prior to welding by electrolytic deposition on portions to be assembled.
- indium welding can be carried out at relatively low temperature (of the order of 200 ° C.) to avoid deformation of the discs or portions of discs, which makes it possible to obtain a particularly regular winding with contiguous turns.
- indium has the additional advantage of excellent electrical conductivity.
- the welding then takes place by heating said portions in the assembly position, for example by means of an "HF turn".
- the portions to be assembled are provided with dimples of complementary shapes and dimensions and the deposition of indium is carried out on these dimples.
- each coil consists of the end-to-end assembly of parts 12 of flat annular discs.
- Each disc part 12 comprises, in the example shown, opposite recesses 14, 15, of complementary shapes and dimensions, at each of its ends respectively.
- the recess 14 of a disc part can be assembled by welding to the recess 15 of another neighboring disc part and so on with the interposition of insulation between the turns, until a coil of Complete bitter.
- each disc part 12 comprises all 16 in a predetermined configuration which, with the corresponding holes in the disc parts of the other turns, reconstitute the coolant circulation channels parallel to the axis of the coil.
- Others all 17 of larger diameter are also provided in each disc part for the passage of the tie rods ensuring the winding with contiguous turns, according to the conventional technique defined by Bitter.
- the welds of the disc parts 12 are carried out with the addition of indium by heating to a relatively low temperature, which avoids deformations of the Bitter discs whose thickness is only around 2 mm for a diameter. outside of the order of a meter.
- indium 18 was previously electrolytically deposited on the surfaces to be assembled, i.e. here on the surfaces of the recesses 14 and 15.
- the electrolytic deposition of indium on a piece of copper is within the reach of those skilled in the art.
- each of them represents a fraction of turn of the coil, here close to a third of turn. More precisely, the portions of discs are all identical and each represents a not whole fraction of a complete turn (that is to say different from a half, a third, a quarter, ...) so that the zones welded from the stack are distributed in a helix, and not grouped along one or more generators of the coil.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Windings For Motors And Generators (AREA)
Abstract
Description
L'invention concerne un procédé de fabrication d'une bobine de type Bitter, entrant plus particulièrement dans la constitution d'un aimant de grandes dimensions susceptible d'être utilisé dans une installation d'imagerie par Résonance Magnétique Nucléaire (RMN); l'invention concerne aussi un aimant solénoïdal comportant au moins une bobine de type Bitter construite par mise en oeuvre de ce procédé.The invention relates to a method of manufacturing a Bitter type coil, more particularly forming a large magnet capable of being used in a nuclear magnetic resonance (NMR) imaging installation; the invention also relates to a solenoidal magnet comprising at least one coil of the Bitter type constructed by implementing this method.
On sait que les installations d'imagerie par RMN nécessitent un aimant de grande dimension capable d'engendrer un champ magnétique uniforme dans une région déterminée de l'espace. Typiquement, il est nécessaire d'engendrer un champ magnétique de 0,15 à 0,5 teslas avec une homogénéité de 1 à 10 parties par million (ppm) dans une sphère de 40 cm de diamètre au moins.It is known that NMR imaging installations require a large magnet capable of generating a uniform magnetic field in a determined region of space. Typically, it is necessary to generate a magnetic field of 0.15 to 0.5 teslas with a homogeneity of 1 to 10 parts per million (ppm) in a sphere of at least 40 cm in diameter.
Par ailleurs, les bobines de Bitter sont bien connues pour la production de champs magnétiques intenses. La structure proposée par Bitter est un bobinage constitué de disques annulaires métalliques (généralement en cuivre ou en aluminium), fendus pour former autant de spires et raccordés pour définir un enroulement sensiblement hélicoïdal à spires plates. L'empilement de disques est maintenu par une pluralité de tirants. Cette structure est avantageuse car elle permet un refroidissement efficace de l'aimant, en pratiquant des tours dans les disques (et dans les isolants séparant ces disques), ces trous étant disposés suivant une même configuration d'un disque à l'autre pour matérialiser en ensemble de canaux parallèles à l'axe de la bobine, dans lesquels circule un fluide de refroidissement, par exemple de l'eau désionisée, du kérozène ou de l'huile.Furthermore, Bitter coils are well known for the production of strong magnetic fields. The structure proposed by Bitter is a coil made up of metallic annular discs (generally made of copper or aluminum), split to form as many turns and connected to define a substantially helical winding with flat turns. The stack of discs is maintained by a plurality of tie rods. This structure is advantageous because it allows efficient cooling of the magnet, by making turns in the discs (and in the insulators separating these discs), these holes being arranged in the same configuration from one disc to another to materialize as a set of channels parallel to the axis of the coil, in which circulates a cooling fluid, for example deionized water, kerosene or oil.
Il est possible de calculer un aimant délivrant un champ magnétique d'homoénéité requise dans un certain volume au voisinage de son centre de symétrie et constitué d'un certain nombre de telles bobines de Bitter agencées le long d'un axe longitudinal commun. Des modes de calcul de tels aimants sont par exemple explicités dans d'autres demandes de brevet de la Demanderesse. Il est par ailleurs connu de souder des parties mètalliques ensemble par des soudures à basse température. Mais le problème à résoudre ici revient à éviter les nombreux court-circuits que provoque une soudure globale de toute une bobine en une fois. La demande FR-A-2 175 530 utilise par exemple, entre autres, de l'indium pour réaliser des soudures.It is possible to calculate a magnet delivering a magnetic field of homogeneity required in a certain volume in the vicinity of its center of symmetry and consisting of a number of such Bitter coils arranged along a common longitudinal axis. Methods of calculating such magnets are for example explained in other patent applications of the Applicant. It is also known to weld metal parts together by low temperature welds. But the problem to be solved here amounts to avoiding the numerous short-circuits caused by an overall soldering of an entire coil at once. Application FR-A-2 175 530 uses, for example, inter alia, indium to perform welds.
L'invention concerne principalement un procédé de fabrication d'une bobine de type Bitter consistant à former un enroulement hélicoïdal de spires en forme de disques annulaires métalliques plats fendus, à réaliser un empilement jointif de tels disques, et à raccorder bout à bout les uns aux autres des extrémités de tels disque ou de parties de tels disques par soudure avec apport d'indium, caractérisé en ce que l'apport d'indium est effectué préalablement à la soudure par dépôt électrolytique sur des portions à assembler.The invention mainly relates to a method of manufacturing a Bitter type coil consisting in forming a helical winding of turns in the form of split flat metal annular discs, in producing a contiguous stack of such discs, and in connecting end to end at the other ends of such discs or of parts of such discs by welding with addition of indium, characterized in that the addition of indium is carried out prior to welding by electrolytic deposition on portions to be assembled.
La soudure à l'indium peut s'effectuer à relativement basse température (de l'ordre de 200°C) pour éviter les déformations des disques ou portions de disques, ce qui permet d'obtenir un enroulement particulièrement régulier à spires jointives. De plus, l'indium présente l'avantage supplémentaire d'une excellente conductivité électrique.The indium welding can be carried out at relatively low temperature (of the order of 200 ° C.) to avoid deformation of the discs or portions of discs, which makes it possible to obtain a particularly regular winding with contiguous turns. In addition, indium has the additional advantage of excellent electrical conductivity.
La soudure d'seffectue ensuite en chauffant lesdites portions en position d'assemblage, par exemple au moyen d'une "spire HF". Selon un mode de réalisation possible, les portions à assembler sont munies d'embrèvements de formes et dimensions complémentaires et le dépôt d'indium est effectué sur ces embrèvements.The welding then takes place by heating said portions in the assembly position, for example by means of an "HF turn". According to a possible embodiment, the portions to be assembled are provided with dimples of complementary shapes and dimensions and the deposition of indium is carried out on these dimples.
L'invention sera mieux comprise et d'autres d'avantages de celle-ci apparaîtront mieux à la lumière de la description qui va suivre, donnée uniquement à titre d'exemple et faite en référence au dessin annexé dans lequel:
- - la figure 1 représente une partie de disque utilisée pour la réalisation d'une bobine de type Bitter;
- - la figure 2 est une vue en détail ilustrant l'assemblage de deux parties de disque semblables, après le dépôt d'indium et avant la soudure desdites parties.
- - Figure 1 shows a disc part used for the production of a Bitter type coil;
- - Figure 2 is a detail view illustrating the assembly of two similar disc parts, after the deposition of indium and before welding of said parts.
En se reportant aux dessins, on a représenté la structure de base utilisée selon l'invention, pour réaliser une bobine de Bitter de grandes dimensions utilisable, notamment, dans une installation d'imagerie par RMN pour engendrer un champ magnétique uniforme de grande homogénéité. Chaque bobine est constituée de l'assemblage bout à bout de parties 12 de disques annulaires plats. Chaque partie de disque 12 comporte, dans l'exemple représenté, des embrèvements 14, 15 opposés, de formes et dimensions complémentaires, à chacune de ses extrémités respectivement. Ainsi, l'embrèvement 14 d'une partie de disque pourra être assemblé par soudure à l'embrèvement 15 d'une autre partie de disque voisine et ainsi de suite avec interposition d'isolant entre les spires, jusqu'à reconstituer une bobine de Bitter complète. Comme représenté, chaque partie de disque 12 comporte des tous 16 suivant une configuration prédéterminée qui, avec les trous correspondants de parties de disque des autres spires, reconstituent des cannaux de circulation de fluide de refroidissement parallèles à l'axe de la bobine. D'autres tous 17 de plus grand diamètre sont également prévus dans chaque partie de disque pour le passage des tirants assurant le bobinage à spires jointives, selon la technique classique définie par Bitter.Referring to the drawings, there is shown the basic structure used according to the invention, for producing a large Bitter coil usable, in particular, in an NMR imaging installation to generate a uniform magnetic field of high homogeneity. Each coil consists of the end-to-end assembly of parts 12 of flat annular discs. Each disc part 12 comprises, in the example shown,
Selon l'invention les soudures des parties de disque 12 sont effectuées avec apport d'indium par chauffage à relativement basse température, ce qui évite les déformations des disques de Bitter dont l'épaisseur est de l'ordre de 2 mm seulement pour un diamètre extérieur de l'ordre du mètre. On peut par exemple interposer une fine plaquette d'indium entre les embrèvements en position d'assemblage et chauffer pour faire fondre l'indium. O à constaté cependant que la précision de positionnement des parties à assembler et la qualité de la soudure étaient notablement améliorés si l'indium 18 est préalablement déposé électrolytiquement sur les surfaces à assembler, c'est-à-dire ici sur les surfaces des embrèvements 14 et 15. Le dépôt électrolytique d'indium sur une pièce de cuivre est à la portée de l'homme du métier. Il s'effectuera de préférence après polissage électrolytique des portions comportant lesdits embrèvements. Le prédécoupage des parties de disques est tel que, comme représenté, chacune d'elle représente une fraction de spire de la bobine, ici voisine d'un tiers de spire. Plus précisément, les portions de disques sont toutes identiques et chacune représente une fraction non entière d'une spire complète (c'est-à-dire différente d'un demi, un tiers, un quart, ...) pour que les zones soudées de l'empilement soient réparties en hélice, et non regroupées le long d'une ou plusieurs génératrices de la bobine.According to the invention the welds of the disc parts 12 are carried out with the addition of indium by heating to a relatively low temperature, which avoids deformations of the Bitter discs whose thickness is only around 2 mm for a diameter. outside of the order of a meter. We can for example interpose a thin indium plate between the dimples in the assembly position and heat to melt indium. O noted, however, that the positioning accuracy of the parts to be assembled and the quality of the weld were significantly improved if
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8502971A FR2578057B1 (en) | 1985-02-28 | 1985-02-28 | PROCESS FOR MANUFACTURING A BITTER-TYPE COIL AND SOLENOIDAL MAGNET RESULTING FROM THE IMPLEMENTATION OF THIS PROCESS |
FR8502971 | 1985-02-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0215043A1 EP0215043A1 (en) | 1987-03-25 |
EP0215043B1 true EP0215043B1 (en) | 1990-04-11 |
Family
ID=9316740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86901414A Expired - Lifetime EP0215043B1 (en) | 1985-02-28 | 1986-02-21 | Method for making a coil of a solenoidal magnet |
Country Status (5)
Country | Link |
---|---|
US (1) | US4823101A (en) |
EP (1) | EP0215043B1 (en) |
DE (1) | DE3670397D1 (en) |
FR (1) | FR2578057B1 (en) |
WO (1) | WO1986005312A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6876288B2 (en) * | 2002-03-29 | 2005-04-05 | Andrey V. Gavrilin | Transverse field bitter-type magnet |
FR2896700A1 (en) | 2006-01-27 | 2007-08-03 | Skis Rossignol Sas Soc Par Act | FASTENING LOOP WITH SECURED ACCOMMODATION ELEMENT |
US7609139B2 (en) * | 2006-03-10 | 2009-10-27 | Florida State University Research Foundation | Split Florida-helix magnet |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2438967A (en) * | 1943-05-21 | 1948-04-06 | Indium Corp | Indium-gold article and method |
FR1209196A (en) * | 1958-05-31 | 1960-02-29 | Centre Nat Rech Scient | New ironless coils for the production of permanent or transient magnetic fields |
FR1494887A (en) * | 1966-08-02 | 1967-09-15 | Fives Lille Cail | Electric coils and method of manufacturing such coils |
US3497951A (en) * | 1967-11-01 | 1970-03-03 | Ite Imperial Corp | Bus-bar joints and methods for producing them |
FR2175530A1 (en) * | 1972-03-13 | 1973-10-26 | Commissariat Energie Atomique | Soldering aluminium to beryllium - using soft solder |
US3864507A (en) * | 1974-02-25 | 1975-02-04 | Aluminum Co Of America | Electrical conductor |
US4165148A (en) * | 1978-07-19 | 1979-08-21 | Square D Company | Compressible electrical connector with positive mechanical lock |
-
1985
- 1985-02-28 FR FR8502971A patent/FR2578057B1/en not_active Expired
-
1986
- 1986-02-21 DE DE8686901414T patent/DE3670397D1/en not_active Expired - Fee Related
- 1986-02-21 US US06/926,416 patent/US4823101A/en not_active Expired - Fee Related
- 1986-02-21 EP EP86901414A patent/EP0215043B1/en not_active Expired - Lifetime
- 1986-02-21 WO PCT/FR1986/000056 patent/WO1986005312A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
US4823101A (en) | 1989-04-18 |
WO1986005312A1 (en) | 1986-09-12 |
DE3670397D1 (en) | 1990-05-17 |
FR2578057B1 (en) | 1987-02-20 |
EP0215043A1 (en) | 1987-03-25 |
FR2578057A1 (en) | 1986-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0119502A1 (en) | Thermoelectric plant | |
FR3086121A1 (en) | ROTOR FOR ASYNCHRONOUS ELECTRIC MACHINE WITH NON-THROUGH SHAFT | |
EP0215043B1 (en) | Method for making a coil of a solenoidal magnet | |
FR2514965A1 (en) | SYNCHRONOUS ELECTRICAL MACHINE WITH SUPERCONDUCTIVE INDUCTOR | |
EP2280799B1 (en) | Method of producing a heat exchanger using a spacer piece for holding open the passages of brazed plates and fin exchangers | |
FR2533307A1 (en) | PROCESS FOR INDUCTIVELY HEATING PARTS AT A UNIFORM TEMPERATURE, PARTICULARLY FOR MANUFACTURING MOTOR VEHICLE RADIATORS | |
CH394369A (en) | Electric machine with liquid-cooled rotor windings | |
JP5260508B2 (en) | Method of manufacturing an electrical connection for an electrical energy storage unit | |
EP0221921B1 (en) | Ironless solenoidal magnet | |
FR2574982A1 (en) | SOLENOIDAL MAGNET WITHOUT IRON | |
EP0020253B1 (en) | Insulated collector for an electronic power tube | |
EP0117804B1 (en) | Manufacturing method of a microwave cavity, and cavity obtained thereby | |
EP0215832B1 (en) | Solenoidal magnet with high homogeneity magnetic field | |
KR100724203B1 (en) | Nb-Sn PHASE SUPERCONDUCTING WIRE AND PRECURSOR WIRE THEREOF | |
FR2579363A1 (en) | SOLENOIDAL MAGNET WITH ANNULAR DISCS OF BITTER TYPE | |
WO2012127152A1 (en) | Induction furnace crucible | |
FR2499282A1 (en) | MAGNETIC HEAD COMPRISING SELF-ADDED STITCHED SLABS | |
EP1889342A2 (en) | Stack of laser diodes forming a laser device | |
EP2580767B1 (en) | High-power air-core smoothing inductor | |
BE446313A (en) | ||
FR3073971A1 (en) | MAGNETIC INDUCTOR, ELECTROMAGNETIC PUMP COMPRISING SUCH A MAGNETIC INDUCER AND METHOD FOR MANUFACTURING A MAGNETIC INDUCER | |
EP2109344A2 (en) | Heating body of an electric radiator comprising a metal filament with helical coiling with differentiated spire zones | |
WO2017046485A1 (en) | Thermoelectric module and device, in particular for generating an electric current in a motor vehicle, and method for manufacturing such a module | |
JP2007081254A (en) | Superconducting electromagnet and manufacturing method thereof | |
FR2621731A1 (en) | COIL, MAGNET COMPRISING SUCH A COIL, NMR IMAGING DEVICE COMPRISING SUCH A MAGNET AND METHOD FOR PRODUCING SUCH A MAGNET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB NL |
|
17P | Request for examination filed |
Effective date: 19861011 |
|
17Q | First examination report despatched |
Effective date: 19881207 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC CGR S.A. |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB NL |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3670397 Country of ref document: DE Date of ref document: 19900517 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19910221 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19910901 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19911101 |