[go: up one dir, main page]

EP0197185A2 - Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load - Google Patents

Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load Download PDF

Info

Publication number
EP0197185A2
EP0197185A2 EP85109800A EP85109800A EP0197185A2 EP 0197185 A2 EP0197185 A2 EP 0197185A2 EP 85109800 A EP85109800 A EP 85109800A EP 85109800 A EP85109800 A EP 85109800A EP 0197185 A2 EP0197185 A2 EP 0197185A2
Authority
EP
European Patent Office
Prior art keywords
tib
hard material
layers
layer
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85109800A
Other languages
German (de)
French (fr)
Other versions
EP0197185A3 (en
EP0197185B1 (en
Inventor
Helmut Dr. Holleck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Priority to AT85109800T priority Critical patent/ATE52815T1/en
Publication of EP0197185A2 publication Critical patent/EP0197185A2/en
Publication of EP0197185A3 publication Critical patent/EP0197185A3/en
Application granted granted Critical
Publication of EP0197185B1 publication Critical patent/EP0197185B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Definitions

  • the invention relates to multi-layer, highly wear-resistant hard material protective layer consisting of different hard material phases for metallic, highly stressed surfaces or other substrates, in which the thickness of the overall protective layer is in the range from 0.1 to 10 ⁇ m.
  • Hard material layers in the form of single or multiple layers, produced in CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) processes on steels or hard metals are one of the major advances in terms of increasing wear resistance and thus the service life of Cutting materials or wearing parts.
  • the hard material layer provides the tough substrate with wear protection by increasing the abrasion resistance of the surface, by lowering the friction and thus the temperature, and by reducing the diffusion and adhesion between the material and the workpiece (or chip).
  • the problem of the composite material lies in the often inadequate adhesion between the base material and the layer, the lack of toughness of the layer and the lack of alternating strength. Attempts have been made to solve this problem through multiple layers, but there have been major improvements achieved compared to single layers, but cannot completely eliminate the weak points of the substrate-layer system.
  • Multi-layer hard material coatings of hard metals have been described, for example, in the Zeitschrift für Metallischen, Volume 75, Issue 11 (November 1984), pages 874 to 88 0 .
  • a ten-layer protective layer was mentioned in which a TiC layer, a Ti (C, N) layer above and a layer sequence of four intermediate layers and four ceramic layers based on Al 2 O 3 were used adjacent to the hard metal.
  • approximately 10 ⁇ m thick, multilayer layers based on titanium carbide, titanium carbonitride and titanium nitride were mentioned.
  • PVD physical vapor deposition
  • the invention has for its object to present Weartikscnichten with improved adhesion, toughness and wear resistance and to create a method for their production. It should be surfaces or substrates of substances with very different expansion coefficients, such as molybdenum with a very low expansion coefficient, or a hard metal with a medium expansion coefficient or high-speed steel with a high expansion Coefficients can be coated without significantly reducing the desired protective layer properties.
  • the individual layers or layers or the hard material particles by sputtering or another physical vapor deposition method on the metallic surface or applied to the substrate is characterized in that the surfaces to be coated are moved during the entire coating process relative to at least two sputtering cathodes of different hard material.
  • Another version of the method according to the invention is that the coating of the surface or of the substrate is carried out with the aid of a cathode consisting of at least two hard materials which form coherent or partially coherent phase boundaries.
  • Cathodes made of TiC and TiB 2 or TiN and TiB 2 or TiC and TiN and TiB 2 can be used for both versions of the method according to the invention.
  • cathode combinations of TiB 2 -WC or TiB 2 -Ti (C, N) or TiB2- (Ti, V) C or TiB2- (Ti, W) C or (Ti, V) B 2 - (Ti, V) C or (Ti, Nb) B 2- (Ti, Nb) C or JB 2 -TiN or VB 2 -WC or HfB 2 -TaC or ZrB 2 -TaC or ZrB 2 -NbC can be used.
  • the successive layers or the very finely divided mixture for example the phases with partially coherent TiC (111) - TiB 2 (0001) - phase boundaries are largely stress-free, tougher, better adhering to the substrate and due to the extremely high proportion of inner phase boundaries with a defined dislocation density make the entire system more wear-resistant than with conventional protective layers. It is important here to coordinate the phases that build up the layer in such a way that coherence relationships between network levels of the respective connection are possible and these are realized during the coating process. With the combination TiC / TiB 2 , these are the most densely packed levels (111) for TiC and (0001) for TiB 2 . In the sputtering process, these phase boundaries can easily be maintained due to the favorable interfacial energy.
  • the samples 5, 6, 7 to be coated are rotated continuously on a turntable 1 with or without heating under two cathodes, one with TiC 3, the other with TiB 2 4, during the entire coating process.
  • the composition and microstructure of the layer can be specifically adjusted by changing the plate rotation speed and the sputtering capacity. It is preferred to choose conditions in which the phase proportions of TiC and TiB 2 are similar and the total layer thickness achieved is 3 to 5 ⁇ m.
  • the calculated particle size (individual layer thickness) is between 0.5 and 40 nm, depending on the application. The smaller "particle sizes", as shown by X-ray images, can no longer separate the individual phases.
  • the service life of the cutting tip which is provided with a finely dispersed TiC / TiB 2 layer14, is approximately twice that of the simply coated12 and 13 respectively.
  • A, D, E mean densely packed Ti planes, with D and E the atomic centers are not in the paper plane.
  • B are the boron planes, C the carbon planes and N the nitrogen planes in the case of TiN.
  • the filled and unfilled circles are the Ti atoms.
  • the dashed line represents a phase boundary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

Die Erfindung betrifft viellagige, hochverschleißfeste, aus unterschiedlichen Hartstoff-Phasen bestehende Härtstoff-Schutzschicht für metallische, stark beanspruchte Oberflächen oder andere Substrate, bei welcherdie Dicke der Gesamtschutzschicht im Bereich von o, 1 bis 10 µm leigt, und ein Verfahren zur deren Herstellung.The invention relates to multi-layer, highly wear-resistant hardening protective layer consisting of different hard material phases for metallic, highly stressed surfaces or other substrates, in which the thickness of the total protective layer is in the range of 0.1 to 10 μm, and a process for the production thereof.

Der Erfindung liegt die Aufgabe zugrunde, Verschleißschutzschichten mit verbesserter Haftung, Zähigkeit und verschleißfestigkeit vorzustellen. Es sollen Oberflächen oder Substrate von Stoffen mit sehr unterschiedlichen Ausdehnungskoeffizienten, wie beispielsweise Molybdän oder ein Hartmetall oder Schnellarbeitsstahl beschichtet werden können ohne wesentliche Einschränkung der gewünschten Schutzschicht-Eigenschaften. Die Aufgabe wird gelöst durch Hartstoff-Schutzschichten, gekennzeichnet durch

  • a) sowohl auf der metallischen Oberfläche als auch untereinander fest haftende Einzelschichten oder -lagen oder feinstdisperse Hartstoff-Teilchen-Gemische mit Einzelschichtdicken oder Teilchengrößen im Bereich von 0,5 nm bis 40 nm,
  • b) durch eine Summenzahl der Einzelschichten oder einen Anteil innerer Phasengrenzen zwischen 100 und 20 000, im Falle 0,5 nm dicker Einzelschichten oder Teilchengrößen, und
  • c) durch in bezug auf das Kirstall-Gitter kohärente oder teilkohärente Phasen-Grenzen.
The invention has for its object to present wear protection layers with improved adhesion, toughness and wear resistance. It should be possible to coat surfaces or substrates of substances with very different expansion coefficients, such as molybdenum or a hard metal or high-speed steel, without significantly restricting the desired protective layer properties. The task is solved by hard material protective layers, characterized by
  • a) both on the metallic surface and also firmly adhering individual layers or layers or finely dispersed hard material-particle mixtures with individual layer thicknesses or particle sizes in the range from 0.5 nm to 40 nm,
  • b) by a total number of individual layers or a proportion of internal phase boundaries between 100 and 20,000, in the case of 0.5 nm thick individual layers or particle sizes, and
  • c) by coherent or partially coherent phase boundaries with respect to the Kirstall lattice.

Description

Die Erfindung betrifft viellagige, hochverschleißfeste, aus unterschiedlichen Hartstoff-Phasen bestehende Hartstoff-Schutzschicht für metallische, stark beanspruchte Oberflächen oder andere Substrate, bei welcher die Dicke der Gesamtschutzschicht im Bereich von 0,1 bis 10 µm liegt.The invention relates to multi-layer, highly wear-resistant hard material protective layer consisting of different hard material phases for metallic, highly stressed surfaces or other substrates, in which the thickness of the overall protective layer is in the range from 0.1 to 10 μm.

Hartstoff-Schutzschichten in Form von Einfach- oder Mehrfachschichten, hergestellt in CVD- (Chemical Vapor Deposition) oder PVD-Verfahren (Physical Vapor Deposition) auf Stählen oder Hartmetallen stellen eine der wesentlichen Fortschritte dar im Hinblick auf eine Erhöhung der Verschleißfestigkeit und damit Standzeit von Schneidwerkstoffen oder Verschleißteilen. Die Hartstoffschicht verleiht dabei dem zähen Substrat einen Verschleißschutz durch Erhöhung des Abrasionswiderstandes der Oberfläche, durch Erniedrigung der Reibung und damit der Temperatur sowie durch Verminderung der Diffusion und Adhäsion zwischen Werkstoff und Werkstück (bzw. Span).Protective hard material layers in the form of single or multiple layers, produced in CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) processes on steels or hard metals are one of the major advances in terms of increasing wear resistance and thus the service life of Cutting materials or wearing parts. The hard material layer provides the tough substrate with wear protection by increasing the abrasion resistance of the surface, by lowering the friction and thus the temperature, and by reducing the diffusion and adhesion between the material and the workpiece (or chip).

Die Problematik des zusammengesetzten Werkstoffes liegt in der oftmals ungenügenden Haftung zwischen Grundwerkstoff und Schicht, der mangelnden Zähigkeit der Schicht sowie der mangelnden Wechselfestigkeit. Man hat versucht, diese Problematik durch Mehrfachschichten zu lösen, hat wesentliche Verbesserungen gegenüber Einfachschichten erreicht, die Schwachstellen des Systems Substrat-Schicht aber nicht gänzlich eliminieren können.The problem of the composite material lies in the often inadequate adhesion between the base material and the layer, the lack of toughness of the layer and the lack of alternating strength. Attempts have been made to solve this problem through multiple layers, but there have been major improvements achieved compared to single layers, but cannot completely eliminate the weak points of the substrate-layer system.

Mehrlagige Hartstoff-Beschichtungen von Hartmetallen wurden z.B.-in der Zeitschrift für Metallkunde, Band 75, Heft 11 (November 1984), Seiten 874 bis 880, beschrieben. Beispielsweise wurde eine zehnlagige Schutzschicht, bei welcher angrenzend an das Hartmetall eine TiC-, darüber eine Ti(C,N)-Schicht und darüber eine Schichtfolge aus vier Zwischenschichten und vier Keramikschichten auf der Basis von Al2O3 verwendet wurden, erwähnt. An anderer Stelle dieser Veröffentlichung wurden ca. 10µm dicke, mehrlagige Schichten auf der Basis von Titancarbid, Titancarbonitrid und Titannitrid erwähnt. Für ausgewählte Beschichtungstemperaturen von unter 773 K wurden Verfahren der Physical Vapor Deposition (PVD), darunter das reaktive Kathodenzerstäuben (Sputtern) bei Drücken von ≤ 10-2 mbar, mit N2 oder Ar eingestellt, für brauchbar befunden.Multi-layer hard material coatings of hard metals have been described, for example, in the Zeitschrift für Metallkunde, Volume 75, Issue 11 (November 1984), pages 874 to 88 0 . For example, a ten-layer protective layer was mentioned in which a TiC layer, a Ti (C, N) layer above and a layer sequence of four intermediate layers and four ceramic layers based on Al 2 O 3 were used adjacent to the hard metal. Elsewhere in this publication, approximately 10 μm thick, multilayer layers based on titanium carbide, titanium carbonitride and titanium nitride were mentioned. For selected coating temperatures below 773 K, methods of physical vapor deposition (PVD), including reactive sputtering at pressures of ≤ 10 -2 mbar, set with N 2 or Ar, were found to be useful.

Der Erfindung liegt die Aufgabe zugrunde, Verschleißschutzscnichten mit verbesserter Haftung, Zähigkeit und Verschleißfestigkeit vorzustellen und ein Verfahren zu deren Herstellung zu schaffen. Es sollen Oberflächen oder Substrate von Stoffen mit sehr unterschiedlichen Ausdehnungkoeffizienten, wie beispielsweise Molybdän mit einem sehr niedrigen Ausdehnungskoeffizient, oder ein Hartmetall mit einem mittleren Ausdehnungskoeffizienten oder Schnellarbeitsstahl mit einem hohen Ausdehnungskoeffizienten beschichtet werden können ohne wesentliche Einschränkung der gewünschten Schutzschicht-Eigenschaften.The invention has for its object to present Wearschutzscnichten with improved adhesion, toughness and wear resistance and to create a method for their production. It should be surfaces or substrates of substances with very different expansion coefficients, such as molybdenum with a very low expansion coefficient, or a hard metal with a medium expansion coefficient or high-speed steel with a high expansion Coefficients can be coated without significantly reducing the desired protective layer properties.

Die Aufgabe wird erfindungsgemäß gelöst durch eine viellagige, hochverschleißfeste, aus unterschiedlichen Hartstoff-Phasen bestehende Hartstoff-Schutzschicht für metallische, stark beanspruchte Oberflächen oder Substrate, bei welcher die Dicke der Gesamtschutzschicht im Bereich von 0,1 bis 10 µm liegt, gekennzeichnet durch

  • a) sowohl auf der metallischen Oberfläche als auch untereinander fest haftende Einzelschichten oder- lagen oder feinstdisperse Hartstoff-Teilchen-Gemische,mit Einzelschichtdicken oder Teilchengrößen im Bereich von 0,5 nm bis 40 nm,
  • b) durch eine Summenzahl der Einzelschichten oder einen Anteil innerer Phasengrenzen zwischen 100 und 20 000, im Falle 0,5 nm dicker Einzelschichten oder Teilchengrößen, und
  • c) durch in bezug auf das Kristall-Gitter kohärente oder teilkohärente Phasen-Grenzen.
The object is achieved according to the invention by a multi-layer, highly wear-resistant hard material protective layer consisting of different hard material phases for metallic, highly stressed surfaces or substrates, in which the thickness of the overall protective layer is in the range from 0.1 to 10 μm, characterized by
  • a) both on the metallic surface and also firmly adhering individual layers or layers or finely dispersed hard material-particle mixtures, with individual layer thicknesses or particle sizes in the range from 0.5 nm to 40 nm,
  • b) by a total number of individual layers or a proportion of internal phase boundaries between 100 and 20,000, in the case of 0.5 nm thick individual layers or particle sizes, and
  • c) by coherent or partially coherent phase boundaries with respect to the crystal lattice.

Das erfindungsgemäße Verfahren zur Herstellung viellagiger, hochverschleißfester, aus unterschiedlichen Hartstoff-Phasen bestehenden Hartstoff-Schutzschichten . nach Anspruch 1, bei welchem die Einzelschichten oder -lagen oder die Hartstoff-Teilchen durch Kathodenzerstäubung oder eine andere Physical Vapor Deposition-Methode auf die metallische Oberfläche oder auf das Substrat aufgebracht werden, ist dadurch gekennzeichnet, daß die zu beschichtenden Oberflächen während des gesamten Beschichtungsvorganges relativ zu mindestens zwei Zerstäubungskathoden unterschiedlichen Hartstoffmaterials bewegt werden. Eine andere Version des erfindungsgemäßen Verfahrens besteht darin, daß die Beschichtung der Oberfläche oder des Substrats mit Hilfe einer Kathode, bestehend aus mindestens zwei miteinander kohärente oder teilkohärente Phasengrenzen bildenden Hartstoffen, durchgeführt wird.The method according to the invention for the production of multilayer, highly wear-resistant hard material protective layers consisting of different hard material phases. according to claim 1, wherein the individual layers or layers or the hard material particles by sputtering or another physical vapor deposition method on the metallic surface or applied to the substrate, is characterized in that the surfaces to be coated are moved during the entire coating process relative to at least two sputtering cathodes of different hard material. Another version of the method according to the invention is that the coating of the surface or of the substrate is carried out with the aid of a cathode consisting of at least two hard materials which form coherent or partially coherent phase boundaries.

Für beide Versionen des erfindungsgemäßen Verfahrens können Kathoden aus TiC und TiB2 oder TiN und TiB2 oder TiC und TiN und TiB2 verwendet werden.Cathodes made of TiC and TiB 2 or TiN and TiB 2 or TiC and TiN and TiB 2 can be used for both versions of the method according to the invention.

Außerdem können Kathoden-Kombinationen aus TiB2-WC oder TiB2-Ti (C,N) oder TiB2-(Ti,V)C oder TiB2-(Ti,W)C oder (Ti,V)B2- (Ti, V) C oder (Ti,Nb)B 2-(Ti,Nb)C oder JB2-TiN oder VB2-WC oder HfB2-TaC oder ZrB2-TaC oder ZrB2-NbC verwendet werden.In addition, cathode combinations of TiB 2 -WC or TiB 2 -Ti (C, N) or TiB2- (Ti, V) C or TiB2- (Ti, W) C or (Ti, V) B 2 - (Ti, V) C or (Ti, Nb) B 2- (Ti, Nb) C or JB 2 -TiN or VB 2 -WC or HfB 2 -TaC or ZrB 2 -TaC or ZrB 2 -NbC can be used.

Die aufeinanderfolgenden Schichten bzw. das feinstdisperse Gemisch, beispielsweise der Phasen mit teilkohärenten TiC (111) - TiB2 (0001) - Phasengrenzen sind durch den extrem hohen Anteil innerer Phasen- grenzen mit definierter Versetzungsdichte weitgehend spannungsfrei, zäher, besser haftend auf dem Substrat und machen damit das Gesamtsystem verschleißfester als bei bisher üblichen Schutzschichten. Wichtig ist hierbei die Abstimmung der Phasen, die die Schicht aufbauen in der Weise, daß Kohärenzbeziehungen zwischen Netzebenen der jeweiligen Verbindungen möglich sind und diese während des Beschichtungsvorganges realisiert werden. Bei der Kombination TiC/TiB2 sind dies die dichtest gepackten Ebenen (111) für TiC und (0001) für TiB2. Beim Sputtervorgang lassen sich diese Phasengrenzen wegen der günstigen Grenzflächenenergie leicht erhalten. Man läßt z.B. die zu beschichtenden Proben 5, 6, 7 gemäß Figur 1 auf einem Drehteller 1 mit oder ohne Heizung ständig unter zwei Kathoden, eine mit TiC 3, die andere mit TiB2 4 bestückt, während des gesamten Beschichtungsvorganges rotieren. Durch Änderung der Tellerdrehgeschwindigkeit und der Sputterleistung läßt sich die Zusammensetzung und Mikrostruktur der Schicht gezielt einstellen. Man wählt bevorzugt Bedingungen, wei welchen die Phasenanteile von TiC und TiB2 ähnlich sind, und die erzielte Gesamtschichtdicke 3 bis 5 µm beträgt. Die errechnete Teilchengröße (Einzelschichtdicke) liegt je nach Anwendungszweck zwischen 0,5 und 40 nm. Bei den kleineren "Teilchengrößen" lassen sich, wie Röntgenaufnahmen zeigen, die einzelnen Phasen nicht mehr trennen. Man beobachtet eine röntgenographische amorphe Mischschicht, die so stabil ist, daß auch eine Wärmezufuhr bis 1200°C keine Rekristallisation bewirkt. Bei einer Aufnahme der Bruchfläche einer sogenannten Simultanschicht, hergestellt mit Kathoden, bestehend aus beispielsweise TiB2 und TiC gemäß Anspruch 2, erkennt man den gleichmäßigen Aufbau der Schicht ohne Stengelkristalle oder Inhomogenitäten und die gute Haftung. Diese gute Haftung wird auch dokumentiert durch den Vergleich der Ergebnisse, die mit Hilfe des sogenannten Scratchtests erhalten wurden. Dieser relative Haftfestigkeitstest belegt eindrucksvoll den Spannungsabbau in der feindispersen TiC/TiB2-Schicht im Vergleich zu den Einfachschichten von TiC und TiB2. Auch Härteeindrücke in eine TiC-Schicht einerseits und eine feinstdisperse TiC/TiB2-Schicht andererseits machen das unterschiedliche Zähigkeitsverhalten deutlich. Infolge der "Anpassungsfähigkeit" dieser relativ zähen Schicht können als Substrate Stoffe mit sehr unterschiedlichen Ausdehnungskoeffizienten gewählt werden.The successive layers or the very finely divided mixture, for example the phases with partially coherent TiC (111) - TiB 2 (0001) - phase boundaries are largely stress-free, tougher, better adhering to the substrate and due to the extremely high proportion of inner phase boundaries with a defined dislocation density make the entire system more wear-resistant than with conventional protective layers. It is important here to coordinate the phases that build up the layer in such a way that coherence relationships between network levels of the respective connection are possible and these are realized during the coating process. With the combination TiC / TiB 2 , these are the most densely packed levels (111) for TiC and (0001) for TiB 2 . In the sputtering process, these phase boundaries can easily be maintained due to the favorable interfacial energy. For example, the samples 5, 6, 7 to be coated are rotated continuously on a turntable 1 with or without heating under two cathodes, one with TiC 3, the other with TiB 2 4, during the entire coating process. The composition and microstructure of the layer can be specifically adjusted by changing the plate rotation speed and the sputtering capacity. It is preferred to choose conditions in which the phase proportions of TiC and TiB 2 are similar and the total layer thickness achieved is 3 to 5 μm. The calculated particle size (individual layer thickness) is between 0.5 and 40 nm, depending on the application. The smaller "particle sizes", as shown by X-ray images, can no longer separate the individual phases. An X-ray amorphous mixed layer is observed which is so stable that even a heat supply up to 1200 ° C does not cause recrystallization. If the fracture surface of a so-called simultaneous layer, made with cathodes consisting of, for example, TiB 2 and TiC according to claim 2, is recorded, the uniform structure of the layer without stem crystals or inhomogeneities and the good adhesion can be seen. This good liability is also documented by comparing the results obtained with the help of the so-called scratch test. This relative adhesive strength test impressively demonstrates the stress reduction in the finely dispersed TiC / TiB 2 layer compared to the single layers of TiC and TiB 2 . Also hardness impressions in a TiC layer on the one hand and one finely dispersed TiC / TiB 2 layer on the other hand make the different toughness behavior clear. Due to the "adaptability" of this relatively tough layer, substances with very different expansion coefficients can be selected as substrates.

Verschleißtests wurden durchgeführt, entsprechend Figur 2, mit Schneidplättchen aus Schnellarbeitsstahl, unbeschichtet (Kurve 11), TiC; TiB2- und simultan TiC/TiB2-beschichtet (Kurven12 bis14). Die Simultan-TiC/TiB2-Schicht hatte eine rechnerisch ermittelte TiC- bzw. TiB2-Einzelschichtdicke von 2.5 nm und eine Gesamtschichtdicke von 2.9 /um, d.h. theoretisch in der Schicht senkrecht zur Substratoberfläche über 103 teilkohärente TiC/TiB -Grenzflächen.Wear tests were carried out, as in FIG. 2, with cutting tips made of high-speed steel, uncoated (curve 11), TiC; TiB 2 - and simultaneously TiC / TiB 2 -coated (curves 12 to 14). The simultaneous TiC / TiB 2 layer had a calculated TiC or TiB 2 single layer thickness of 2.5 nm and a total layer thickness of 2.9 / μm, ie theoretically in the layer perpendicular to the substrate surface over 10 3 partially coherent TiC / TiB interfaces.

Obwohl Drehbedingungen, Schneidplättchengeometrie und Beschichtungsvorgang nicht optimiert wurden, ergibt sich, wie Figur 2 dokumentiert, eine etwa verdoppelte Standzeit der mit einer feinstdispersen TiC/TiB2-Schicht14 versehenen Schneidplatte im Vergleich mit den einfach beschichteten12 bzw.13.Although the turning conditions, cutting tip geometry and coating process have not been optimized, as shown in Figure 2, the service life of the cutting tip, which is provided with a finely dispersed TiC / TiB 2 layer14, is approximately twice that of the simply coated12 and 13 respectively.

Eine theoretische Betrachtung der Struktur- und Kohärenzbeziehungen der Hartstoffverbindungen ergibt eine noch bessere Anpassung der Grenzflächen, z.B. bei Erzeugung einer feinstdispersen Ti(C,N)/TiB2-Schicht. Dies verdeutlicht Figur 3, in welcher die in der Schicht erhaltenen Grenzflächen schematisch dargestellt sind.A theoretical consideration of the structure and coherence relationships of the hard material compounds results in an even better adaptation of the interfaces, for example when producing a finely dispersed Ti (C, N) / TiB 2 layer. This is illustrated in FIG. 3, in which the interfaces obtained in the layer are shown schematically.

Hierbei bedeuten A, D, E dicht gepackte Ti-Ebenen, bei D und E liegen die Atomzentren nicht in der Papierebene. B sind die Borebenen, C die Kohlenstoffebenen bzw. N die Stickstoffebenen im Falle von TiN. Die ausgefüllten und nicht ausgefüllten Kreise sind die Ti-Atome. Die gestrichelte Linie stellt eine Phasengrenze dar.Here, A, D, E mean densely packed Ti planes, with D and E the atomic centers are not in the paper plane. B are the boron planes, C the carbon planes and N the nitrogen planes in the case of TiN. The filled and unfilled circles are the Ti atoms. The dashed line represents a phase boundary.

Claims (7)

1. Schneidplatten aus Schnellarbeitsstahl oder Hartmetall wurden fein poliert (Diamantpaste 3 µm), im Ultraschallbad 5 min und mit reinem Alkohol gereinigt und anschließend auf den Substratteller einer Sputteranlage entweder eben oder 45° gekantet (Schneidecke nach oben) gelegt. Der Kessel wurde bis auf 2 x 10-6 mbar evakuiert und anschließend mit hochreinem Argon bis zu einem Druck von 2.0 x 10-2 mbar aufgefüllt. Die Proben wurden 10 min mit einer Leistung von 1000 Watt HF geätzt. Der Argondruck wurdedann auf 1.3 x 10-2 abgesenkt, die Kathode anschließend 1 min mit einer Leistung von 1250 bzw. 800 Watt gereinigt (Sputtern auf die Blende). Der Substratteller wurde mit 1.6 Umdrehungen/Minute gedreht. Von der TiB2-Kathode wurdemit einer Leistung von 1250 Watt, von TiC-Kathode mit 800 Watt, 5 Stunden gesputtert. Es ergab sich eine homogene 4.1 µm dicke Schicht. Dies entspricht bei einer "Einzelschichtdicke von 4.4 nm etwa 103 TiC/TiB2 Grenzflächen. -1. Cutting plates made of high-speed steel or hard metal were finely polished (diamond paste 3 µm), cleaned in an ultrasonic bath for 5 min and with pure alcohol and then placed on the substrate plate of a sputtering system either flat or at 45 ° (cutting corner up). The boiler was evacuated to 2 x 10 -6 mbar and then filled with high-purity argon up to a pressure of 2.0 x 10-2 mbar. The samples were etched for 10 minutes with a power of 1000 watts HF. The argon pressure was then reduced to 1.3 x 10 -2 , the cathode was then cleaned for 1 min with a power of 1250 or 800 watts (sputtering on the screen). The substrate plate was rotated at 1.6 revolutions / minute. The TiB 2 cathode was sputtered for 5 hours with a power of 1250 watts, of TiC cathode with 800 watts. The result was a homogeneous 4.1 µm thick layer. With a "single layer thickness of 4.4 nm, this corresponds to approximately 10 3 TiC / TiB 2 interfaces. 2. Gleiche Vorbereitungen wie bei Beispiel 1, Ätzen 10 min mit 500 Watt, Arbeitsdruck 1.2 x 10 2 mbar Argon, TiB2 Sputterleistung 650 Watt, TiC Sputterleistung 500 Watt, Zeit 15 h. Schichtdicke 7 /um, Einzelschichtdicke 2.3 nm,~3 x 103 TiC/TiB2 Grenzflächen,2. The same preparations as in Example 1, etching for 10 min with 500 watts, working pressure 1.2 x 10 2 mbar argon, TiB 2 sputtering power 650 watts, TiC sputtering power 500 watts, time 15 hours. Layer thickness 7 / um, single layer thickness 2.3 nm, ~ 3 x 10 3 TiC / TiB 2 interfaces, 1. Viellagige, hochverschleißfeste, aus unterschiedlichen Hartstoff-Phasen bestehende Hartstoff-Schutzschicht für metallische, stark beanspruchte Oberflächen oder andere Substrate, bei welcher die Dicke der Gesamtschutzschicht im Bereich von 0,1 bis 10 /um liegt, gekennzeichnet.durch a) sowohl auf der metallischen Oberfläche als auch unter-- einander fest haftende Einzelschichten oder -lagen oder feinstdisperse Hartstoff-Teilchen-Gemische mit Einzelschichtdicken oder Teilchengrößen im Bereich von O,5 nm bis 40 nm, b) durch eine Summenzahl der Einzelschichten oder einen Anteil innerer Phasengrenzen zwischen 100.und 20 000, im Falle 0,5 nm dicker Einzelschichten oder Teilchengrößen,und c) durch in bezug auf das Kristall-Gitter kohärente oder teilkohärente Phasen-Grenzen. 1. Multilayered, highly wear-resistant, consisting of different hard-material-phase hard substance protective layer for metallic, highly stressed surfaces or other substrates, in which the total thickness of the protective layer is in the range of 0.1 to 10 / um is, gekennzeichnet.durch a) both on the metallic surface as well as individual layers or layers adhering firmly to one another or finely dispersed hard material-particle mixtures with individual layer thicknesses or particle sizes in the range from 0.5 nm to 40 nm, b) by a total number of the individual layers or a proportion of internal phase boundaries between 100 and 20,000, in the case of 0.5 nm thick individual layers or particle sizes, and c) by coherent or partially coherent phase boundaries with respect to the crystal lattice. 2. Verfahren zur Herstellung viellagiger, hochverschleißfester, aus unterschiedlichen Hartstoff-Phasen bestehenden Hartstoff-Schutzschichten nach Anspruch 1, bei welchem die Einzelschichten oder -lagen oder die Hartstoff-Teilchen durch Kathodenzerstäubung oder eine andere Physical Vapor Deposition-Methode auf die metallische Oberfläche oder auf das Substrat aufgebracht werden,
dadurch gekennzeichnet, daß die zu beschichtenden Oberflächen während des gesamten Beschichtungsvorganges relativ zu mindestens zwei Zerstäubungskathoden unterschiedlichen Hartstoffmaterials bewegt werden.
2. A method for producing multi-layer, highly wear-resistant, hard material protective layers consisting of different hard material phases according to claim 1, in which the individual layers or layers or the hard material particles by sputtering or another physical vapor deposition method the metallic surface or are applied to the substrate,
characterized in that the surfaces to be coated are moved during the entire coating process relative to at least two sputtering cathodes of different hard material.
3. Verfahren zur Herstellung viellagiger, hochverschleißfester, aus unterschiedlichen Hartstoff-Phasen bestehenden Hartstoff-Schutzschichten nach Anspruch 1, bei welchem die Einzelschichten oder -lagen oder die Hartstoff-Teilchen durch Kathodenzerstäubung oder eine andere Physical Vapor Deposition-Methode auf die metallische Oberfläche oder auf das Substrat aufgebracht werden, dadurch gekennzeichnet, daß
die Beschichtung der Oberfläche oder des Substrats mit Hilfe einer Kathode, bestehend aus mindestens zwei miteinander kohärente oder teilkohärente Phasengrenzen bildenden Hartstoffen, durchgeführt wird.
3. A method for producing multi-layer, highly wear-resistant, hard material protective layers consisting of different hard material phases according to claim 1, in which the individual layers or layers or the hard material particles by sputtering or another physical vapor deposition method on the metallic surface or the substrate are applied, characterized in that
the coating of the surface or of the substrate is carried out with the aid of a cathode consisting of at least two hard materials which form coherent or partially coherent phase boundaries.
4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß
Kathoden aus TiC und TiB2 oder TiN und TiB2 oder TiC und TiN und TiB2 verwendet werden.
4. The method according to any one of the preceding claims, characterized in that
Cathodes made of TiC and TiB 2 or TiN and TiB 2 or TiC and TiN and TiB 2 are used.
5. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, daß Kathoden-Kombinationen
aus TiB2-WC oder TiB2-Ti(C,N) oder TiB2-(Ti,V)C oder TiB2-(Ti,W)C oaer(Ti,V)B2-(Ti,V)C oder (Ti,Nb)B2-(Ti,Nb)C oder VB2-TiN oder VB2-WC oder HfB2-TaC oder ZrB2-TaC oder ZrB2-NbC verwendet werden.
5. The method according to any one of claims 1 to 3,
characterized in that cathode combinations
from TiB 2 -WC or TiB 2 -Ti (C, N) or TiB 2 - (Ti, V) C or TiB 2 - (Ti, W) Co or (Ti, V) B2- (Ti, V) C or (Ti, Nb) B 2 - (Ti, Nb) C or VB 2 -TiN or VB 2 -WC or HfB 2 -TaC or ZrB 2 -TaC or ZrB 2 -NbC can be used.
EP85109800A 1985-04-11 1985-08-05 Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load Expired - Lifetime EP0197185B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85109800T ATE52815T1 (en) 1985-04-11 1985-08-05 MULTI-LAYER, HIGHLY WEAR-RESISTANT HARD COMPONENT PROTECTIVE LAYER FOR METALLIC, HEAVY-DUTY SURFACES OR SUBSTRATES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853512986 DE3512986A1 (en) 1985-04-11 1985-04-11 VIELLAGE, HIGH-WEAR-RESISTANT HARD MATERIAL PROTECTIVE LAYER FOR METALLIC, STRICTLY STRESSED SURFACES OR SUBSTRATES
DE3512986 1985-04-11

Publications (3)

Publication Number Publication Date
EP0197185A2 true EP0197185A2 (en) 1986-10-15
EP0197185A3 EP0197185A3 (en) 1988-03-30
EP0197185B1 EP0197185B1 (en) 1990-05-16

Family

ID=6267732

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109800A Expired - Lifetime EP0197185B1 (en) 1985-04-11 1985-08-05 Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load

Country Status (5)

Country Link
US (1) US4835062A (en)
EP (1) EP0197185B1 (en)
JP (1) JPS61235555A (en)
AT (1) ATE52815T1 (en)
DE (1) DE3512986A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022746A1 (en) * 1992-05-01 1993-11-11 National Research Council Of Canada Optically variable coins, medals, tokens and other non-fibrous articles and method for making same
EP0701982A1 (en) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Limited Layered film made of ultrafine particles and a hard composite material for tools possessing the film
WO1998010120A1 (en) * 1996-09-03 1998-03-12 Balzers Aktiengesellschaft Workpiece with wear-protective coating
AT16481U1 (en) * 2018-04-20 2019-10-15 Plansee Composite Mat Gmbh Target and method of making a target

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433988A (en) * 1986-10-01 1995-07-18 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
US5310603A (en) * 1986-10-01 1994-05-10 Canon Kabushiki Kaisha Multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray
JPS63125602A (en) * 1986-11-12 1988-05-28 Sumitomo Electric Ind Ltd Hard alloy for tools
DE3811907C1 (en) * 1988-04-09 1989-08-03 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe, De
DE3830525A1 (en) * 1988-09-08 1990-03-22 Beck August Gmbh Co CARBIDE CUTTING PLATE COATED WITH HARD MATERIAL AND METHOD FOR THEIR PRODUCTION
JP2793696B2 (en) * 1990-05-17 1998-09-03 神鋼コベルコツール株式会社 Wear resistant coating
JPH05198575A (en) * 1991-05-01 1993-08-06 Kobe Steel Ltd Corrosion-resistant a1 or a1 alloy material
DE69319531T2 (en) * 1992-10-12 1999-04-15 Sumitomo Electric Industries, Ltd., Osaka Ultra thin film laminate
JP2638406B2 (en) * 1992-10-26 1997-08-06 神鋼コベルコツール株式会社 Wear resistant multilayer hard film structure
US5783295A (en) * 1992-11-09 1998-07-21 Northwestern University Polycrystalline supperlattice coated substrate and method/apparatus for making same
US5789071A (en) * 1992-11-09 1998-08-04 Northwestern University Multilayer oxide coatings
US5952085A (en) * 1994-03-23 1999-09-14 Rolls-Royce Plc Multiple layer erosion resistant coating and a method for its production
GB9405744D0 (en) * 1994-03-23 1994-05-11 Rolls Royce Plc A multilayer erosion resistant coating and a method for its production
DE69519341T2 (en) * 1994-08-01 2001-03-15 Sumitomo Electric Industries, Ltd. Superhard composite material for tools
EP0709483B1 (en) 1994-10-28 2002-04-10 Sumitomo Electric Industries, Ltd. Multilayer material
DE19503070C1 (en) 1995-02-01 1996-08-14 Karlsruhe Forschzent Wear protection layer
US5750207A (en) * 1995-02-17 1998-05-12 Si Diamond Technology, Inc. System and method for depositing coating of modulated composition
US5681653A (en) * 1995-05-11 1997-10-28 Si Diamond Technology, Inc. Diamond cutting tools
US5593234A (en) * 1995-05-16 1997-01-14 Ntn Corporation Bearing assembly with polycrystalline superlattice coating
US5588975A (en) * 1995-05-25 1996-12-31 Si Diamond Technology, Inc. Coated grinding tool
SE518145C2 (en) * 1997-04-18 2002-09-03 Sandvik Ab Multilayer coated cutting tool
JP4185172B2 (en) * 1997-06-19 2008-11-26 住友電工ハードメタル株式会社 Coated hard tool
DE10016958A1 (en) * 2000-04-06 2001-10-18 Widia Gmbh Process for the production of multilayer layers on substrate bodies and composite material, consisting of a coated substrate body
US6634781B2 (en) 2001-01-10 2003-10-21 Saint Gobain Industrial Ceramics, Inc. Wear resistant extruder screw
SE522722C2 (en) * 2001-03-28 2004-03-02 Seco Tools Ab Cutting tool coated with titanium diboride
US6660133B2 (en) 2002-03-14 2003-12-09 Kennametal Inc. Nanolayered coated cutting tool and method for making the same
DE102006046917C5 (en) 2006-10-04 2014-03-20 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
DE102006046915C5 (en) 2006-10-04 2015-09-03 Federal-Mogul Burscheid Gmbh Piston ring for internal combustion engines
JP4916021B2 (en) * 2007-09-26 2012-04-11 日立ツール株式会社 Film
DE102007058564A1 (en) * 2007-11-30 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Smooth wear-protection coating for metal or ceramic components or tools, deposits layers of alternating structure to limit growth of defects and prevent unacceptable surface roughness
JP5420558B2 (en) * 2007-12-06 2014-02-19 セラティチット オーストリア ゲゼルシャフト ミット ベシュレンクテル ハフツング Cutting tool and manufacturing method thereof
CN101643889B (en) * 2008-08-07 2012-10-10 三菱重工业株式会社 Part for rotary machine and its method of manufacture
DE102009002868A1 (en) 2009-05-06 2010-11-18 Inncoa Gmbh Method for applying a multi-layered layer structure to a substrate and substrate having a multi-layered layer structure
US8267805B2 (en) * 2009-10-01 2012-09-18 Lyle Dean Johnson Three in one-HBC(hand, belly, chest) putter
DE112014001619B4 (en) * 2013-03-25 2018-06-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard material layer system with excellent wear resistance
JP6155204B2 (en) * 2014-02-21 2017-06-28 株式会社神戸製鋼所 Hard coating and method for forming the same
WO2017159030A1 (en) * 2016-03-14 2017-09-21 株式会社神戸製鋼所 Hard coating and hard coating-covered member
CN112063983B (en) * 2020-07-31 2021-11-05 广东工业大学 Belt HfB2Coated cutting tool and method for producing the same
CN116837346B (en) * 2023-08-31 2023-10-31 赣州澳克泰工具技术有限公司 Cutter with TiBN coating and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073717A (en) * 1958-12-31 1963-01-15 Robert J Pyle Coated carbon element for use in nuclear reactors and the process of making the element
DE1951362B2 (en) * 1969-10-11 1971-12-02 W.C. Heraeus Gmbh, 6450 Hanau PROCESS FOR COVERING A PEN WITH A LAYER OF HARD MATERIAL
DE1954366C2 (en) * 1969-10-29 1972-02-03 Heraeus Gmbh W C Method and device for the production of hard coatings from titanium and / or tantalum compounds
SE367217B (en) * 1973-09-17 1974-05-20 Sandvik Ab
AT328254B (en) * 1974-06-25 1976-03-10 Plansee Metallwerk HOBBING CUTTERS
AT350285B (en) * 1974-08-07 1979-05-25 Plansee Metallwerk COVERED, METAL USE ITEMS
US4060471A (en) * 1975-05-19 1977-11-29 Rca Corporation Composite sputtering method
CH621579A5 (en) * 1977-06-10 1981-02-13 Stellram Sa Hard metal wear piece, especially for tools
CH624741A5 (en) * 1977-01-21 1981-08-14 Suisse Horlogerie Rech Lab Precision rolling bearing
CH632944A5 (en) * 1978-06-22 1982-11-15 Stellram Sa HARD METAL WEAR.
US4264682A (en) * 1978-10-27 1981-04-28 Hitachi Metals, Ltd. Surface hafnium-titanium compound coated hard alloy material and method of producing the same
FR2451949A1 (en) * 1979-03-22 1980-10-17 Nl Vintage PROCESS FOR COATING OBJECTS WITH A HARD MATERIAL THAT CAN BE EXERCISED COMMERCIALLY AND OBJECTS MANUFACTURED BY THIS PROCESS
DE2917348C2 (en) * 1979-04-28 1984-07-12 Fried. Krupp Gmbh, 4300 Essen Wear-resistant composite body
JPS55154565A (en) * 1979-05-22 1980-12-02 Hitachi Metals Ltd Surface-covered sintered hard alloy member
US4403015A (en) * 1979-10-06 1983-09-06 Sumitomo Electric Industries, Ltd. Compound sintered compact for use in a tool and the method for producing the same
US4430183A (en) * 1980-10-30 1984-02-07 The United States Of America As Represented By The United States Department Of Energy Method of making coherent multilayer crystals
DE3152742C2 (en) * 1981-02-23 1985-06-27 Vsesojuznyj naučno-issledovatel'skij instrumental'nyj institut, Moskva Tool for machining with a multi-layer coating
DE3112460C2 (en) * 1981-03-28 1983-01-20 Fried. Krupp Gmbh, 4300 Essen Process for the production of a composite body and application of this process
JPS599169A (en) * 1982-07-06 1984-01-18 Ricoh Co Ltd Production of thin film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993022746A1 (en) * 1992-05-01 1993-11-11 National Research Council Of Canada Optically variable coins, medals, tokens and other non-fibrous articles and method for making same
EP0701982A1 (en) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Limited Layered film made of ultrafine particles and a hard composite material for tools possessing the film
US5700551A (en) * 1994-09-16 1997-12-23 Sumitomo Electric Industries, Ltd. Layered film made of ultrafine particles and a hard composite material for tools possessing the film
WO1998010120A1 (en) * 1996-09-03 1998-03-12 Balzers Aktiengesellschaft Workpiece with wear-protective coating
US6395379B1 (en) 1996-09-03 2002-05-28 Balzers Aktiengesellschaft Workpiece with wear-protective coating
AT16481U1 (en) * 2018-04-20 2019-10-15 Plansee Composite Mat Gmbh Target and method of making a target

Also Published As

Publication number Publication date
JPH0580547B2 (en) 1993-11-09
DE3512986A1 (en) 1986-10-16
DE3512986C2 (en) 1988-02-04
EP0197185A3 (en) 1988-03-30
ATE52815T1 (en) 1990-06-15
JPS61235555A (en) 1986-10-20
EP0197185B1 (en) 1990-05-16
US4835062A (en) 1989-05-30

Similar Documents

Publication Publication Date Title
EP0197185B1 (en) Multilayered and highly wear-resistant protective coating of hard material for metallic surfaces or substrates subjected to a high load
DE60309992T2 (en) Precipitation hardened wear protection layer
EP0306077B1 (en) Process for the production of multilayer coated hard metal parts
DE69129857T2 (en) CVD AND PVD COATED CUTTING TOOLS
DE69216218T2 (en) Erosion-resistant and abrasion-resistant multi-layer material
DE69319531T2 (en) Ultra thin film laminate
EP0513662B1 (en) Work piece coated with a hard layer and process for coating with the layer
DE69706335T2 (en) Boron-doped titanium nitride, coating consisting of this new connection of a substrate and body with such a coating
DE69527124T2 (en) Hard composite material for tools
DE3104581C2 (en) Article made of a superalloy with a covering layer and method for its manufacture
EP2408945B1 (en) Cutting tool
EP1365045B1 (en) TiBN coating
EP0598762A1 (en) Tool with wear-resistant cutting edge made of cubic boron nitride or polycrystalline cubic boron nitride, a method of manufacturing the tool and its use.
DE68909629T2 (en) Erosion and wear-resistant composite coating system.
EP2275585A1 (en) Workpiece comprising an alcr-containing hard material layer and production method
EP1726687A2 (en) Coated tool
DE4112218A1 (en) COATING SYSTEMS FOR TITANIUM OXIDATION PROTECTION
DE602004003547T2 (en) Process for coating a cutting tool.
EP0748395A1 (en) METHOD FOR PRODUCING LAYERS FROM CUBIC BORNITRIDE
EP2171121B1 (en) Tool with multilayered metal oxide coating and method of manufacturing the coated tool
DE3811907C1 (en)
EP0143889A2 (en) Coated hard metal body
WO2001077408A1 (en) Substrate body coated with multiple layers and method for the production thereof
DE3831933A1 (en) DEGRADED OXYCARBURIZED AND OXYCARBONITIZED MULTI-PHASE MATERIALS
EP0783596A1 (en) Composite body, use of this composite body and process for its preparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT FR GB SE

XX Miscellaneous (additional remarks)

Free format text: EIN ANTRAG NACH REGEL 88 AUF BERICHTIGUNG DER FIG. 3 LIEGT VOR.

17P Request for examination filed

Effective date: 19861017

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT FR GB SE

17Q First examination report despatched

Effective date: 19890428

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB SE

REF Corresponds to:

Ref document number: 52815

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: EIN ANTRAG NACH REGEL 88 AUF BERICHTIGUNG DER FIG. 3 LIEGT VOR.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 85109800.4

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040713

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040817

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040830

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050804

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed