EP0203866B1 - Die for hot extrusion - Google Patents
Die for hot extrusion Download PDFInfo
- Publication number
- EP0203866B1 EP0203866B1 EP86401116A EP86401116A EP0203866B1 EP 0203866 B1 EP0203866 B1 EP 0203866B1 EP 86401116 A EP86401116 A EP 86401116A EP 86401116 A EP86401116 A EP 86401116A EP 0203866 B1 EP0203866 B1 EP 0203866B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- hoop
- drawplate
- support
- spinning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001192 hot extrusion Methods 0.000 title 1
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 6
- 229910010293 ceramic material Inorganic materials 0.000 claims description 5
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 229910000601 superalloy Inorganic materials 0.000 claims description 3
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000003870 refractory metal Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims 2
- 239000011162 core material Substances 0.000 description 50
- 238000009987 spinning Methods 0.000 description 41
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 229910000990 Ni alloy Inorganic materials 0.000 description 9
- 229910000531 Co alloy Inorganic materials 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000035939 shock Effects 0.000 description 5
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 210000004907 gland Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910000753 refractory alloy Inorganic materials 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C25/00—Profiling tools for metal extruding
- B21C25/02—Dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C25/00—Profiling tools for metal extruding
- B21C25/02—Dies
- B21C25/025—Selection of materials therefor
Definitions
- the subject of the present invention is a die which can be used in particular for hot spinning or hot coupling of profiles made of nickel, cobalt or titanium alloy. Such profiles can be used in particular in aircraft reactors.
- Hot spinning processes are widely used processes for forming metals or alloys such as nickel or cobalt alloys.
- the temperatures to be used are generally high, of the order of 1000 to 1350 ° C; it is therefore necessary to have dies having good mechanical characteristics at these temperatures; moreover, it is advantageous to be able to use the same die for several spinning operations while respecting the dimensions to be obtained with very small tolerances.
- the dies used are generally constituted by a core hooped in a frame, the core being for example made of treated alloy steel.
- Such dies may be suitable for obtaining products of round section, but in the case where it is desired to obtain profiles of complex shape made of refractory alloy, the alloy steel dies used until now do not allow power make several spinning in good conditions.
- FIG. 1 there is shown in vertical section, a die according to the prior art.
- This die is constituted by a core (1) hooped in a frame (3).
- the core (1) partially defines, with the mount (3) the spinning input cone A, the core then delimits the working cone B then the cylindrical seat C and the mount finally delimits the outlet channel D of the Faculty.
- the outer shape of the frame in the upper part corresponds to that of the wiring container used which, in the case of this figure, is conical.
- Such systems are not capable of withstanding the high temperatures (of the order of 1150 to 1250 ° C.) and the high pressures, around 1300 MPa, necessary for shaping the alloys of nickel or cobalt refractory.
- the core (1) is in abutment on the frame (3) and the shrinking stress is limited to the clamping effort of the container, but the spinning effort is opposed to the clamping effort. Therefore, the core hardly resists spinning.
- the upper end (1a) of the core in the inlet cone of the die cools rapidly while the zone (1b) embedded in the frame constitutes a hot zone. As a result, there are ruptures in the die due to thermal shock.
- French patent FR-A-2 497 126 is another type of die suitable in particular for spinning copper and aluminum alloys.
- This die also includes an attached core embedded in a frame, but the frame is formed of two elements which are arranged relative to each other with a certain clearance.
- such an arrangement does not allow to obtain the resistance at high pressures and it is not suitable for the spinning and co-spinning of nickel, cobalt or titanium alloys.
- the present invention specifically relates to a spinning die which overcomes the drawbacks of the dies of the prior art, while allowing the production of profiles of nickel alloy, cobalt or titanium of complex shape.
- the assembly system of the hoop and the support is constituted by screws screwed into said hoop but capable of sliding in said support.
- said core is disposed in said hoop, so as to provide, between said hoop and the face of the core surrounded by said hoop, a slight clearance which is filled during the first spinning operation.
- a frame made up of two parts capable of subjecting the core to an isostatic stress during the spinning operation, makes it possible to obtain the desired resistance to the conditions of elevated temperature and pressure works for this operation.
- the use of a frustoconical nucleus makes it possible to prevent a rupture of the nucleus occurring under the action of thermal shock since the tip of the cone is eliminated, while keeping the continuity of the working angle.
- the die of the invention can be used for spinning alloys which are difficult to spin, such as nickel, cobalt or titanium alloys, since the inlet of the die has the shape of a cone. Likewise, it can be used for cofiling at high temperatures erasure of billets and for hydrostatic spinning. For these applications, the die inlet cone preferably defines an angle much less than 180 ° , for example from 60 to 90 ° C or even less than 60 ° .
- the sector of the invention has many advantages over the sectors of the prior art.
- the core can be made of alloys sensitive to thermal shock, but resistant to friction at high temperature.
- the core can also be made of ceramic materials with a very low coefficient of expansion, because the application of an isostatic stress during spinning makes the ceramic materials less fragile.
- the use of such refractory materials is advantageous because it is thus possible to preheat the die at relatively high temperatures, for example 500-600 ° C., and to facilitate the spinning operation by avoiding thermal shock, at the start of spinning, between the billet and the tools.
- alloys resistant to high temperatures which can be used for the production of the core, include superalloys based on cobalt or molybdenum.
- the core can also be made of ceramic material.
- the ceramics which can be used can be carbides or refractory oxides, for example carbides of silicon, chromium or tungsten. Refractory oxides are preferably used, such as stabilized or not stabilized zirconia. The use of such ceramic cores is interesting because they are not very subject to dimensional variations and do not require recalibration.
- the hoop and the support are generally made of materials less fragile to thermal shock than the core, and having mechanical characteristics superior to those of the core but at lower temperatures.
- materials which can be used mention may be made of treated alloy steels, molybdenum alloys, titanium alloys and refractory metals with a high melting point.
- the hoop and the support are made of the same material, different materials can be used for the hoop and the support provided of course that they are compatible with each other and allow the core to be subjected to isostatic stress during the spinning.
- the dies of the invention can be used for different spinning operations.
- they are particularly suitable for semi-hydrostatic spinning of nickel, cobalt or titanium alloys, which it is often necessary to have in a sheath during the spinning operation.
- the nickel alloy billet is jacketed by a mild steel tube calibrated by stretching and a mild steel plug is welded to one side of the tube.
- this plug which is arranged at the front of the billet makes it possible to attenuate the rapid cooling of the billet in contact with the tools.
- the billets are heated so that their temperature is uniform and the container and the die are heated to a temperature of at least 350 ° C.
- the spinning operation is then started using a feed speed of the gland of approximately 3 m / min, which makes it possible to obtain products having a suitable geometry over long lengths while reducing the wear of the dies, then the mild steel sheath is eliminated by pickling in a gain of nitric acid.
- the use of the dies of the invention allows parts of very precise dimensions to be obtained in this process without causing wear on the die.
- the die comprises a core (11) hooped by a frame comprising a first part or hoop (13) and a second part or support (14).
- the support (14) and the hoop (13) are connected by a system of screws (15) making it possible to provide a clearance between them (16).
- the assembly constituted by the core (11 1), the hoop (13) and the support (14) is mounted in the spinning press, partly in the container (17) and the external shape of the hoop (13) corresponds to that of the spinning container. Also, in the case of this example, its external surface is frustoconical like the lower part of the container (17).
- the core (11) has the shape of a straight truncated cone, provided with an axial channel which delimits at least the working cone B and the cylindrical surface C of the die. It is surrounded on its frustoconical external surface and on its upper face which corresponds to the small base of the truncated cone by the hoop (13) which at least partially delimits the inlet cone A of the die whose angle of aperture a is less than 180 ° .
- a slight clearance (18) is provided during the assembly of the parts between the face of the core which corresponds to the small base of the truncated cone and the hoop (13), and this clearance is such that it is filled in during the first operation of spinning, in order to subject the core to a prestress.
- This clearance depends in particular on the expansion coefficients of the hoop and the core. Generally, clearances of 0.5 to 1 mm are sufficient.
- the core (11) is in contact with the support (14) which is also pierced with a channel constituting the outlet D of the sector. This channel has the same profile as channel C of the sector, but with a slightly larger opening.
- This support (14) has an external shape such that it is partially embedded in the hoop (13) and that it can be assembled with the latter while providing clearance (16) which is such that, during the spinning operation, the support (14) always exerts pressure on the face of the core (11) which corresponds to the large base of the truncated cone.
- the assembly system between the two parts consists of screws (19) which are screwed into the hoop (13), but can slide in the support (14). Such an assembly makes it possible to obtain, during the spinning operation, an isostatic stress on the core (11).
- the upper face of the core (11) is subjected to the spinning pressure
- the outer frustoconical surface of the core is subjected to pressure forces generated by the container in the hoop (13)
- the underside of the core is subjected to the pressure generated by the part (14)
- the inner surface of the core (11) is subjected to the action of spinning forces. In this way, an isostatic stress is obtained on the core (11), which leads to good mechanical characteristics.
- the clearance (16) formed between the hoop (13) and the support (14) depends, in particular, on the nature of the materials used for the production of the hoop, the support and the core.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Forging (AREA)
- Press Drives And Press Lines (AREA)
- Press-Shaping Or Shaping Using Conveyers (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Extrusion Of Metal (AREA)
Description
La présente invention a pour objet une filière utilisable notamment pour le filage à chaud ou le couplage à chaud de profilés en alliage de nickel, de cobalt ou de titane. De tels profilés peuvent être utilisés en particulier dans les réacteurs d'avion.The subject of the present invention is a die which can be used in particular for hot spinning or hot coupling of profiles made of nickel, cobalt or titanium alloy. Such profiles can be used in particular in aircraft reactors.
Les procédés de filage à chaud sont des procédés largement utilisés pour la mise en forme de métaux ou d'alliages tels que les alliages de nickel ou de cobalt. Dans le cas de ces alliages, les températures à mettre en oeuvre sont généralement élevées, de l'ordre de 1000 à 1350°C ; il est donc nécessaire de disposer de filières présentant de bonnes caractéristiques mécaniques à ces températures ; par ailleurs, il est intéressant de pouvoir utiliser la même filière pour plusieurs filages en respectant les cotes à obtenir avec des tolérances très faibles.Hot spinning processes are widely used processes for forming metals or alloys such as nickel or cobalt alloys. In the case of these alloys, the temperatures to be used are generally high, of the order of 1000 to 1350 ° C; it is therefore necessary to have dies having good mechanical characteristics at these temperatures; moreover, it is advantageous to be able to use the same die for several spinning operations while respecting the dimensions to be obtained with very small tolerances.
Les filières utilisées sont généralement constituées par un noyau fretté dans une monture, le noyau étant par exemple réalisé en acier allié traité. De telles filières peuvent convenir pour l'obtention de produits de section ronde, mais dans le cas où l'on désire obtenir des profilés de forme complexe en alliage réfractaire, les filières en acier allié utilisées jusqu'à présent, ne permettent pas de pouvoir réaliser plusieurs filages dans de bonnes conditions.The dies used are generally constituted by a core hooped in a frame, the core being for example made of treated alloy steel. Such dies may be suitable for obtaining products of round section, but in the case where it is desired to obtain profiles of complex shape made of refractory alloy, the alloy steel dies used until now do not allow power make several spinning in good conditions.
Sur la figure 1, on a représenté en coupe verticale, une filière selon l'art antérieur. Cette filière est constituée par un noyau (1) fretté dans une monture (3). Le noyau (1) délimite en partie, avec la monture (3) le cône d'entrée de filage A, le noyau délimite ensuite le cône de travail B puis la portée cylindrique C et la monture délimite enfin le canal de sortie D de la filière. La forme extérieure de la monture en partie haute correspond à celle du conteneur de filage utilisé qui, dans le cas de cette figure, est conique.In Figure 1, there is shown in vertical section, a die according to the prior art. This die is constituted by a core (1) hooped in a frame (3). The core (1) partially defines, with the mount (3) the spinning input cone A, the core then delimits the working cone B then the cylindrical seat C and the mount finally delimits the outlet channel D of the Faculty. The outer shape of the frame in the upper part corresponds to that of the wiring container used which, in the case of this figure, is conical.
De telles filières ne sont pas capables de résister aux hautes températures (de l'ordre de 1150 à 1250°C) et aux fortes pressions, environ 1300 MPa, nécessaires pour mettre en forme les alliages de nickel ou de cobalt réfractaires. En effet, lors de l'opération de filage, le noyau (1) est en butée sur la monture (3) et la contrainte de frettage se limite à l'effort de bridage du conteneur, mais l'effort de filage s'oppose à l'effort de bridage. De ce fait, le noyau résiste difficilement au filage. Par ailleurs, l'extrémité supérieure (1a) du noyau dans le cône d'entrée de la filière se refroidit rapidement alors que la zone (1b) encastrée dans la monture constitue une zone chaude. De ce fait, il se produit des ruptures dans la filière dues au choc thermique.Such systems are not capable of withstanding the high temperatures (of the order of 1150 to 1250 ° C.) and the high pressures, around 1300 MPa, necessary for shaping the alloys of nickel or cobalt refractory. Indeed, during the spinning operation, the core (1) is in abutment on the frame (3) and the shrinking stress is limited to the clamping effort of the container, but the spinning effort is opposed to the clamping effort. Therefore, the core hardly resists spinning. Furthermore, the upper end (1a) of the core in the inlet cone of the die cools rapidly while the zone (1b) embedded in the frame constitutes a hot zone. As a result, there are ruptures in the die due to thermal shock.
On connaît aussi par le brevet français FR-A- 2 497 126 un autre type de filière adaptée notamment au filage d'alliages de cuivre et d'aluminium. Cette filière comprend également un noyau rapporté enchâssé dans une monture, mais la monture est formée de deux éléments qui sont disposés l'un par rapport à l'autre avec un certain jeu. Cependant, une telle disposition ne permet pas d'obtenir la résistance aux fortes pressions et elle ne convient pas pour le filage et le cofilage d'alliages de nickel, de cobalt ou de titane.Also known from French patent FR-A-2 497 126 is another type of die suitable in particular for spinning copper and aluminum alloys. This die also includes an attached core embedded in a frame, but the frame is formed of two elements which are arranged relative to each other with a certain clearance. However, such an arrangement does not allow to obtain the resistance at high pressures and it is not suitable for the spinning and co-spinning of nickel, cobalt or titanium alloys.
La présente invention a précisément pour objet une filière de filage qui pallie les inconvénients des filières de l'art antérieur, tout en permettant la réalisation de profilés en alliage de nickel, de cobalt ou de titane de forme complexe.The present invention specifically relates to a spinning die which overcomes the drawbacks of the dies of the prior art, while allowing the production of profiles of nickel alloy, cobalt or titanium of complex shape.
La filière, selon l'invention, qui comprend un noyau central fretté dans une monture et qui est percée d'un canal axial délimitant successivement, un cône d'entrée, un cône de travail, une portée cylindrique et une sortie de filière, se caractérise en ce que ledit noyau (11) a la forme d'un tronc de cône droit, comportant un canal axial délimitant au moins le cône de travail B et la portée cylindrique C de la filière, et en ce que ladite monture est formée de deux pièces 13, 14 constituées respectivement:
- - par une
frette 13 délimitant au moins en partie le cône d'entrée A de la filière et entourant, d'une part, la surface externe tronconique dudit noyau, et d'autre part, la face dudit noyau correspondant à la petite base du tronc de cône, et - - par un
support 14 en contact avec la face dunoyau 11 qui correspond à la grande base du tronc de cône, leditsupport 14 étant assemblé à laditefrette 13 par unsystème 15 permettant de ménager entre ladite frette et ledit support un jeu suffisant pour que, lors de l'opération de filage, le support exerce toujours une pression sur la face dudit noyau qui correspond à la grande base du tronc de cône.
- - By a
hoop 13 delimiting at least partially the inlet cone A of the die and surrounding, on the one hand, the frustoconical external surface of said core, and on the other hand, the face of said core corresponding to the small base of the trunk of cone, and - - By a
support 14 in contact with the face of thecore 11 which corresponds to the large base of the truncated cone, saidsupport 14 being assembled to saidhoop 13 by asystem 15 making it possible to provide between said hoop and said support sufficient play for that, during the spinning operation, the support always exerts pressure on the face of said core which corresponds to the large base of the truncated cone.
Avantageusement, le système d'assemblage de la frette et du support est constitué par des vis vissées dans ladite frette mais capables de coulisser dans ledit support.Advantageously, the assembly system of the hoop and the support is constituted by screws screwed into said hoop but capable of sliding in said support.
Généralement, ledit noyau est disposé dans ladite frette, de façon à ménager entre ladite frette et la face du noyau entourée par ladite frette, un léger jeu qui est comblé lors de la première opération de filage.Generally, said core is disposed in said hoop, so as to provide, between said hoop and the face of the core surrounded by said hoop, a slight clearance which is filled during the first spinning operation.
L'utilisation, selon l'invention, d'une monture constituée de deux pièces capables de soumettre le noyau à une contrainte isostatique pendant l'opération de filage, permet d'obtenir la résistance voulue aux conditions de température et de pression élevées mises en oeuvre pour cette opération. Par ailleurs, l'utilisation d'un noyau de forme tronconique permet d'éviter qu'il ne se produise une rupture du noyau sous l'action des chocs thermiques car on élimine la pointe du cône, tout en gardant la continuité de l'angle de travail.The use, according to the invention, of a frame made up of two parts capable of subjecting the core to an isostatic stress during the spinning operation, makes it possible to obtain the desired resistance to the conditions of elevated temperature and pressure works for this operation. In addition, the use of a frustoconical nucleus makes it possible to prevent a rupture of the nucleus occurring under the action of thermal shock since the tip of the cone is eliminated, while keeping the continuity of the working angle.
De plus, l'utilisation d'une frette formant au moins en partie le cône d'entrée de la filière, qui entoure, d'une part, la surface externe tronconique du noyau et, d'autre part, la face dudit noyau qui correspond à la petite base du tronc de cône, permet d'obtenir une précontrainte du noyau grâce à l'action de la traverse du conteneur de filage. En revanche, dans le cas de la filière décrite dans le brevet français FR-A 2 497 126, on ne peut obtenir cette contrainte isostatique car la monture ne recouvre pas en partie le noyau rapporté.In addition, the use of a hoop at least partially forming the inlet cone of the die, which surrounds, on the one hand, the frustoconical external surface of the core and, on the other hand, the face of said core which corresponds to the small base of the truncated cone, makes it possible to obtain a prestressing of the core thanks to the action of the cross member of the spinning container. On the other hand, in the case of the die described in French patent FR-A 2 497 126, this isostatic stress cannot be obtained because the frame does not partially cover the added core.
Enfin, la filière de l'invention peut être utilisée pour le filage d'alliages difficiles à filer tels que les alliages de nickel, de cobalt ou de titane, car l'entrée de la filière présente la forme d'un cône. De même, on peut l'utiliser pour le cofilage à haute température de billettes et pour le filage hydrostatique. Pour ces applications, le cône d'entrée de la filière définit de préférence un angle très inférieur à 180°, par exemple de 60 à 90°C ou même inférieur à 60°.Finally, the die of the invention can be used for spinning alloys which are difficult to spin, such as nickel, cobalt or titanium alloys, since the inlet of the die has the shape of a cone. Likewise, it can be used for cofiling at high temperatures erasure of billets and for hydrostatic spinning. For these applications, the die inlet cone preferably defines an angle much less than 180 ° , for example from 60 to 90 ° C or even less than 60 ° .
Ainsi, la filière de l'invention présente de nombreux avantages par rapport aux filières de l'art antérieur.Thus, the sector of the invention has many advantages over the sectors of the prior art.
Grâce à cet agencement de la monture, on peut utiliser pour le noyau des matériaux ayant des coefficients de dilatation très variables et très différents de celui de la frette et du support. Ainsi, on peut réaliser le noyau en alliages sensibles au choc thermique, mais résistant aux frottements à haute température. On peut aussi réaliser le noyau en matériaux céramiques à très faible coefficient de dilatation, car l'application d'une contrainte isostatique pendant le filage rend les matériaux céramiques moins fragiles. L'utilisation de tels matériaux réfractaires est intéressante car il est ainsi possible de préchauffer la filière à des températures relativement élevées, par exemple de 500-600°C, et de faciliter l'opération de filage en évitant les chocs thermiques, en début de filage, entre la billette et les outillages.Thanks to this arrangement of the frame, it is possible to use for the core materials having very variable coefficients of expansion and very different from that of the hoop and the support. Thus, the core can be made of alloys sensitive to thermal shock, but resistant to friction at high temperature. The core can also be made of ceramic materials with a very low coefficient of expansion, because the application of an isostatic stress during spinning makes the ceramic materials less fragile. The use of such refractory materials is advantageous because it is thus possible to preheat the die at relatively high temperatures, for example 500-600 ° C., and to facilitate the spinning operation by avoiding thermal shock, at the start of spinning, between the billet and the tools.
A titre d'exemples d'alliages résistant à des températures élevées, susceptibles d'être utilisés pour la réalisation du noyau, on peut citer les super-alliages à base de cobalt ou de molybdène.Examples of alloys resistant to high temperatures, which can be used for the production of the core, include superalloys based on cobalt or molybdenum.
Sous l'effet de la température et de la pression de filage, ces noyaux en super-alliage se déforment légèrement par rétrécissement, mais il est facile d'assurer des cotes précises en recalibrant le profil du canal axial du noyau par électro-érosion ; suivant les tolérances que l'on souhaite obtenir, ce recalibrage peut être effectué après 4 à 8 filages consécutifs.Under the effect of the temperature and the spinning pressure, these superalloy cores slightly deform by shrinking, but it is easy to ensure precise dimensions by recalibrating the profile of the axial channel of the core by electro-erosion; according to the tolerances that one wishes to obtain, this recalibration can be carried out after 4 to 8 consecutive spinning operations.
Comme on l'a vu précédemment, on peut aussi réaliser le noyau en matériau céramique. Les céramiques susceptibles d'être utilisées peuvent être des carbures ou des oxydes réfractaires, par exemple des carbures de silicium, de chrome ou de tungstène. On utilise de préférence les oxydes réfractaires, tels que la zircone stabilisée ou non. L'utilisation de tels noyaux céramiques est intéressante car ils sont peu sujets aux variations dimensionnelles et ne nécessitent pas de recalibrage.As seen above, the core can also be made of ceramic material. The ceramics which can be used can be carbides or refractory oxides, for example carbides of silicon, chromium or tungsten. Refractory oxides are preferably used, such as stabilized or not stabilized zirconia. The use of such ceramic cores is interesting because they are not very subject to dimensional variations and do not require recalibration.
La frette et le support sont généralement réalisés en matériaux moins fragiles au choc thermique que le noyau, et ayant des caractéristiques mécaniques supérieures à celles du noyau mais à des températures plus basses. A titre d'exemple de matériaux susceptibles d'être utilisés, on peut citer les aciers alliés traités, les alliages au molybdène, les alliages au titane et les métaux réfractaires à haut point de fusion.The hoop and the support are generally made of materials less fragile to thermal shock than the core, and having mechanical characteristics superior to those of the core but at lower temperatures. By way of example of materials which can be used, mention may be made of treated alloy steels, molybdenum alloys, titanium alloys and refractory metals with a high melting point.
Bien que généralement la frette et le support soient réalisés dans le même matériau, on peut utiliser des matériaux différents pour la frette et le support à condition bien entendu qu'ils soient compatibles entre eux et permettent de soumettre le noyau à une contrainte isostatique pendant le filage.Although generally the hoop and the support are made of the same material, different materials can be used for the hoop and the support provided of course that they are compatible with each other and allow the core to be subjected to isostatic stress during the spinning.
En raison de leur structure particulière, les filières de l'invention peuvent être utilisées pour différentes opérations de filage. Ainsi, elles conviennent particulièrement pour le filage semi-hydrostatique d'alliages de nickel, de cobalt ou de titane, qu'il est souvent nécessaire de disposer dans une gaine lors de l'opération de filage. Dans ce cas, la billette d'alliage de nickel est chemisée par un tube en acier doux calibré par étirage et un bouchon en acier doux est soudé d'un côté du tube. Au cours du filage, ce bouchon qui est disposé à l'avant de la billette permet d'atténuer le refroidissement rapide de la billette au contact des outillages. Les billettes sont chauffées de façon à ce que leur température soit homogène et le conteneur et la filière sont chauffés à une température d'au moins 350°C. On commence alors l'opération de filage en utilisant une vitesse d'avance du fouloir de 3 m/min environ, ce qui permet d'obtenir des produits ayant une géométrie convenable sur de grandes longueurs tout en diminuant l'usure des filières, puis on élimine la gaine en acier doux par décapage dans un gain d'acide nitrique. L'utilisation des filières de l'invention permet d'obtenir dans ce procédé des pièces de dimensions très précises sans provoquer une usure de la filière.Because of their particular structure, the dies of the invention can be used for different spinning operations. Thus, they are particularly suitable for semi-hydrostatic spinning of nickel, cobalt or titanium alloys, which it is often necessary to have in a sheath during the spinning operation. In this case, the nickel alloy billet is jacketed by a mild steel tube calibrated by stretching and a mild steel plug is welded to one side of the tube. During spinning, this plug which is arranged at the front of the billet makes it possible to attenuate the rapid cooling of the billet in contact with the tools. The billets are heated so that their temperature is uniform and the container and the die are heated to a temperature of at least 350 ° C. The spinning operation is then started using a feed speed of the gland of approximately 3 m / min, which makes it possible to obtain products having a suitable geometry over long lengths while reducing the wear of the dies, then the mild steel sheath is eliminated by pickling in a gain of nitric acid. The use of the dies of the invention allows parts of very precise dimensions to be obtained in this process without causing wear on the die.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture de la description qui suit, donnée bien entendu à titre illustratif et non limitatif, en référence au dessin annexé, sur lequel :
- - la figure 1 déjà décrite illustre une filière de l'art antérieur, et
- - la figure 2 illustre en coupe verticale une filière selon l'invention.
- FIG. 1, already described, illustrates a sector of the prior art, and
- - Figure 2 illustrates in vertical section a die according to the invention.
Sur cette figure 2, on voit que la filière comprend un noyau (11) fretté par une monture comprenant une première pièce ou frette (13) et une deuxième pièce ou support (14). Le support (14) et la frette (13) sont reliés par un système de vis (15) permettant de ménager entre eux un jeu (16). L'ensemble constitué par le noyau (11 1),Ia frette (13) et le support (14) est monté dans la presse de filage, en partie dans le conteneur (17) et la forme extérieure de la frette (13) correspond à celle du conteneur de filage. Aussi, dans le cas de cet exemple, sa surface externe est tronconique comme la partie inférieure du conteneur (17). Le noyau (11) a la forme d'un tronc de cône droit, muni d'un canal axial qui délimite au moins le cône de travail B et la portée cylindrique C de la filière. Il est entouré sur sa surface externe tronconique et sur sa face supérieure qui correspond à la petite base du tronc de cône par la frette (13) qui délimite au moins en partie le cône d'entrée A de la filière dont l'angle d'ouverture a est inférieur à 180°. Un léger jeu (18) est ménagé lors du montage des pièces entre la face du noyau qui correspond à la petite base du tronc de cône et la frette (13), et ce jeu est tel qu'il soit comblé lors de la première opération de filage, afin de soumettre le noyau à une précontrainte. Ce jeu dépend en particulier des coefficients de dilatation de la frette et du noyau. Généralement, des jeux de 0,5 à 1 mm sont suffisants. A sa partie inférieure, soit sur la face qui correspond à la grande base du tronc de cône, le noyau (11) est en contact avec le support (14) qui est percé, lui aussi, d'un canal constituant la sortie D de la filière. Ce canal a le même profil que le canal C de la filière, mais avec une ouverture légérement plus grande. Ce support (14) a une forme externe telle, qu'il s'encastre, en partie, dans la frette (13) et qu'il peut être assemblé avec celle-ci en ménageant le jeu (16) qui est tel que, lors de l'opération de filage, le support (14) exerce toujours une pression sur la face du noyau (11) qui correspond à la grande base du tronc de cône. Le système d'assemblage entre les deux pièces est constitué par des vis (19) qui sont vissées dans la frette (13), mais peuvent coulisser dans le support (14). Un tel montage permet d'obtenir, lors de l'opération de filage, une contrainte isostatique sur le noyau (11).In this FIG. 2, it can be seen that the die comprises a core (11) hooped by a frame comprising a first part or hoop (13) and a second part or support (14). The support (14) and the hoop (13) are connected by a system of screws (15) making it possible to provide a clearance between them (16). The assembly constituted by the core (11 1), the hoop (13) and the support (14) is mounted in the spinning press, partly in the container (17) and the external shape of the hoop (13) corresponds to that of the spinning container. Also, in the case of this example, its external surface is frustoconical like the lower part of the container (17). The core (11) has the shape of a straight truncated cone, provided with an axial channel which delimits at least the working cone B and the cylindrical surface C of the die. It is surrounded on its frustoconical external surface and on its upper face which corresponds to the small base of the truncated cone by the hoop (13) which at least partially delimits the inlet cone A of the die whose angle of aperture a is less than 180 ° . A slight clearance (18) is provided during the assembly of the parts between the face of the core which corresponds to the small base of the truncated cone and the hoop (13), and this clearance is such that it is filled in during the first operation of spinning, in order to subject the core to a prestress. This clearance depends in particular on the expansion coefficients of the hoop and the core. Generally, clearances of 0.5 to 1 mm are sufficient. At its lower part, ie on the face which corresponds to the large base of the truncated cone, the core (11) is in contact with the support (14) which is also pierced with a channel constituting the outlet D of the sector. This channel has the same profile as channel C of the sector, but with a slightly larger opening. This support (14) has an external shape such that it is partially embedded in the hoop (13) and that it can be assembled with the latter while providing clearance (16) which is such that, during the spinning operation, the support (14) always exerts pressure on the face of the core (11) which corresponds to the large base of the truncated cone. The assembly system between the two parts consists of screws (19) which are screwed into the hoop (13), but can slide in the support (14). Such an assembly makes it possible to obtain, during the spinning operation, an isostatic stress on the core (11).
En effet, lorsque l'on applique la pression de filage P, la face supérieure du noyau (11) est soumise à la pression de filage, la surface tronconique externe du noyau est soumise à des forces de pression engendrées par le conteneur dans la frette (13), et la face inférieure du noyau est soumise à la pression engendrée par la pièce (14), en raison du jeu (16) ménagé entre la frette (13) et le support (14). La surface interne du noyau (11) est soumise à l'action des forces de filage. De la sorte, on obtient une contrainte isostatique sur le noyau (11), ce qui conduit à de bonnes caractéristiques mécaniques. Le jeu (16) ménagé entre la frette (13) et le support (14) dépend, en particulier, de la nature des matériaux utilisés pour la réalisation de la frette, du support et du noyau. Généralement, on réalise la frette et le support dans le même matériau, mais on pourrait, tout aussi bien, utiliser des matériaux différents. L'essentiel est que le jeu prévu au montage soit tel que lors de l'application de la pression de filage, à la température de filage, il reste toujours un léger jeu entre les deux pièces pour que le support (14) applique une pression dans le sens des flèches F sur la face inférieure du noyau (11). Des jeux de 5 à 10 mm au montage sont généralement suffisants.In fact, when the spinning pressure P is applied, the upper face of the core (11) is subjected to the spinning pressure, the outer frustoconical surface of the core is subjected to pressure forces generated by the container in the hoop (13), and the underside of the core is subjected to the pressure generated by the part (14), due to the clearance (16) formed between the hoop (13) and the support (14). The inner surface of the core (11) is subjected to the action of spinning forces. In this way, an isostatic stress is obtained on the core (11), which leads to good mechanical characteristics. The clearance (16) formed between the hoop (13) and the support (14) depends, in particular, on the nature of the materials used for the production of the hoop, the support and the core. Generally, we realize the hoop and the support in the same material, but we could, just as well, use different materials. The main thing is that the clearance provided during assembly is such that when the spinning pressure is applied, at the spinning temperature, there is always a slight clearance between the two parts so that the support (14) applies pressure. in the direction of the arrows F on the underside of the core (11). Clearances of 5 to 10 mm during assembly are generally sufficient.
A titre d'exemple, des filières de ce type, dont le noyau était réalisé en alliage au cobalt et la frette et le support en acier allié traité, ont permis de réaliser le filage de profilés en alliage de nickel dans les conditions suivantes :
- - chauffage de la billette : 1150°C,
- - pression de filage : 1300 MPa,
- - préchauffage de la filière : 500°C,
- - vitesse d'avance du fouloir : 3 m.min -1.
- - heating of the billet: 1150 ° C,
- - spinning pressure: 1300 MPa,
- - preheating of the die: 500 ° C,
- - feeder feed speed: 3 m.min -1.
On a pu obtenir avec de telles filières des produits ayant une géométrie convenable sur de grandes longueurs, sans que la filière soit endommagée.It has been possible to obtain with such dies products having a suitable geometry over long lengths, without the die being damaged.
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8508225 | 1985-05-31 | ||
FR8508225A FR2582547B1 (en) | 1985-05-31 | 1985-05-31 | DIE FOR HOT SPINNING |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0203866A1 EP0203866A1 (en) | 1986-12-03 |
EP0203866B1 true EP0203866B1 (en) | 1989-12-20 |
Family
ID=9319742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86401116A Expired EP0203866B1 (en) | 1985-05-31 | 1986-05-27 | Die for hot extrusion |
Country Status (5)
Country | Link |
---|---|
US (1) | US4724699A (en) |
EP (1) | EP0203866B1 (en) |
DE (1) | DE3667617D1 (en) |
ES (1) | ES8704767A1 (en) |
FR (1) | FR2582547B1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5957005A (en) * | 1997-10-14 | 1999-09-28 | General Electric Company | Wire drawing die with non-cylindrical interface configuration for reducing stresses |
DE10215056A1 (en) * | 2002-04-05 | 2003-10-30 | Sms Eumuco Gmbh | Extrusion and tube press |
CN100386466C (en) * | 2006-03-22 | 2008-05-07 | 西安建筑科技大学 | Method and device for preparing fine-grained materials by cyclic extrusion with continuously variable cross-section |
CN102825084B (en) * | 2011-12-09 | 2015-07-15 | 洛阳轴研科技股份有限公司 | Cold extrusion device, and female die and male die thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB370181A (en) * | 1931-03-31 | 1932-04-07 | James Robert Garner | Improvements in or relating to dies for use in the cupping or push bench process of making metal tubes |
GB549407A (en) * | 1941-08-26 | 1942-11-19 | Frederick Charles Jearum | Improvements in the setting of diamond or sintered or fused carbide or like hard dies |
GB565080A (en) * | 1943-04-21 | 1944-10-25 | A C Wickman Ltd | Improvements relating to holders for dies used in wire drawing, extrusion and like processes |
FR1413597A (en) * | 1963-11-14 | 1965-10-08 | Zirconium Corp Of America | Zircon-magnesia composition, its manufacturing process and its applications |
FR1487972A (en) * | 1966-07-28 | 1967-07-07 | Mannesmann Ag | Hot heavy metal spinning die |
GB1160355A (en) * | 1967-01-26 | 1969-08-06 | Kabel Metallwerke Ghh | An Extrusion Die Assembly. |
DE1602395B1 (en) * | 1967-07-14 | 1970-10-08 | Wieland Werke Ag | Use of a composite material for the production of die inserts for dies for the extrusion of metallic materials |
AT294529B (en) * | 1970-02-02 | 1971-11-25 | Plansee Metallwerk | Extrusion die |
US3680354A (en) * | 1970-03-23 | 1972-08-01 | Allegheny Ludlum Steel | Die assembly |
SU664706A1 (en) * | 1977-07-05 | 1979-05-30 | Физико-технический институт АН Белорусской ССР | Die assembly for extrusion |
US4241625A (en) * | 1979-03-08 | 1980-12-30 | Fort Wayne Wire Die, Inc. | Method of making a wire drawing die |
US4270380A (en) * | 1979-05-25 | 1981-06-02 | Corning Glass Works | Metal shaping die assembly |
HU184404B (en) * | 1980-12-30 | 1984-08-28 | Vasipari Kutato Intezet | Inserted tool for metalworking metals first copper and aluminium alloys |
-
1985
- 1985-05-31 FR FR8508225A patent/FR2582547B1/en not_active Expired
-
1986
- 1986-05-22 US US06/865,777 patent/US4724699A/en not_active Expired - Fee Related
- 1986-05-27 DE DE8686401116T patent/DE3667617D1/en not_active Expired - Lifetime
- 1986-05-27 EP EP86401116A patent/EP0203866B1/en not_active Expired
- 1986-05-30 ES ES555556A patent/ES8704767A1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
US4724699A (en) | 1988-02-16 |
ES555556A0 (en) | 1987-04-16 |
FR2582547B1 (en) | 1988-12-02 |
ES8704767A1 (en) | 1987-04-16 |
DE3667617D1 (en) | 1990-01-25 |
FR2582547A1 (en) | 1986-12-05 |
EP0203866A1 (en) | 1986-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2691551B1 (en) | Method for manufacturing a part having a complex shape by flash sintering | |
EP1384539B1 (en) | Metal matrix composite blade and process for its manufacture | |
FR2707902A1 (en) | Process for manufacturing fiber reinforced reactor components | |
EP2552625A1 (en) | Method and device for manufacturing a bi-material ferrule and ferrule thus produced | |
FR3086566A1 (en) | PROCESS FOR MANUFACTURING COMPLEX SHAPE BY PRESSURE SINTERING FROM A PREFORM | |
WO2016189254A1 (en) | Method for manufacturing a tial blade of a turbine engine | |
FR3041889A1 (en) | ADDITIVE MANUFACTURING METHOD COMPRISING A HOT ISOSTATIC PRESSING STEP | |
FR2750980A1 (en) | BOTTOM OF DIE WITH REPORTED Nipples | |
EP0203866B1 (en) | Die for hot extrusion | |
FR2772467A1 (en) | LOADING DEVICE FOR SUPPORTING PARTS TO BE HEAT TREATED IN AN OVEN | |
CA2887335C (en) | Method for manufacturing at least one metal turbine engine part | |
FR3073760A1 (en) | Insert element and method of manufacture | |
FR2468424A1 (en) | MATRIX ASSEMBLY FOR FORGING OPERATION | |
EP2874975B1 (en) | Method for brazing parts made from a composite ceramic matrix material, with anchoring of the brazed joint | |
EP3331657B1 (en) | Method for producing a part consisting of a composite material | |
EP3812087B1 (en) | Method for manufacturing metal parts with complex shapes by diffusion welding | |
FR3036409A1 (en) | NICKEL-BASED METALLIC MATRIX COMPOSITE MATERIAL AND PROCESS FOR PRODUCING SUCH A COMPOSITE MATERIAL | |
EP3310527B1 (en) | Welding electrode and method of manufacturing a welding electrode | |
FR3009800A1 (en) | PROCESS FOR MANUFACTURING A WORKPIECE BY WELDING PARTS | |
FR2956601A1 (en) | Method for reinforcing mechanical characteristics of wall delimiting bore of disk of turbojet engine by plasticization, involves retracting rod from outlet position toward inserted position in actuator such that tool traverses disk bore | |
FR3147726A1 (en) | METHOD FOR MANUFACTURING A PART AND PART THUS MANUFACTURED | |
FR2564536A1 (en) | Method for assembling two coaxial parts of revolution. | |
WO1993013884A1 (en) | Method and device for hot forming of metals or metal alloys | |
WO2003080369A1 (en) | Spindle with plate, plate for same and production method thereof | |
FR2462216A1 (en) | Enlarging bores of thick walled tubular articles - by mandrel composed of profiled collar mounted on tapered shaft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19870506 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE |
|
17Q | First examination report despatched |
Effective date: 19880624 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 3667617 Country of ref document: DE Date of ref document: 19900125 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: JULIUS & AUGUST ERBSLOEH GMBH & CO Effective date: 19900823 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: JULIUS & AUGUST ERBSLOEH GMBH & CO. |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19910804 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19930429 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930510 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930518 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19930524 Year of fee payment: 8 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930531 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940527 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19941201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940527 |
|
EUG | Se: european patent has lapsed |
Ref document number: 86401116.8 Effective date: 19941210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 86401116.8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050527 |