[go: up one dir, main page]

EP0201438B1 - Process for accurately regulating the low alumina content of an igneous electrolysis cell for aluminium production - Google Patents

Process for accurately regulating the low alumina content of an igneous electrolysis cell for aluminium production Download PDF

Info

Publication number
EP0201438B1
EP0201438B1 EP86420118A EP86420118A EP0201438B1 EP 0201438 B1 EP0201438 B1 EP 0201438B1 EP 86420118 A EP86420118 A EP 86420118A EP 86420118 A EP86420118 A EP 86420118A EP 0201438 B1 EP0201438 B1 EP 0201438B1
Authority
EP
European Patent Office
Prior art keywords
alumina
rate
electrolysis
cell
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86420118A
Other languages
German (de)
French (fr)
Other versions
EP0201438A1 (en
Inventor
Michel Leroy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Priority to AT86420118T priority Critical patent/ATE44165T1/en
Publication of EP0201438A1 publication Critical patent/EP0201438A1/en
Application granted granted Critical
Publication of EP0201438B1 publication Critical patent/EP0201438B1/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/20Automatic control or regulation of cells

Definitions

  • the present invention relates to a process for the precise regulation of a low alumina content in an igneous electrolysis tank for the production of aluminum according to the Hall-Héroult process, this regulation also having the aim of maintaining the Faraday yield at a level high, at least equal to 94%.
  • This parameter is generally the variation of the internal resistance, or, more exactly, of the internal pseudo-resistance which is equal to:
  • Eo being an image of the counter-electromotive force of the tank, the value of which is generally assumed to be 1.65 volts, U the voltage across the terminals of the tank and J the intensity passing through it.
  • the alumina concentration is fixed in the range of 2 to 8%.
  • the disadvantage of this process is that its sensitivity varies with the alumina content, which is precisely minimal in the interval used, from 3 to 5% of A1 2 0 3 (table p. 8).
  • the alumina content is also fixed in the range of 2 to 8% and, preferably, 4 to 6%.
  • the tank is fed for a predetermined time t with an amount of alumina higher than its theoretical consumption, until a predetermined alumina concentration is obtained (for example up to 7%), then the supply is switched to a rate equal to the theoretical consumption for a predetermined time t 2 , then the feeding is stopped until the appearance of the first symptoms of anode effect ("packaging"), and the feeding cycle is resumed at a rate which is greater than the theoretical consumption.
  • the alumina concentration varies, during the cycle, from 4.9 to 8% (example 1) or from 4.0 to 7% (example 2).
  • slope calculation is based on successive measurements of the internal resistance R;, at equal time intervals, on the evaluation of the slope dRi / dt of variation of R i as a function of time, and the comparison of R i on the one hand and of dRi / dt on the other hand, to set values, and on the modification of the rate of introduction of alumina, so as to reduce dRi / dt and R i at setpoint values.
  • the search for the optimal operating mode that is to say the search for the operating parameters of the electrolytic cells giving the best cost price, or the biggest profit margin for a given investment, has always been a permanent concern. for those skilled in the art.
  • the object of the invention is an improvement of the process for the precise regulation of a low alumina content in the electrolysis tank, making it possible to significantly improve the Faraday yield.
  • Energy consumption per tonne of aluminum produced can depend on the yield Faraday, F, and the voltage across a tank, U, in the form:
  • this optimal alumina content is very close to the minimum content below which appears the "anode effect", also called “packaging” or “polarization” , which results in a very sharp rise in the voltage across the cell and in the temperature of the electrolysis bath, and in the release in significant quantities of fluorinated products from the decomposition of the electrolysis bath.
  • the object of the invention is therefore to provide such a process for regulating the alumina content of the bath in the low content range, by the use of a synthetic parameter P which can be calculated simply from conventional measurements made on a tank.
  • electrolysis namely: the voltage at the terminals of each cell, the intensity traversing the file of cells and the rate of supply of alumina (in kg / hour for example).
  • CN being the nominal rate of supply of alumina and C- the rate of undernourishment, counted in kg of alumina per unit of time, Q (AI 2 0 3 ) being the quantity of alumina consumed by the tank in the same time unit and
  • the parameter P is evaluated from the internal pseudo-resistance of the tank, R;, itself defined by:
  • Eo is a standard value, in volts, of the dynamic counter-electromotive force of the tank, generally between 1.5 and 2.0 volts, and most often of the order of 1.65 to 1.75 volts
  • R i is then expressed in microohms;
  • D is the alumina content drift of the electrolysis bath, expressed in weight percent per hour
  • P is expressed by the formula: (P being expressed in microohms per second and per% weight per hour).
  • This initial period which generally lasts only a few minutes, corresponds to the end of dissolution of the excess alumina introduced during the overeating period and not immediately assimilated by the bath.
  • Another method is to add a period of a few minutes at nominal rate after overeating before going on to undereating.
  • the alumina content of the bath decreases all the faster the slower the feed rate, and, in parallel, the measured slope dR; / dt increases.
  • the alumina content drift, D, counted in% weight per hour, is then proportional to:
  • C- is the rate of undernourishment counted in kg of A1 2 0 3 introduced per second and C N is the nominal rate of feed (counted in the same units).
  • Any other coherent system of units can of course be used, for example the inverse of the time separating the introduction of 2 consecutive doses of alumina.
  • Q (Al 2 O 3 ) is the weight of alumina consumed per unit of time, by electrolysis.
  • Q (bl) is the weight of liquid bath, capable of dissolving alumina, contained in the crucible of the tank (for information, if the weight of liquid bath is measured in kg, of the order of 30 J where J is the electrolysis intensity counted in kA): note that the time constant for the melting or solidification of the bath at the slope is very large (generally of the order of several hours), this quantity only varies very slowly over time.
  • the targeted alumina content being close to the limit content triggering the appearance of a polarization of the tank, it is essential that after operation at nominal rate, the readjustment is done by preceding the search phase of the operating point (characterized by Po), during an under-timing, by a period of over-timing which allows s '' move away from this limit content before starting the search.
  • Po search phase of the operating point
  • the regulation method according to the invention can be used only during part of the operating time of the tank, and preferably when the tank is stable.
  • this parameter Po will be maintained between the limit values of 2/100 J and 10/100 J.
  • K I and K 2 The estimation of K I and K 2 can be done as follows:
  • the economic coefficient K I summarizes the economic conditions of the moment. It is substantially equal to the ratio of the sum of the fixed transformation costs (excluding alumina), including in particular the cost of energy and consumable carbon products, labor and depreciation, including financial costs, at cost Energy.
  • K I is approximately equal to: (an estimate of K 1 at ⁇ 20% is more than enough to get close enough to the economic optimum).
  • the "technical” coefficient K 2 summarizes the technological and physicochemical characteristics of the tank and can be evaluated as follows:
  • F is the Faraday yield of the tank, generally between 0.88 and 0.96 for these same properly conducted tanks
  • dF / d (AI 2 0 3 ) is the algebraic drift of the Faraday yield relative to the alumina content of the bath , counted as a% of Faraday per% of alumina, in the region of alumina contents between 1% and 4%, and preferably in the region of A1 2 0 3 contents between 1.5% and 3%.
  • this factor dF / d (Al 2 O 3 ) must be determined experimentally for each type of tank and for the various types of bath used (low acid baths, with less than 8% excess of AIF 3 , or very acid baths, with more than 8% excess of AIF 3 or with sub-additives such as LiF and MgF 2 ). Once determined, it no longer depends, as a first approximation, on economic conditions.
  • the invention was applied to a series of electrolysis cells operating at an intensity of 280 KA, at a voltage of 4.10 volts per cell and giving a Faraday yield of 95.0% for an average alumina content in the bath. electrolysis equal to 2.3%, previously regulated according to the method of our patent FR-2 487 386 already cited (process called "slope calculation").
  • the daily production of the series per tank was 2.145 kg / day, for an energy consumption of 12.860 kWh / ton.
  • the gain on the cost price was 20 F per tonne of aluminum produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cell Separators (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Weting (AREA)
  • Table Devices Or Equipment (AREA)

Abstract

A process is disclosed for accurately maintaining a low alumina content of between 1 and 4.5% in a cell for the production of aluminum by electrolysis in the Hall-Heroult process. According to the invention, a control parameter P=-1/D(dR1/dt), is determined, wherein D is the variation in the alumina content of the electrolytic bath in % weight per hour, R1 is the internal resistance of the cell, and t is the time. A series of operations is then carried out in a repeated cycle, starting with the cell being fed alumina at a nominal rate which is substantially equal to the quantity consumed by electrolysis. At periodic intervals, an over-supply of alumina is added in order to enrich the bath, and the over-supply is continued for a preset time during which dR1dt is negative. The feed rate is then reduced to less than the nominal feed rate, during which time dR1dt passes through zero to become positive and the regulation parameter P, the value of which tends to rise, is measured often. The successive values of P are compared with a required preset value Po. As soon as P equals Po, the feed rate is returned to the nominal feed rate and a new cycle is recommenced.

Description

Objet de l'inventionSubject of the invention

La présente invention concerne un procédé de régulation précise d'une faible teneur en alumine dans une cuve d'électrolyse ignée pour la production d'aluminium selon le procédé Hall-Héroult, cette régulation ayant également pour but de maintenir le rendement Faraday à un niveau élevé, au moins égal à 94 %.The present invention relates to a process for the precise regulation of a low alumina content in an igneous electrolysis tank for the production of aluminum according to the Hall-Héroult process, this regulation also having the aim of maintaining the Faraday yield at a level high, at least equal to 94%.

Expose de l'art anterieurExhibits prior art

Au cours des dernières années, on a progressivement automatisé le fonctionnement des cuves de production d'aluminium, tant pour en améliorer le bilan énergétique et la réguiarité de marche, que pour limiter les interventions humaines et améliorer le rendement de captage des effluents fluorés.In recent years, the operation of aluminum production tanks has been progressively automated, both to improve the energy balance and regularity of operation, as well as to limit human intervention and improve the capture efficiency of fluorinated effluents.

Un des facteurs essentiels, pour assurer la régularité de marche d'une cuve de production d'aluminium par électrolyse d'alumine dissoute dans la cryolithe fondue, est la cadence d'introduction de l'alumine dans le bain. Un défaut d'alumine provoque l'apparition de "l'effet anodique", ou "emballage" qui se traduit par une augmentation brutale de la tension aux bornes de la cuve, qui peut passer de 4 à 30 ou 40 volts, et qui se répercute sur l'ensemble de la série.One of the essential factors, to ensure the regularity of operation of an aluminum production tank by electrolysis of alumina dissolved in the molten cryolite, is the rate of introduction of the alumina into the bath. An alumina defect causes the appearance of the "anodic effect", or "packaging" which results in a sudden increase in the voltage across the terminals of the tank, which can go from 4 to 30 or 40 volts, and which affects the whole series.

Un excès d'alumine crée un risque de salissure du fond de la cuve par des dépôts d'alumine pouvant se transformer en plaques dures isolant électriquement une partie de la cathode. Ceci induit dans la nappe d'aluminium liquide de forts courants horizontaux locaux qui, par interaction avec les champs magnétiques, rassent la nappe d'aluminium liquide et provoquent une instabilité de l'interface pain-métal, et divers autres inconvénients bien connus de l'homme de l'art.An excess of alumina creates a risk of soiling the bottom of the tank by alumina deposits which can transform into hard plates electrically insulating part of the cathode. This induces strong local horizontal currents in the liquid aluminum sheet which, by interaction with the magnetic fields, smooth the liquid aluminum sheet and cause instability of the bread-metal interface, and various other drawbacks well known in the art. skilled in the art.

Ce défaut est particulièrement gênant lorsqu'on cherche à abaisser la température de fonctionnement de la cuve ce qui est très favorable pour sa durée de vie et pour le rendement Faraday en adoptant des bains dits très "acides" (à teneur élevée en AIF3) et/ou comportant des additifs divers, tels que des chlorures, des sels de lithium ou de magnésium. Mais, ces bains ont une capacité et une vitesse de dissolution de l'alumine sensiblement réduites, et leur utilisation implique que l'on régule de façon très précise la teneur en alumine, à des concentrations relativement basses et entre deux limites extrêmes proches.This defect is particularly troublesome when it is sought to lower the operating temperature of the tank, which is very favorable for its lifespan and for the Faraday yield by adopting so-called very "acid" baths (with high AIF 3 content ). and / or comprising various additives, such as chlorides, lithium or magnesium salts. However, these baths have a significantly reduced capacity and speed for dissolving alumina, and their use implies that the alumina content is very precisely regulated, at relatively low concentrations and between two close extreme limits.

Bien qu'il soit possible de mesurer directement la teneur en alumine des bains par analyse d'échantillons d'électrolyse, on a choisi, depuis de nombreuses années, de procéder à une évaluation indirecte des teneurs en alumine en suivant, un paramètre électrique reflétant la concentration en alumine dudit électrolyte.Although it is possible to directly measure the alumina content of baths by analysis of electrolysis samples, it has been chosen for many years to carry out an indirect evaluation of the alumina contents by following an electrical parameter reflecting the alumina concentration of said electrolyte.

Ce paramètre est généralement la variation de la résistance interne, ou, plus exactement, de la pseudo-résistance interne qui est égale à:This parameter is generally the variation of the internal resistance, or, more exactly, of the internal pseudo-resistance which is equal to:

Figure imgb0001
Figure imgb0001

Eo étant une image de la force contre-électromotrice de la cuve dont on admet généralement que la valeur est de 1,65 volts, U la tension aux bornes de la cuve et J l'intensité qui la traverse.Eo being an image of the counter-electromotive force of the tank, the value of which is generally assumed to be 1.65 volts, U the voltage across the terminals of the tank and J the intensity passing through it.

Par étalonnage, on peut tracer une courbe de variation Ri en fonction de la teneur en alumine, et par mesure de Ri à une fréqucnce déterminée selon des méthodes actuellement bien connues, on peut estimer à tout moment la concentration, symbolisée par [A12031.By calibration, one can draw a variation curve R i as a function of the alumina content, and by measuring R i at a frequency determined according to currently well known methods, one can estimate at any time the concentration, symbolized by [A1 2 0 31 .

On a cherché, depuis de nombreuses années, à introduire l'alumine dans le bain avec une certaine régularité de façon à maintenir sa concentration relativement stable autour d'une valeur prédéterminée.Attempts have been made for many years to introduce alumina into the bath with a certain regularity so as to maintain its relatively stable concentration around a predetermined value.

Les procédés d'alimentation automatique en alumine, asservis plus ou moins rigoureusement à sa concentration dans le bain, ont été décrits notamment dans les brevets suivants: brevet français FR-1 457 746 de REYNOLDS, sans lequel la variation de résistance interne de la cuve est utilisée comme paramètre reflétant la concentration en alumine, dont, ont l'introduction dans le bain est effectuée par un distributeur combiné avec un moyen de perçage dans la croûte d'électrolyse figé; brevet français FR 1 506 463 de V.A.W. qui est basé sur la mesure du temps qui s'écoule entre l'arrêt de l'alimentation en alumine et l'apparition de l'effet anodique; brevet américain US-3 400 062 d'ALCOA, qui met en oevre une "anode pilote" pour obtenir une détection précoce de la tendance à l'emballement et régier la cadence d'introduction de l'alumine, qui est distribuée à partir d'une trémie munie d'un dispositif de perçage de la croûte d'électrolyte figé.The processes for automatic supply of alumina, more or less strictly controlled by its concentration in the bath, have been described in particular in the following patents: French patent FR-1,457,746 to REYNOLDS, without which the variation in internal resistance of the tank is used as a parameter reflecting the concentration of alumina, the introduction of which into the bath is carried out by a distributor combined with a means of piercing in the frozen electrolysis crust; French patent FR 1 506 463 from V.A.W. which is based on the measurement of the time which elapses between the stopping of the supply of alumina and the appearance of the anodic effect; US patent US-3,400,062 to ALCOA, which implements a "pilot anode" to obtain an early detection of the tendency to runaway and to control the rate of introduction of alumina, which is distributed from '' a hopper fitted with a frozen electrolyte crust piercing device.

Plus récemment, des procédés de régulation basés sur le contrôle de la teneur en alumine ont été décrits en particulier dans la demande de brevet japonais JA-5 228 417/77 de Showa Denko, et dans le brevet des Etats-Unis US-4126 525 de Mitsubishi.More recently, regulatory methods based on the control of the alumina content have been described in particular in Japanese patent application JA-5,228,417 / 77 to Showa Denko, and in US patent US-4126 525. from Mitsubishi.

Dans le premier de ces brevets, la concentration en alumine est fixée dans l'intervalle de 2 à 8 %. On mesure la variation A V, en fonction du temps t, de la tension aux bornes de chaque cuve, on la compare avec une valeur prédéterminée et on modifie la cadence d'alimentation en alumine pour ramener le À V/t à la valeur de consigne. L'inconvénient de ce procédé est que sa sensibilité varie avec la teneur en alumine, qui est précisément minimale dans l'intervalle uitilisé, de 3 à 5 % d'A1203 (tableau p. 8).In the first of these patents, the alumina concentration is fixed in the range of 2 to 8%. We measure the AV variation, as a function of time t, of the voltage at the terminals of each tank, we compare it with a predetermined value and we modify the rate of supply of alumina to bring the A V / t to the set value . The disadvantage of this process is that its sensitivity varies with the alumina content, which is precisely minimal in the interval used, from 3 to 5% of A1 2 0 3 (table p. 8).

Dans le second de ces brevets, on fixe également la teneur en alumine dans la gamme de 2 à 8 % et, de préférence, 4 à 6 %. On alimente la cuve pendant un temps t, prédéterminé avec une quantité d'alumine supérieure à sa consommation théorique, jusqu'à l'obtention d'une concentration en alumine prédéterminée (par exemple jusqu'à 7 %), puis on commute l'alimentation sur une cadence égale à la consommation théorique pendant un temps t2 prédéterminé, puis on cesse l'alimentation jusqu'à apparition des premiers symptômes d'effet d'anode ("emballage"), et on reprend le cycle d'alimentation en cadence suipérioure à la consommation théorique. Dans ce procédé, la concentration en alumine varie, au cours du cycle, de 4,9 à 8 % (exemple 1) ou de 4,0 à 7 % (exemple 2).In the second of these patents, the alumina content is also fixed in the range of 2 to 8% and, preferably, 4 to 6%. The tank is fed for a predetermined time t with an amount of alumina higher than its theoretical consumption, until a predetermined alumina concentration is obtained (for example up to 7%), then the supply is switched to a rate equal to the theoretical consumption for a predetermined time t 2 , then the feeding is stopped until the appearance of the first symptoms of anode effect ("packaging"), and the feeding cycle is resumed at a rate which is greater than the theoretical consumption. In this process, the alumina concentration varies, during the cycle, from 4.9 to 8% (example 1) or from 4.0 to 7% (example 2).

Enfin, dans notre brevet français FR-2 487 386 (Aluminium Péchiney), auquel correspondent les brevets EP-44 794 et US-4 431 491, nous avons décrit un procédé de régulation précise de la teneur en alumine, entre 1 et 3,5 % en poids, procédé selon lequel on module la cadence d'introduction de l'aluine en fonction des variations de la résistance interne de la cuve pendant des intervalles de temps prédéterminés, en alternant des cycles de durée égale d'introduction d'alumine à cadence plus lente et à cadence plus rapide que la cadence correspondant à la consommation de la cuve.Finally, in our French patent FR-2 487 386 (Aluminum Péchiney), to which correspond the patents EP-44 794 and US-4 431 491, we have described a process for precise regulation of the alumina content, between 1 and 3, 5% by weight, process according to which the rate of introduction of aluine is modulated according to variations in the internal resistance of the tank during predetermined time intervals, by alternating cycles of equal duration of introduction of alumina at a slower rate and at a faster rate than the rate corresponding to the consumption of the tank.

Ce procédé, connu sous le nom de "calcul de pente", est basé sur des mesures successives de la résistance interne R;, à intervalles de temps égaux, sur l'évaluation de la pente dRi/dt de variation de Ri en fonction du temps, et la comparaison de Ri d'une part et de dRi/dt d'autre part, à des valeurs de consignes, et sur la modification de la cadence d'introduction de l'alumine, de façon à ramener dRi/dt et Ri aux valeurs de consignes.This process, known as "slope calculation", is based on successive measurements of the internal resistance R;, at equal time intervals, on the evaluation of the slope dRi / dt of variation of R i as a function of time, and the comparison of R i on the one hand and of dRi / dt on the other hand, to set values, and on the modification of the rate of introduction of alumina, so as to reduce dRi / dt and R i at setpoint values.

La recherche du mode opératoire optimal, c'est-à-dire la recherche des paramètres de marche des cuves d'électrolyse donnant le meilleur prix de revient, ou la marge bénéficiaire la plus importante pour un investissemont donné, a toujours été un souci permanent pour l'homme de l'art.The search for the optimal operating mode, that is to say the search for the operating parameters of the electrolytic cells giving the best cost price, or the biggest profit margin for a given investment, has always been a permanent concern. for those skilled in the art.

En particulier, la recherche de l'influence des divers paramètres de marche sur le rendement en courant - appelé également rendement Faraday - a fait l'objet de nombreuses publications dont les plus significatives sont citées dans l'ouvrage de K. Grjotheim et co-auteurs, intitulé "Aluminium Electrolysis", dont la deuxième édition, la plus récente, a été publiée en 1982 par Aluminium Verlag (Dûsseldorf, R.F.A.).In particular, research into the influence of various market parameters on current efficiency - also called Faraday efficiency - has been the subject of numerous publications, the most significant of which are cited in the work by K. Grjotheim and co- authors, entitled "Aluminum Electrolysis", the second most recent edition of which was published in 1982 by Aluminum Verlag (Dûsseldorf, FRG).

Dans cet ouvrage, page 339, figure 9.11, on constate que tous les auteurs cités s'accordent pour confirmer qu'une élévation de température du bain est néfaste pour le rendement en courant. D'autre part, le diagramme de phase du système cryolithe-alumine, représenté page 29, figure 2.3, du même ouvrage, montre que la température de liquidus du bain est d'autant plus élevée que la teneur en alumine de ce bain est plus faible.In this work, page 339, figure 9.11, it can be seen that all the cited authors agree to confirm that an increase in bath temperature is harmful for the current yield. On the other hand, the phase diagram of the cryolite-alumina system, represented on page 29, FIG. 2.3, of the same work, shows that the liquidus temperature of the bath is higher the higher the alumina content of this bath. low.

Il serait donc logique que le rendement Faraday soit d'autant plus élevé que la teneur cn alumine du bain est plus grande. C'est, en effet, ce qu'ont cru observer de nombreux auteurs, sur des cuves industrielles, comme le montre la figure 9.20, page 356 de l'ouvrage précité.It would therefore be logical for the Faraday yield to be higher the higher the alumina content of the bath. This is, in fact, what many authors have thought to observe, on industrial tanks, as shown in Figure 9.20, page 356 of the aforementioned work.

Exposé du problemeStatement of the problem

A l'heure actuelle, les conditions économiques et techniques de la production d'aluminium par le procédé Hal-Héroult exigent que l'exploitant recherche constamment à optimiser les différents facteurs qui déterminent le prix de revient du métal; parmi ces facteurs, le rendement Faraday est l'un des plus importants, et aussi un des plus fragiles, car de faibles perturbations peuvent le dégrader sensiblement. Il est donc souhaitable de rechercher tous les facteurs qui agissent sur le rendement Faraday, de façon à le maintenir à une valeur élevée et stable, au prix actuel de l'aluminium au LME (1200 $ la tonne à fin avril 1985) 0,1 point de Faraday sur une production de 500.000 tonnes/an correspond à un gain de près de 380.000 $/an.At present, the economic and technical conditions of the production of aluminum by the Hal-Héroult process require that the operator constantly seeks to optimize the various factors which determine the cost price of the metal; among these factors, the Faraday yield is one of the most important, and also one of the most fragile, since small disturbances can significantly degrade it. It is therefore desirable to research all the factors which influence Faraday's yield, so as to maintain it at a high and stable value, at the current price of aluminum at LME ($ 1,200 per tonne at the end of April 1985) 0.1 Faraday point on a production of 500,000 tonnes / year corresponds to a gain of nearly $ 380,000 / year.

Objet de l'inventionSubject of the invention

L'objet de l'invention est un perfectionnement du procédé de régulation précise d'une faible teneur en alumine dans la cuve d'électrolyse, permettant d'améliorer sensiblemement le rendement Faraday. En observant la mise en oeuvre du procédé de régulation par calcul de pente, objet de notre brevet précité, sur nos cuves d'électrolyse modernes fonctionnant sous 175 000 ou 280 000 Ampères, avec une composition de bain dite "acide", c'est-à-dire un bain comportant plus de 8 % en poids de fluorure d'aluminium AIF3 en excès par rapport à la cryolithe neutre de formule Na3AIF,, nous avons constaté, contrairement à l'opinion générale des spécialistes que nous indiquions précédemment, que, malgré l'augmentation de température du bain d'électrolyse, le rendement en courant croissait rapidement lorsque la teneur en alumine du bain baissait.The object of the invention is an improvement of the process for the precise regulation of a low alumina content in the electrolysis tank, making it possible to significantly improve the Faraday yield. By observing the implementation of the method of regulation by slope calculation, object of our aforementioned patent, on our modern electrolysis cells operating at 175,000 or 280,000 amperes, with a so-called "acid" bath composition, this is that is to say a bath comprising more than 8% by weight of aluminum fluoride AIF 3 in excess relative to the neutral cryolite of formula Na 3AIF ,, we have found, contrary to the general opinion of the specialists that we indicated previously , that, despite the increase in temperature of the electrolysis bath, the current yield increased rapidly when the alumina content of the bath decreased.

Nous avons découvert que ce phénomène avait une amplitude jusqu'alors insoupçonnée puisque, en ramenant la teneur en alumine de 2,5 % en poids dans le bain, à 1,5 % en poids, cette baisse de 1 point de la teneur en alumine permettait de remonter le rendement en courant de 94 % à 95,7 %, soit une augmentation de 1,7 % du rendement d'électrolyse. Or, en raison de l'augmentation de la température de fonctionnement du bain d'électrolyse qui était passée dans le même temps de 946°C à 951°C, on aurait dû logiquement observer une baisse de 1 % de ce rendement.We discovered that this phenomenon had a previously unsuspected amplitude since, by reducing the alumina content from 2.5% by weight in the bath, to 1.5% by weight, this drop of 1 point in the alumina content allowed to increase the current yield from 94% to 95.7%, an increase of 1.7% in the electrolysis yield. However, due to the increase in the operating temperature of the electrolysis bath which had gone from 946 ° C to 951 ° C at the same time, a decrease of 1% in this yield should logically have been observed.

Cependant, cette augmentation de rendement s'accompagne d'une augmentation de la tension d'électrolyse, d'autant plus rapide que la teneur en alumine est plus basse.However, this increase in yield is accompanied by an increase in the electrolysis voltage, the more rapid the lower the alumina content.

La consommation énergétique à la tonne d'aluminium produite peut se mettre en fonction du rendement Faraday, F, et de la tension aux bornes d'une cuve, U, sous la forme:

Figure imgb0002
Energy consumption per tonne of aluminum produced can depend on the yield Faraday, F, and the voltage across a tank, U, in the form:
Figure imgb0002

D'autre part, à intensité d'électrolyse fixée J, la production d'une cuve est proportionnelle. à son rendement F, c'est-à-dire que l'incidence des frais "fixes" (amortissement, frais financiers, et une grande partie des frais de main-d'oeuvre et d'entretien) est d'autant plus faible que le rendement Faraday est meilleur.On the other hand, at a fixed electrolysis intensity J, the production of a cell is proportional. to its yield F, that is to say that the incidence of "fixed" costs (depreciation, financial costs, and a large part of labor and maintenance costs) is all the lower that the Faraday yield is better.

Compte tenu de la découverte que nous avons faite de la très forte incidence de la teneur en alumine du bain sur le rendement Faraday, on conçoit qu'il ya tout intérêt à ajuster la teneur en alumine du bain à une valeur faible, mais suffisante cependant, pour éviter que le coût énergétique dû à l'augmentation de la tension aux bornes de la cuve ne vienne surpasser les gains espérés par amélioration du rendement Faraday.Given the discovery that we have made of the very strong impact of the alumina content of the bath on the Faraday yield, it is understandable that there is every interest in adjusting the alumina content of the bath to a low value, but sufficient however , to prevent the energy cost due to the increase in the voltage at the terminals of the tank from exceeding the gains hoped for by improving Faraday efficiency.

D'une façon générale, et pour des conditions économiques normales, cette teneur optimale en alumine se situe très près de la teneur minimale en-dessous de laquelle apparaît "l'effet d'anode", appelé également "emballage" ou "polarisation", qui se traduit par une montée très brutale de la tension aux bornes de la cuve et de la température du bain d'électrolyse, et par le dégagement en quantités importantes de produits fluorés provenant de la décomposition du bain d'électrolyse.In general, and for normal economic conditions, this optimal alumina content is very close to the minimum content below which appears the "anode effect", also called "packaging" or "polarization" , which results in a very sharp rise in the voltage across the cell and in the temperature of the electrolysis bath, and in the release in significant quantities of fluorinated products from the decomposition of the electrolysis bath.

Pour éviter un tel phénomène, désastreux à la fois pour les performances énergétiques et pour l'environnement, tout en s'approchant au mieux de la teneur en alumine donnant les meilleures performances économiques, on conçoit qu'il est extrêmement important de disposer d'un procédé permettant de contrôler et de réguler très finement la teneur en alumine du bain d'électrolyse dans le domaine des basses teneurs, par exemple entre 1 % et 3 % et de préférence entre 1 % et 2,5 %.To avoid such a phenomenon, disastrous both for energy performance and for the environment, while getting as close as possible to the alumina content giving the best economic performance, we understand that it is extremely important to have a process making it possible to control and very finely regulate the alumina content of the electrolysis bath in the range of low contents, for example between 1% and 3% and preferably between 1% and 2.5%.

Le but de l'invention est donc de fournir un tel procédé de régulation de la teneur en alumine du bain dans le domaine des basses teneurs, par l'utilisation d'un paramètre synthétique P calculable simplement à partir de mesures classiques faites sur une cuve d'électrolyse, à savoir: la tension aux bornes de chaque cuve, l'intensité parcourant la file de cuves et la cadence d'alimentation en alumine (en kg/heure p. ex.).The object of the invention is therefore to provide such a process for regulating the alumina content of the bath in the low content range, by the use of a synthetic parameter P which can be calculated simply from conventional measurements made on a tank. electrolysis, namely: the voltage at the terminals of each cell, the intensity traversing the file of cells and the rate of supply of alumina (in kg / hour for example).

De façon plus précise, l'objet de l'invention est un procédé de régulation précise d'une faible teneur en alumine, comprise entre 1 et 3 %, dans une cuve pour la production d'aluminium par électrolyse selon le procédé Hall-Héroult permettant d'obtenir un rendement Faraday au moins égal à 94 % en mettant en oeuvre une alternance de périodes d'alimentation de la cuve d'électrolyse en alumine à une cadence nominale CN, à une cadence réduite C- et à une cadence C+ supérieure à la cadence nominale, ce procédé consistant tout d'abord à déterminer un paramètre de régulation P = -1/D.(dRi/dt) exprimé en microohms par seconde et par % en poids par heure, Ri étant la résistance interne de la cuve et t le temps, D étant la dérive de la teneur du bain d'électrolyse en alumine exprimée en % en poids par heure, selon la relationMore precisely, the subject of the invention is a process for the precise regulation of a low alumina content, of between 1 and 3%, in a tank for the production of aluminum by electrolysis according to the Hall-Héroult process. making it possible to obtain a Faraday yield at least equal to 94% by implementing alternating supply periods of the alumina electrolysis tank at a nominal rate CN, at a reduced rate C- and at a higher rate C + at nominal rate, this process consisting first of all in determining a regulation parameter P = -1 / D. (dRi / dt) expressed in microohms per second and per% by weight per hour, Ri being the internal resistance of the cell and t time, D being the derivative of the content of the alumina electrolysis bath expressed in% by weight per hour, according to the relation

Figure imgb0003
Figure imgb0003

CN étant la cadence nominale d'alimentation en alumine et C- la cadence de sous-alimentation, comptées en kg d'alumine par unité de temps, Q(AI203) étant la quantité d'alumine consommée par la cuve dans la même unité de temps etCN being the nominal rate of supply of alumina and C- the rate of undernourishment, counted in kg of alumina per unit of time, Q (AI 2 0 3 ) being the quantity of alumina consumed by the tank in the same time unit and

Q(b.l.) étant la quantité de bain d'électrolyse liquide contenue dans la cuve, le procédé consistant ensuite à effectuer, de façon répétitive les opérations suivantes:

  • a) on alimente la cuve à la cadence nominale CN (telle que la quantité d'alumine introduite dans le bain soit sensiblement égale à la quantité consommée par l'électrolyse);
  • b) on déclenche périodiquement une suralimentation en alumine à une cadence C+ supérieure à la cadence nominale CN, de façon à enrichir le bain en alumine, et pendant une durée t+ prédéterminée. Pendant cette période dRi/dt est négative;
  • c) on passe en sous-alimentation, c'est-à-dire à une cadence C- inférieure à CN. La pente dRi/dt s'annule puis devient positive. On mesure, de façon fréquente, le paramètre de régulation P, dont la valeur tend à augmenter;
  • d) on compare les valeurs successives de P à une valeur de consigne Po prédéterminée. Dès que P = Po on repasse en cadence d'alimentation nominale CN et on recommence un nouveau cycle en (a).
Q (bl) being the quantity of liquid electrolysis bath contained in the tank, the process then consisting in repetitively carrying out the following operations:
  • a) the tank is supplied at the nominal rate CN (such that the quantity of alumina introduced into the bath is substantially equal to the quantity consumed by the electrolysis);
  • b) a periodic supercharging of alumina is initiated at a rate C + greater than the nominal rate CN, so as to enrich the bath with alumina, and for a predetermined period t +. During this period dRi / dt is negative;
  • c) we go into undernourishment, that is to say at a rate C- less than CN. The slope dRi / dt is canceled out then becomes positive. The regulation parameter P is frequently measured, the value of which tends to increase;
  • d) the successive values of P are compared with a predetermined setpoint Po. As soon as P = Po, we return to the nominal supply rate CN and start a new cycle in (a).

Définition des paramètres et des étapes du procédéDefinition of process parameters and steps

Le paramètre P est évalué à partir de la pseudo-résistance interne de la cuve, R;, définie elle-même par:

Figure imgb0004
The parameter P is evaluated from the internal pseudo-resistance of the tank, R;, itself defined by:
Figure imgb0004

où U est la tension aux bornes de la cuve (en volts)where U is the voltage across the tank (in volts)

Eo est une valeur forfaitée, en volts, de la force contre-électromotrice dynamique de la cuve, généralement comprise entre 1,5 et 2,0 volts, et le plus souvent de l'ordre de 1,65 à 1,75 voltsEo is a standard value, in volts, of the dynamic counter-electromotive force of the tank, generally between 1.5 and 2.0 volts, and most often of the order of 1.65 to 1.75 volts

J est l'intensité d'électrolyse exprimée en kiloampères (= 103 ampères) Ri s'exprime alors en microohms;J is the electrolysis intensity expressed in kiloamperes (= 103 amperes) R i is then expressed in microohms;

(sa dérivée dR;/dt s'exprime généralement en microohms par seconde).(its derivative dR; / dt is generally expressed in microohms per second).

Plus précisément, si D est la dérive de teneur en alumine du bain d'électrolyse, exprimée en pour-cent poids par heure, P s'exprime par la formule:

Figure imgb0005
(P étant exprimé en microohms par seconde et par % poids par heure).More precisely, if D is the alumina content drift of the electrolysis bath, expressed in weight percent per hour, P is expressed by the formula:
Figure imgb0005
(P being expressed in microohms per second and per% weight per hour).

La régulation de la cuve selon l'invention consiste à rester aussi longtemps que possible dans une zone de teneur en alumine, pas nécessairement connue de façon précise, mais telle que P soit aussi proche que possible d'une valeur Po que l'on s'est fixée au préalable.

  • a) pour cela, on prévoit d'alimenter régulièrement la cuve à une cadence, dite cadence nominale CN, telle que la quantité d'alumine introduite dans le bain soit sensiblement égale à la quantité d'alumine consommée par électrolyse. Pendant ces périodes à cadence nominale, on peut ajuter sans difficulté la distance interpolaire en se basant sur la valeur de la pseudo-résistance qui est alors mesurée pour une teneur en alumine du bain sensiblement constante;
  • b) puis, partant de cette situation stable, on déclenche, à des moments choisis, une suralimentation c'est-à-dire une alimentation en alumine à une cadence C+ supérieure à la cadence nominale CN. Dans ces conditions s'enrichit progressivement en alumine, à un rythme d'autant plus rapide que la cadence de suralimentation est plus grande.
The regulation of the tank according to the invention consists in staying as long as possible in an alumina content zone, not necessarily known in a precise manner, but such that P is as close as possible to a Po value that one s 'is fixed beforehand.
  • a) for this, provision is made to regularly supply the tank at a rate, called the nominal rate CN, such that the amount of alumina introduced into the bath is substantially equal to the amount of alumina consumed by electrolysis. During these periods at nominal rate, the interpolar distance can be adjusted without difficulty based on the value of the pseudo-resistance which is then measured for a substantially constant alumina content in the bath;
  • b) then, starting from this stable situation, a supercharging is triggered at selected times, that is to say a supply of alumina at a rate C + greater than the nominal rate CN. Under these conditions is gradually enriched with alumina, at a rate all the more rapid as the rate of overeating is greater.

La durée t+ de cette suralimentation est fixée de façon à provoquer un enrichissement en alumine du bain d'électrolyse. Notons qu'il n'est pas nécessaire de mesurer ou calculer la valcur exacte de cet enrichissement On peut, pendant cette période de suralimentation, suivre l'évolution de la pseudo-résistance de la cuve ( = dR;/dt).Il existe cependant un risque que toute l'alumine introduite ne se dissolve pas instantanément dans le bain, ce risque étant d'autant plus grand que la cadence de suralimentation est plus rapide.The duration t + of this supercharging is fixed so as to cause an enrichment in alumina of the electrolysis bath. Note that it is not necessary to measure or calculate the exact value of this enrichment We can, during this period of overeating, follow the evolution of the pseudo-resistance of the tank (= dR; / dt). however, a risk that all the alumina introduced does not dissolve instantaneously in the bath, this risk being all the greater the faster the rate of supercharging.

Les valeurs de P que l'on mesure sont alors entachées d'un risque d'erreur non nul, et, d'une façon générale, on ne les utilisera que pour détecter de graves anomalies d'alimentation.The values of P that are measured are then tainted with a non-zero risk of error, and, in general, they will only be used to detect serious feeding anomalies.

c) Après cette suralimentation de durée t+ fixée, on passe alors en sous-alimentation, c'est-à-dire que l'on alimente la cuve à une cadence C- plus lente que la cadence nominale correspondant à ja consommation d'alumine par électrolyse. On constate généralement, au début de la sous-alimentation, que la pente (dR;/dt), normalement négative pendant la suralimentation, met un certain temps pour s'annuler puis pour prendre des valeurs positives de plus en plus grandes.c) After this overfeed of fixed duration t +, we then go into underfeeding, that is to say that the tank is fed at a rate C- slower than the nominal rate corresponding to the consumption of alumina by electrolysis. It is generally noted, at the beginning of undernourishment, that the slope (dR; / dt), normally negative during overeating, takes a certain time to cancel out and then to take larger and larger positive values.

Cette période initiale, qui ne dure généralement que quelques minutes, correspond à la fin de dissolution de l'alumine en excès introduite lors de la période de suralimentation et non immédiatement assimilée par le bain.This initial period, which generally lasts only a few minutes, corresponds to the end of dissolution of the excess alumina introduced during the overeating period and not immediately assimilated by the bath.

On peut facilement neutraliser cette période initiale où la teneur en alumine du bain n'évolue pas conformément à la cadence d'introduction de cette alumine: en effet, par des mesures fréquentes, nous avons constaté que la durée de cette période initiale était de l'ordre de 2 à 3 fois la durée séparant le lancement de la période de sous-cadencement et le moment où la pente de dR;/dt calculée passait par la valeur 0.We can easily neutralize this initial period when the alumina content of the bath does not change in accordance with the rate of introduction of this alumina: indeed, by frequent measurements, we have found that the duration of this initial period was l '' order of 2 to 3 times the duration separating the launching of the period of under-timing and the moment when the slope of dR; / dt calculated passed by the value 0.

Une autre méthode consiste à intercaler après la suralimentation une période de quelques minutes en cadence nominale avant de passer en sous alimentation.Another method is to add a period of a few minutes at nominal rate after overeating before going on to undereating.

Après cette période initiale, la teneur en alumine du bain décroît d'autant plus vite que la cadence d'alimentation est plus lente, et, parallèlement, la pente dR;/dt mesurée augmente.After this initial period, the alumina content of the bath decreases all the faster the slower the feed rate, and, in parallel, the measured slope dR; / dt increases.

La dérive de teneur en alumine, D, comptée en % poids par heure, est alors proportionnelle à:

Figure imgb0006
The alumina content drift, D, counted in% weight per hour, is then proportional to:
Figure imgb0006

où C- est la cadence de sous-alimentation comptée en kg d'A1203 introduite par seconde et CN est la cadence nominale d'alimentation (comptée dans les mêmes unités). Tout autre système cohérent d'unités peut bien sûr être utilisé, par exemple l'inverse du temps séparant l'introduction de 2 doses d'alumine consécutives.where C- is the rate of undernourishment counted in kg of A1 2 0 3 introduced per second and C N is the nominal rate of feed (counted in the same units). Any other coherent system of units can of course be used, for example the inverse of the time separating the introduction of 2 consecutive doses of alumina.

. Q(Al2O3) est le poids d'alumine consommé par unité de temps, par électrolyse.. Q (Al 2 O 3 ) is the weight of alumina consumed per unit of time, by electrolysis.

. Q (b.l.) est le poids de bain liquide, capable de dissoudre de l'alumine, contenu dans le creuset de la cuve (à titre indicatif, si le poids de bain liquide est mesuré en kg, de l'ordre de 30 J où J est l'intensité d'électrolyse comptée en kA): notons que la constante de temps pour la fusion ou la solidification de bain au niveau du talus étant très grande (généralement de l'ordre de plusieurs heures), cette quantité ne varie que très lentement dans le temps.. Q (bl) is the weight of liquid bath, capable of dissolving alumina, contained in the crucible of the tank (for information, if the weight of liquid bath is measured in kg, of the order of 30 J where J is the electrolysis intensity counted in kA): note that the time constant for the melting or solidification of the bath at the slope is very large (generally of the order of several hours), this quantity only varies very slowly over time.

A titre d'exemple, pour une cuve 280 kA contenant 8000 kg de bain liquide et consommant 170 kg d'alumine par heure, et une cadence C- = 0,7 CN, il vient D = -0,64 % par heure.For example, for a 280 kA tank containing 8000 kg of liquid bath and consuming 170 kg of alumina per hour, and a rate C- = 0.7 CN, it comes to D = -0.64% per hour.

On peut alors mesurer de façon fiable et fréquente le paramètre synthétique P - - 1/D. (dR;/dt).

  • d) Au fur et à mesure que la sous-alimentation se prolonge, la valeur de P, initialement inférieure à la valeur visée Po, augmente et finit par atteindre cette valeur visée. Cet évènement se produit au bout d'un temps t de sous-cadencement que l'on ne peut prévoir de façon certaine et généralement différent du temps t+ de surcadencement.
  • e) On repasse alors en cadence nominale CN, c'est-à-dire à une cadence d'alimentation égale au rythme de consommation de l'alumine par électrolyse, pendant un temps tN au bout duquel le cycle de mesure et ajustement redémarre en (a).
We can then reliably and frequently measure the synthetic parameter P - - 1 / D. (dR ; / dt).
  • d) As the undernourishment continues, the value of P, initially lower than the target value Po, increases and eventually reaches this target value. This event occurs after a time t of under-timing that cannot be predicted with certainty and generally different from the time t + of over-timing.
  • e) We then return to the nominal rate CN, that is to say to a feed rate equal to the rate of consumption of the alumina by electrolysis, for a time t N at the end of which the measurement and adjustment cycle restarts. in (a).

La teneur en alumine visée étant proche de la teneur limite déclenchant l'apparition d'une polarisation de la cuve, il est essentiel qu'après un fonctionnement à cadence nominale, le recalage se fasse en faisant précéder la phase de recherche du point de fonctionnement (caractérisé par Po), pendant un sous-cadencement, par une période de surcadencement qui permet de s'éloigner de cette teneur limite avant de déclencher la recherche.The targeted alumina content being close to the limit content triggering the appearance of a polarization of the tank, it is essential that after operation at nominal rate, the readjustment is done by preceding the search phase of the operating point (characterized by Po), during an under-timing, by a period of over-timing which allows s '' move away from this limit content before starting the search.

Bien entendu, le procédé de régulation selon l'invention peut n'être utilisé que pendant une partie du temps de fonctionnement de la cuve, et de préférence lorsque la cuve est stable.Of course, the regulation method according to the invention can be used only during part of the operating time of the tank, and preferably when the tank is stable.

Certaines opérations perturbent en effet le fonctionnement normal, et c'est particulièrement le cas des opérations de changement d'anodes et de coulée du métal produit.Certain operations indeed disturb normal operation, and this is particularly the case of the operations of changing anodes and casting the metal produced.

Il est bien évident pour l'homme de l'art que l'on pourra adopter des algorithmes de régulation particuliers pendant et après le déroulement de ces opérations perturbatrices, jusqu'à ce que la cuve ait retrouvé une stabilité de marche suffisante.It is obvious to those skilled in the art that it will be possible to adopt particular regulation algorithms during and after the course of these disturbing operations, until the tank has regained sufficient operating stability.

Il est évident également pour l'homme de l'art que l'on pourra intercaler, entre l'étape de suralimentation (3) et l'étape de sous-alimentation contrôlée (4) une étape supplémentaire d'alimentation en cadence nominale - ou de légère sur ou sous-alimentation - sans que ceci ne perturbe sensiblement le procédé selon l'invention, c'est-à-dire n'empêche de rechercher le point de fonctionnement tel que P = -1/D (dR;/dt) soit proche de Po. En ce qui concerne l'estimation de la valeur de Po correspondant à un fonctionnement de la cuve le plus proche de l'optimum économique, il nous est apparu que Po pouvait être décrit par une équation très simplifiée:

Figure imgb0007
où: Po est exprimé en microohms par seconde et par pour-cent poids par heure,

  • KI est un coefficient "économique" synthétisant les conditions économiques du moment (en particulier coût de l'énergie comparé aux autres postes du prix de revient, hors alumine),
  • K2 est un coefficient "technique" synthétisant les caractéristiques technologiques et physicochimiques de la cuve (K2 est sensiblement indépendant de K1,
It is also obvious to a person skilled in the art that it will be possible to interpose, between the supercharging step (3) and the controlled undernourishment step (4), an additional step of feeding at nominal rate - or slight over- or under-feeding - without this appreciably disturbing the process according to the invention, that is to say it does not prevent the search for the operating point such that P = -1 / D (dR ; / dt) is close to Po. As regards the estimation of the value of Po corresponding to the operation of the tank closest to the economic optimum, it appeared to us that Po could be described by a very simplified equation:
Figure imgb0007
where: Po is expressed in microohms per second and per weight percent per hour,
  • K I is an "economic" coefficient synthesizing the economic conditions of the moment (in particular cost of energy compared to the other cost items, excluding alumina),
  • K 2 is a "technical" coefficient synthesizing the technological and physicochemical characteristics of the tank (K 2 is substantially independent of K 1 ,

J est l'intensité de marche de la cuve, exprimée en kilo-ampères (= 103 Ampères).J is the operating intensity of the tank, expressed in kilo-amperes (= 103 Amperes).

De préférence, ce paramètre Po sera maintenu entre les valeurs limites de 2/100 J et 10/100 J.Preferably, this parameter Po will be maintained between the limit values of 2/100 J and 10/100 J.

L'estimation de KI et K2 peut se faire comme suit:The estimation of K I and K 2 can be done as follows:

Le coefficient économique KI synthétise les conditions économiques du moment. Il est sensiblement égal au rapport de la somme des coûts fixes de transformation (hors alumine), comprenant en particulier le coût de l'énergie et des produits carbonés consommables, de la main d'oeuvre et des amortissements, frais financiers compris, au coût de l'énergie.The economic coefficient K I summarizes the economic conditions of the moment. It is substantially equal to the ratio of the sum of the fixed transformation costs (excluding alumina), including in particular the cost of energy and consumable carbon products, labor and depreciation, including financial costs, at cost Energy.

A titre d'exemple illustratif et non limitatif, une bonne approximation de ce coefficient KI peut être obtenue en décomposant comme suit les coûts de production d'une tonne d'aluminium.

  • A = coût de l'alumine et matières premières diverses (hors carbone)
  • C = coût des matières premières carbonées
  • E = coût de l'énergie (électroyse et captation)
  • PR = autres coûts de production (essentiellement main d'oeuvre et frais d'entretien)
  • AFF = amortissements et frais financiers
By way of illustrative and nonlimiting example, a good approximation of this coefficient K I can be obtained by breaking down the production costs of a tonne of aluminum as follows.
  • A = cost of alumina and various raw materials (excluding carbon)
  • C = cost of carbon raw materials
  • E = cost of energy (electroyse and capture)
  • PR = other production costs (mainly labor and maintenance costs)
  • AFF = depreciation and finance charges

On écrit alors que KI est approximativement égal à:

Figure imgb0008
(une estimation de K1 à ± 20 % est largement suffisante pour s'approcher suffisamment de l'optimum économique).We then write that K I is approximately equal to:
Figure imgb0008
(an estimate of K 1 at ± 20% is more than enough to get close enough to the economic optimum).

A titre d'exemple, pour un coût de production de l'aluminium se décomposant en:

  • A = 4000 F/tonne
  • C = 1000 F/tonne
  • E = 2000 F/tonne
  • PR = 2000 F/tonne
  • AFF = 1200 F/tonne
  • Il vient: K1 = 1000 + 2000 + 2000 + 1200/2000 = 6200/2000 = 3,10
For example, for an aluminum production cost broken down into:
  • A = 4000 F / tonne
  • C = 1000 F / tonne
  • E = 2000 F / tonne
  • PR = 2000 F / ton
  • AFF = 1200 F / tonne
  • It comes: K 1 = 1000 + 2000 + 2000 + 1200/2000 = 6200/2000 = 3.10

Le coefficient "technique" K2 synthétise les caractéristiques technologiques et physicochimiques de la cuve et peut être évalué comme suit:The "technical" coefficient K 2 summarizes the technological and physicochemical characteristics of the tank and can be evaluated as follows:

on trouve expérimentalement en première approximation (généralement suffisante pour déterminer une conduite de cuves suffisamment optimisée):

Figure imgb0009
où: U est la tension aux bornes de la cuve, comptée en volts, généralement comprise entre 3,8 et 5,5 volts pour des cuves correctement conduites par l'homme de l'art,we find experimentally as a first approximation (generally sufficient to determine a sufficiently optimized cell line):
Figure imgb0009
where: U is the voltage at the terminals of the tank, counted in volts, generally between 3.8 and 5.5 volts for tanks correctly operated by those skilled in the art,

F est le rendement Faraday de la cuve, généralement compris entre 0,88 et 0,96 pour ces mêmes cuves correctement conduites dF/d(AI203) est la dérive algébrique du rendement Faraday par rapport à la teneur en alumine du bain, comptée en % de Faraday par % d'alumine, dans la zone des teneurs en alumine comprises entre 1 % et 4 %, et de préférence dans la zone des teneurs en A1203 comprise entre 1,5 % et 3 %.F is the Faraday yield of the tank, generally between 0.88 and 0.96 for these same properly conducted tanks dF / d (AI 2 0 3 ) is the algebraic drift of the Faraday yield relative to the alumina content of the bath , counted as a% of Faraday per% of alumina, in the region of alumina contents between 1% and 4%, and preferably in the region of A1 2 0 3 contents between 1.5% and 3%.

Ce facteur dF/d(Al2O3) dépend de nombreux facteurs tels que la composition du bain (acidité = excès d'AIF3), sa surchauffe (c'est-à-dire l'écart entre la température effective du bain et sa température de solidification commençante).This factor dF / d (Al 2 O 3 ) depends on many factors such as the composition of the bath (acidity = excess of AIF 3 ), its overheating (i.e. the difference between the effective temperature of the bath and its starting solidification temperature).

l'équilibre magnétique (et en particulier l'agitation et la déformation de l'interface bain/métal).magnetic balance (and in particular the agitation and deformation of the bath / metal interface).

D'une façon générale, ce facteur dF/d(Al2O3) doit être déterminé expérimentalement pour chaque type de cuve et pour les divers types de bains utilisés (bains peu acides, à moins de 8 % d'excès d'AIF3, ou bains très acides, à plus de 8 % d'excès d'AIF3 ou avec des sous-additifs tels que LiF et MgF2). Une fois déterminé, il ne dépend plus, en première approximation, des conditions économiques.In general, this factor dF / d (Al 2 O 3 ) must be determined experimentally for each type of tank and for the various types of bath used (low acid baths, with less than 8% excess of AIF 3 , or very acid baths, with more than 8% excess of AIF 3 or with sub-additives such as LiF and MgF 2 ). Once determined, it no longer depends, as a first approximation, on economic conditions.

A titre d'exemple non limitatif, pour une cuve d'intensité nominale 280 KA, fonctionnant avec un bain à 13 % d'excès d'AIF3 et moins de 1 % de LiF, avec une température de bain d'environ 950°C et une teneur en alumine comprise entre 1,7 % et 2,5 % on a trouvé:

Figure imgb0010
(c'est-à-dire que le rendement Faraday augmente de 1,5 % quand la teneur en alumine baisse de 1 %). Pour cette même cuve, dans les mêmes conditions de fonctionnement, on a mesuré

  • F = 0,95 (soit 95 %)
  • V - 4,10 volts
By way of nonlimiting example, for a tank of nominal intensity 280 KA, operating with a bath at 13% excess AIF 3 and less than 1% LiF, with a bath temperature of approximately 950 ° C and an alumina content of between 1.7% and 2.5%, we have found:
Figure imgb0010
(i.e. the Faraday yield increases by 1.5% when the alumina content drops by 1%). For this same tank, under the same operating conditions, we measured
  • F = 0.95 (i.e. 95%)
  • V - 4.10 volts

On en déduit le coefficient technique K2 pour ce type de cuve travaillant en bain acide:

Figure imgb0011
We deduce the technical coefficient K 2 for this type of tank working in acid bath:
Figure imgb0011

Exemple de mise en oeuvreExample of implementation

L'invention a été appliquée sur une série de cuves d'électrolyse fonctionnant à une intensité de 280 KA, sous une tension de 4,10 volts par cuve et donnant un rendement Faraday de 95,0 % pour une teneur moyenne en alumine du bain d'électrolyse égale à 2,3 %, régulée auparavant selon le procédé de notre brevet FR-2 487 386 déjà cité (procédé dit "à calcul de pente").The invention was applied to a series of electrolysis cells operating at an intensity of 280 KA, at a voltage of 4.10 volts per cell and giving a Faraday yield of 95.0% for an average alumina content in the bath. electrolysis equal to 2.3%, previously regulated according to the method of our patent FR-2 487 386 already cited (process called "slope calculation").

La production journalière de la série par cuve, était de 2.145 kg/jour, pour une consommation énergétique de 12.860 kWh/tonne.The daily production of the series per tank was 2.145 kg / day, for an energy consumption of 12.860 kWh / ton.

On a déterminé le paramètre Po en prenant pour:

  • K1 la valeur de: 3,10
  • K2 la valeur de: + 1,8/100
  • (J nominal étant égal à 280 KA)
    Figure imgb0012
Ayant choisi une cadence de sous alimentation C- égale à 70 % de la cadence nominale CN, correspondant à une dérive de teneur en alumine D = - 0,64 % par heure, on s'est alors placé selon la méthode de recherche précédente, au point de fonctionnement tel que dRi/dt = Po x D = + 130.10-6 microohm/seconde au moment où l'on enclenchait la cadence nominale CN.The parameter Po was determined by taking for:
  • K1 the value of: 3.10
  • K2 the value of: + 1.8 / 100
  • (Nominal J being equal to 280 KA)
    Figure imgb0012
Having chosen a rate of undernourishment C- equal to 70% of the nominal rate C N , corresponding to a drift in alumina content D = - 0.64% per hour, we then placed ourselves according to the previous research method , at the operating point such that dRi / dt = Po x D = + 130.10- 6 microohm / second when the nominal rate C N was engaged.

On a obtenu les résultats suivants:

Figure imgb0013
The following results were obtained:
Figure imgb0013

Le gain sur le prix de revient (amortissements et frais financiers compris) a été de 20 F par tonne d'aluminium produite.The gain on the cost price (depreciation and financial costs included) was 20 F per tonne of aluminum produced.

Claims (8)

1. A process for precisely regulating a low alumina content of between 1 and 3 % in a cell for the production of aluminium by electrolysis using the Hall-Heroult process, which makes it possible to obtain a Faraday efficiency which is at least equal to 94 %, by using an alternation of periods of feeding the electrolysis cell with alumina at a nominal rate CN, at a reduced rate C- and at a rate C+ which is higher than the nominal rate, the process firstly comprising determning a regulation parameter P = -1/D. (dRi/dt) expressed in micro-ohms per second and per % by weight per hour, Ri being the internal resistance of the cell and t being time, D being the derived function of the alumina content of the electrolysis bath expressed in % by weight per hour, in accordance with the relationship
Figure imgb0018
CN being the nominal alumina feed rate and C- being the under-feed rate, reckoned in kg of alumina per unit of time, Q(AI203) being the amount of alumina consumed by the cell in the same unit of time and Q(b.l.) being the amount of liquid electrolysis bath contained in the cell, the process then comprising repetitively effecting the following operations:
a) the cell is fed at the nominal rate CN (such that the amount of alumina introduced into the bath is substantially equal to the amount consumed by electrolysis);
b) an over-feed of alumina at a rate C+ which is higher than the nominal rate CN is periodically triggered off so as to enrich the bath with alumina, for a predetermined time t+. During that period dRi/dt is negative;
c) the feed rate goes to an under-feed rate, that is to say a rate C- which is less than CN. The curve dRi/dt passes through zero and then becomes positive. The regulation parameter P, the value of which tends to rise, is measured frequently; and
d) the successive values of P are compared to a predetermined reference value Po. As soon as P = Po, the feed rate goes back to the nominal feed rate CN and a fresh cycle is begun again at (a).
2. A regulating process according to claim 1 characterised in that after over-feed stage (b), the feed rate goes to the normal rate CN for a few minutes before going to an under-feed rate.
3. A regulating process according to claim 1 characterised in that after the over-feed stage (b) the feed rate goes to a rate which is little different from CN for a few minutes.
4. A regulating process according to claim 1 characterised in that the reference value Po in respect of the regulation parameter P is detetmined on the basis of the current strength J in kA of the electrolysis current and two coefficients K1 which is related to production costs and K2 which is related to the physico-chemical characteristics of the cell, in accordance with the relationship Po = K1 K2/J.
5. A regulating process according to claim 4 characterised in that the coefficient K1 is substantially equal to the ratio of the sum of the fixed transformation costs (energy, consumable carbonaceous products, labour and depreciation) to the cost of the electrical energy.
6. A regulating process according to claim 4 characterised in that the coefficient K2 is substantially equal to:
Figure imgb0019
7. A regulating process according to any one of claims 1 to 4 characterised in that the reference value Po of the regulation parameter P expressed in micro-ohms per second and per percent by weight per hour is fixed between 2/100 - J and 10/100 - J, the strength J of the electrolysis current being expressed in kA.
EP86420118A 1985-05-07 1986-05-05 Process for accurately regulating the low alumina content of an igneous electrolysis cell for aluminium production Expired EP0201438B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86420118T ATE44165T1 (en) 1985-05-07 1986-05-05 METHOD OF ACCURATELY CONTROLLING A LOW ALUMINUM CONTENT IN A MOLTEN ELECTROLYTIC CELL FOR ALUMINUM PRODUCTION.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8507319 1985-05-07
FR8507319A FR2581660B1 (en) 1985-05-07 1985-05-07 PROCESS FOR THE PRECISION OF A LOW ALUMINUM CONTENT IN AN IGNATED ELECTROLYSIS TANK FOR THE PRODUCTION OF ALUMINUM

Publications (2)

Publication Number Publication Date
EP0201438A1 EP0201438A1 (en) 1986-11-12
EP0201438B1 true EP0201438B1 (en) 1989-06-21

Family

ID=9319270

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86420118A Expired EP0201438B1 (en) 1985-05-07 1986-05-05 Process for accurately regulating the low alumina content of an igneous electrolysis cell for aluminium production

Country Status (22)

Country Link
US (1) US4654129A (en)
EP (1) EP0201438B1 (en)
JP (1) JPS61261490A (en)
CN (1) CN1006307B (en)
AT (1) ATE44165T1 (en)
AU (1) AU576152B2 (en)
BR (1) BR8602039A (en)
CA (1) CA1251417A (en)
DE (1) DE3664058D1 (en)
ES (1) ES8800733A1 (en)
FR (1) FR2581660B1 (en)
GR (1) GR861139B (en)
HU (1) HU205632B (en)
IN (1) IN164906B (en)
IS (1) IS1347B6 (en)
MY (1) MY101644A (en)
NO (1) NO172192C (en)
NZ (1) NZ216051A (en)
OA (1) OA08324A (en)
PL (1) PL144950B1 (en)
TR (1) TR22683A (en)
ZA (1) ZA863380B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605410B1 (en) * 1986-10-17 1988-11-25 Pechiney Aluminium METHOD AND DEVICE FOR ELECTROCHEMICAL MEASUREMENT OF THE OXIDIZED ION CONCENTRATION IN A BATH BASED ON MOLTEN HALIDES
EP0671488A3 (en) 1989-02-24 1996-01-17 Comalco Alu Process for controlling aluminium smelting cells.
EP0455590B1 (en) * 1990-05-04 1995-06-28 Alusuisse-Lonza Services Ag Regulating and stabilizing the AlF3-content of aluminium electrolysis cells
ZA915511B (en) * 1990-07-17 1992-04-29 Commw Scient Ind Res Org Rock bolt system and method of rock bolting
FR2749858B1 (en) * 1996-06-17 1998-07-24 Pechiney Aluminium METHOD FOR REGULATING THE ALUMINUM CONTENT OF THE BATH OF ELECTROLYSIS TANKS FOR THE PRODUCTION OF ALUMINUM
CA2230882C (en) 1997-03-14 2004-08-17 Dubai Aluminium Company Limited Intelligent control of aluminium reduction cells using predictive and pattern recognition techniques
NO311623B1 (en) * 1998-03-23 2001-12-17 Norsk Hydro As Process for controlling aluminum oxide supply to electrolysis cells for aluminum production
FR2821364B1 (en) 2001-02-28 2004-04-09 Pechiney Aluminium METHOD FOR REGULATING AN ELECTROLYSIS CELL
US6837982B2 (en) 2002-01-25 2005-01-04 Northwest Aluminum Technologies Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell
AU2007333769A1 (en) * 2006-12-19 2008-06-26 Michael Schneller Aluminum production process control
EP2135975A1 (en) 2008-06-16 2009-12-23 Alcan International Limited Method of producing aluminium in an electrolysis cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629079A (en) * 1968-02-23 1971-12-21 Kaiser Aluminium Chem Corp Alumina feed control
US3712857A (en) * 1968-05-20 1973-01-23 Reynolds Metals Co Method for controlling a reduction cell
US3622475A (en) * 1968-08-21 1971-11-23 Reynolds Metals Co Reduction cell control system
FR2487386A1 (en) * 1980-07-23 1982-01-29 Pechiney Aluminium METHOD AND APPARATUS FOR PRECISELY REGULATING THE INTRODUCTION RATE AND THE ALUMINUM CONTENT OF AN IGNATED ELECTROLYSIS TANK, AND APPLICATION TO THE PRODUCTION OF ALUMINUM
US4425201A (en) * 1982-01-27 1984-01-10 Reynolds Metals Company Method for improved alumina control in aluminum electrolytic cells
NO166821C (en) * 1985-02-21 1991-09-04 Aardal & Sunndal Verk As PROCEDURE FOR CONTROL OF THE ALUMINUM OXYDE SUPPLY TO ELECTRIC OVERS FOR ALUMINUM MANUFACTURING.

Also Published As

Publication number Publication date
BR8602039A (en) 1987-01-06
EP0201438A1 (en) 1986-11-12
MY101644A (en) 1991-12-31
US4654129A (en) 1987-03-31
NO172192C (en) 1993-06-16
HU205632B (en) 1992-05-28
OA08324A (en) 1988-02-29
NZ216051A (en) 1989-10-27
ES8800733A1 (en) 1987-11-16
NO172192B (en) 1993-03-08
DE3664058D1 (en) 1989-07-27
JPS61261490A (en) 1986-11-19
CA1251417A (en) 1989-03-21
CN86103165A (en) 1986-11-05
ES554683A0 (en) 1987-11-16
FR2581660B1 (en) 1987-06-05
NO861806L (en) 1986-11-10
AU576152B2 (en) 1988-08-11
IS1347B6 (en) 1989-03-20
ZA863380B (en) 1987-02-25
ATE44165T1 (en) 1989-07-15
AU5715786A (en) 1986-11-13
PL144950B1 (en) 1988-07-30
HUT45102A (en) 1988-05-30
IS3095A7 (en) 1986-11-08
GR861139B (en) 1986-08-21
FR2581660A1 (en) 1986-11-14
CN1006307B (en) 1990-01-03
IN164906B (en) 1989-07-01
TR22683A (en) 1988-03-03

Similar Documents

Publication Publication Date Title
EP0201438B1 (en) Process for accurately regulating the low alumina content of an igneous electrolysis cell for aluminium production
EP0044794B1 (en) Process and apparatus for accurately regulating the feeding rate and the alumina content of an igneous electrolysis, and use thereof in the production of aluminium
US4834842A (en) Method of measuring the effective inhibitor concentration during a deposition of metal from aqueous electrolytes and test apparatus therefor
EP1678350B1 (en) Method and system for controlling addition of powdery materials to the bath of an electrolysis cell for the production of aluminium
EP0156744B1 (en) Process for winning a metal by electrolysis of molten halogenides whereby a simultaneous and continuous double disposition is taking place, and apparatus therefor
EP0814181B1 (en) Process for regulating the alumina content of bath in cells for producing aluminium
CA1329789C (en) Process for the regulation of the acidity of an electrolytic bath by recycling the products emitted by hall-herault cells
Gabe et al. Enhanced mass transfer at the rotating cylinder electrode. II. Development of roughness for solutions of decreasing concentration
Tkacheva et al. Aluminum electrolysis in an inert anode cell
FR2830875A1 (en) Regulation of an electrolytic cell for the production of aluminum involves controlled addition of alumina as a function of the amount of undissolved alumina in the molten bath
CA2215186C (en) Process for regulating bath temperature in an electrolytic cell for aluminum production
Ueda et al. Recovery of aluminum from oxide particles in aluminum dross using AlF 3–NaF–BaCl 2 molten salt
Adcock et al. Measurement of polarization parameters impacting on electrodeposit morphology I: Theory and development of technique
FR2646842A1 (en) PROCESS FOR REDUCING THE SODIUM CHLORIDE CONTENT IN POTASSIUM CHLORIDE AND APPARATUS FOR THE IMPLEMENTATION THEREOF
WO2018202959A1 (en) Method for controlling an aluminium reduction cell
Chipman et al. Application of AC superimposed DC waveforms to bismuth electrorefining
Kjos et al. Electrochemical production of titanium from oxycarbide anodes
US20130277227A1 (en) Method and apparatus for producing silicon
FR2462491A1 (en) METHOD FOR ADJUSTING THE ELECTROLYTIC DEPOSITION OF A METAL IN THE PRESENCE OF IMPURITIES
JP6120243B2 (en) Method for quantitative analysis of aluminum plating solution and method for manufacturing aluminum plating product
EP1119521B1 (en) Method for particle size distribution control in a bayer circuit decomposition chain, comprising an agglomeration phase
EP0198775A1 (en) Process for the continuous monitoring of the dissolved metal concentration in a molten salts bath and its use in the continuous feeding of these metal salts to an electrolysis cell
JPH03223484A (en) Production of praseodymium-containing metal
Rajagopalan et al. Fusibility and density studies of some fluoride mixtures related to electrorefining of aluminium
IT9021054A1 (en) PROCEDURE FOR THE MEASUREMENT AND CONTROL OF THE CONCENTRATION OF ALUMINUM IN ELECTROLYTIC CELLS FOR THE PRODUCTION OF ALUMINUM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19861124

17Q First examination report despatched

Effective date: 19880222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890621

REF Corresponds to:

Ref document number: 44165

Country of ref document: AT

Date of ref document: 19890715

Kind code of ref document: T

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3664058

Country of ref document: DE

Date of ref document: 19890727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900531

Ref country code: CH

Effective date: 19900531

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940418

Year of fee payment: 9

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940531

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86420118.1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960422

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970506

EUG Se: european patent has lapsed

Ref document number: 86420118.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040429

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050505

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050505

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050505