[go: up one dir, main page]

EP0184637B1 - Process for the manufacture of a magnetic switch element which will demagnetize fast also in a slowly changing magnetic field - Google Patents

Process for the manufacture of a magnetic switch element which will demagnetize fast also in a slowly changing magnetic field Download PDF

Info

Publication number
EP0184637B1
EP0184637B1 EP85113068A EP85113068A EP0184637B1 EP 0184637 B1 EP0184637 B1 EP 0184637B1 EP 85113068 A EP85113068 A EP 85113068A EP 85113068 A EP85113068 A EP 85113068A EP 0184637 B1 EP0184637 B1 EP 0184637B1
Authority
EP
European Patent Office
Prior art keywords
wire
switch element
coil
cobalt
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85113068A
Other languages
German (de)
French (fr)
Other versions
EP0184637A2 (en
EP0184637A3 (en
Inventor
Gerd Dipl.-Phys. Rauscher
Christian Dr. Radeloff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Priority to AT85113068T priority Critical patent/ATE65640T1/en
Publication of EP0184637A2 publication Critical patent/EP0184637A2/en
Publication of EP0184637A3 publication Critical patent/EP0184637A3/en
Application granted granted Critical
Publication of EP0184637B1 publication Critical patent/EP0184637B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0304Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions adapted for large Barkhausen jumps or domain wall rotations, e.g. WIEGAND or MATTEUCCI effect
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type

Definitions

  • the invention relates to a method for producing a magnetic switching element made of an alloy containing cobalt-iron and vanadium with approximately equal proportions of cobalt and iron, which, under tension, quickly changes magnetism even when the field changes slowly, the switching element being subjected to a cold deformation of over 80% and then subjected to a heat treatment under protective gas.
  • the magnetostrictive material When a tensile stress is applied, the magnetostrictive material experiences a preferred magnetic direction in the direction of the wire axis, so that when the coercive force is reached and exceeded, the magnetization does not yet change. Only when the field strength continues to increase If a critical value increases, a small area is remagnetized at one point on the wire. A magnetic reversal wave propagates from this area, which leads to sudden magnetic reversal of the entire wire. As a prerequisite for achieving this effect, it is stated that a material with small internal stresses, small crystal orientation energy and a high yield strength should be selected.
  • an iron-cobalt-vanadium alloy is also surrounded by a shell made of soft steel and braced against this shell.
  • a heat treatment between 800 and 1100 ° C. is carried out under a protective gas and the tensile stress of such iron-cobalt-vanadium alloys is generated by stretching the wire.
  • the stretching tension is chosen so that the outer shell deforms plastically, while the iron-cobalt-vanadium alloy arranged on the inside is only elastically deformed.
  • the casing is under pressure and the core is under tension after the stretching process.
  • the object of the present invention is to provide a method for producing a magnetic switching element with which particularly high magnetic reversal speeds can be obtained reproducibly, so that peak voltages of more than 10 volts in a coil with 1000 turns can be achieved even with tensile stresses from 130 N / mm2 are. It has been recognized that a cobalt-iron-vanadium alloy with a vanadium content of more than 1% by weight to ensure the mechanical workability and with less than 6% by weight to avoid precipitations in the heat treatment and by an extremely short final heat treatment have significantly higher and industrially usable remagnetization speeds. A material produced in this way experiences, after reaching a critical field strength (jump field strength), almost complete, abrupt magnetic reversal with measured magnetic reversal speeds of 4 km / sec, so that defined voltage pulses of sufficient height can be achieved.
  • a critical field strength fusemp field strength
  • the object is achieved by a method according to claim 1.
  • Figure 1a shows schematically a known measuring device for determining the magnetic reversal speed.
  • a wire 1 made of 49% by weight cobalt and iron and 2% by weight of vanadium is clamped in a wall 2 and pulled with a force Z in the direction of arrow 3.
  • the wire is surrounded by a field coil 4.
  • Within the field coil 4 there is a sensor coil 5 and 6, each with 200 turns, at a distance of 200 mm from one another.
  • a start coil 7 is arranged to the left of the sensor coil 5.
  • the field coil 4 is excited for measurement to a value which lies above the coercive field strength of the wire 1 which is not clamped, but is still lower than the jump field strength which would induce a reversal of magnetism in the tensioned wire.
  • the starting coil 7 In the same direction as the field coil 4, the starting coil 7 then receives a current pulse which, to the left of the sensor coil 5, generates a field strength in the wire 1 which is above the jump field strength. This creates a magnetic reversal front, as shown in the wire in FIG. 1b. This magnetic reversal front now spreads out within the wire 1, as shown in FIG. 1c, and successively generates a voltage pulse in the sensor coils 5 and 6.
  • the voltage applied to the starting coil 7 is designated V7 in FIG. 1d.
  • FIG. 1d shows a diagram of the voltage U over time T.
  • a voltage pulse V5 in the sensor coil 5 and subsequently a voltage pulse V6 in the sensor coil 6 can be measured.
  • the time interval between these voltage pulses, together with the given distance of the sensor coils 5 and 6 from one another, is a measure of the magnetic reversal rate.
  • FIG. 2 shows the field strength H over the tensile stress Z, namely the curves of the coercive field strength H o and the spring field strength H Sp , at which a reversal of magnetization is initiated, are entered for the cobalt-iron-vanadium alloys mentioned. The difference is referred to as curve H Sp -H o .
  • H Sp -H o With a tensile stress of 300 N / mm2 it already reaches a value of 8 A / cm.
  • the jumping field strength H Sp was determined without a pulse in the starting coil by initiating the remagnetization process with the field coil 4 alone.
  • the coercive field strength H o describes the smallest field strength in the field coil 4, at which the magnetic reversal process still takes place using a sufficiently large pulse in the starting coil 7.
  • FIG. 3 shows the dependence of the speed v in km / sec on the driving field H - Ho .
  • FIG. 5 shows the measurement results of an alloy with 49% by weight cobalt and iron and 2% by weight vanadium depending on different heat treatments.
  • FIG. 5 shows the peak voltage ⁇ , measured on a coil with 1000 turns above the tensile stress Z.
  • the curves are labeled K1 to K5 from left to right.
  • the annealing times and the annealing temperatures are given in brackets after the curve names.
  • Annealing is preferably carried out in a nitrogen atmosphere, which allows the temperature to be maintained particularly precisely, since nitrogen is not flared and there are therefore no undesired changes in temperature.
  • Curve K5 is an example of insufficient annealing treatment (15 seconds at 650 ° C), residual stresses remain in the wire; the wire is still curved, with the result that pulses of significant size only occur at tensile stresses above 400 N / mm2.
  • the cobalt content should fluctuate between 30 and 60%.
  • the vanadium content should be well below 10%.
  • the alloy can also contain other components, for example nickel, niobium or molybdenum, but chromium may not be present or only in very small amounts below 1%, since this significantly deteriorates the magnetic properties (permeability).
  • the material After the heat treatment, the material must no longer be heated to very high temperatures (above 400 ° C) in order to maintain the optimal structure. For this reason, the wire should be elastically deformed either by clamping it in a holding device or, in the case of a sheath or a core with different yield strength, by stretching and thus held under tension.
  • the short annealing times can preferably be carried out in a continuous furnace in which the speed of the wire and the length of the wire section in the furnace determine the heat treatment time.
  • the invention is not restricted to a circular wire cross-section. It can be any elongated material shape, e.g. rolled strip with rectangular or square cross-section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Hard Magnetic Materials (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Measuring Magnetic Variables (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A process for the manufacture of a magnetic switch element is specified. A fine-crystalline structure is produced by short-term annealing of a cobalt-iron-vanadium alloy at 630 to 900 DEG C, which leads to pulse voltages of over 10 volts when subjected to a slowly changing field under tensional stress in a coil with 1000 windings. This property is reproducible so that inductively operating sensors can be manufactured, for example, for speed transmitters operating down to zero speed.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines magnetischen Schaltelements aus einer Kobalt-Eisen und Vanadium enthaltenden Legierung mit etwa gleichen Anteilen von Kobalt und Eisen, das unter Zugspannung stehend auch bei langsamer Feldänderung sich schnell ummagnetisiert, wobei das Schaltelement einer Kaltverformung von über 80 % unterworfen und anschließend einer Wärmebehandlung unter Schutzgas unterzogen wird.The invention relates to a method for producing a magnetic switching element made of an alloy containing cobalt-iron and vanadium with approximately equal proportions of cobalt and iron, which, under tension, quickly changes magnetism even when the field changes slowly, the switching element being subjected to a cold deformation of over 80% and then subjected to a heat treatment under protective gas.

In der "Physikalischen Zeitschrift" XXXIII, (1932), Seiten 913 bis 923 ist ein magnetisches Schaltelement beschrieben worden, das auch bei langsamer Feldänderung eine schnelle Ummagnetisierung erfährt, so daß bei Übertragern mit Primär- und Sekundärwicklung auch bei sehr niedrigen Frequenzen ein Spannungsimpuls erzielt wird. Hierzu sind kaltverformte und wärmebehandelte Drähte mit ca. 78 % Nickel, 22 % Eisen beschrieben, die durch eine Wärmebehandlung von z.B. 5 Minuten bei 800°C von Eigenspannungen befreit werden.In the "Physikalische Zeitschrift" XXXIII, (1932), pages 913 to 923, a magnetic switching element has been described which experiences rapid magnetic reversal even when the field changes slowly, so that a voltage pulse is achieved in transmitters with primary and secondary windings even at very low frequencies becomes. For this purpose, cold-formed and heat-treated wires with approx. 78% nickel, 22% iron are described, which are made by a heat treatment of e.g. Residual stresses are removed for 5 minutes at 800 ° C.

Durch Aufbringen einer Zugspannung erfährt das magnetostriktive Material eine magnetische Vorzugsrichtung in Richtung der Drahtachse, so daß bei Erreichen und Überschreiten der Koerzitivfeldstärke noch keine Ummagnetisierung erfolgt. Erst wenn die Feldstärke weiter auf einen kritischen Wert anwächst, wird an einer Stelle des Drahtes ein kleiner Bereich ummagnetisiert. Von diesem Bereich breitet sich eine Ummagnetisierungswelle aus, die zu plötzlicher Ummagnetisierung des gesamten Drahtes führt. Als Voraussetzung zur Erzielung dieses Effektes wird angegeben, daß ein Material mit kleinen Eigenspannungen, kleiner Kristallorientierungsenergie und hoher Streckgrenze zu wählen ist.When a tensile stress is applied, the magnetostrictive material experiences a preferred magnetic direction in the direction of the wire axis, so that when the coercive force is reached and exceeded, the magnetization does not yet change. Only when the field strength continues to increase If a critical value increases, a small area is remagnetized at one point on the wire. A magnetic reversal wave propagates from this area, which leads to sudden magnetic reversal of the entire wire. As a prerequisite for achieving this effect, it is stated that a material with small internal stresses, small crystal orientation energy and a high yield strength should be selected.

Bei derartigem Material läßt sich erreichen, daß der Wert der kritischen Feldstärke, bei der die Ummagnetisierung eingeleitet wird, erheblich über der Koerzitivfeldstärke liegt.With such a material it can be achieved that the value of the critical field strength at which the magnetic reversal is initiated is considerably higher than the coercive field strength.

Weiterhin ist es aus DE-OS 28 19 305 bekannt, aus einer Kobalt-Eisen-Vanadium-Legierung mit 4 bis 14 % Vanadium einen magnetischen Schaltdraht herzustellen. Durch periodisches Verdrillen erhält der Draht eine magnetisch harte Hülle und einen magnetisch weichen Kern, so daß Hülle und Kern gleichsinnig und auch entgegengesetzt zueinander magnetisiert werden können. Bei Wahl eines bestimmten Rückmagnetisierungswertes läßt sich erreichen, daß beim Aufmagnetisieren jeweils ein Ummagnetisierungssprung erfolgt.Furthermore, it is known from DE-OS 28 19 305 to produce a magnetic switching wire from a cobalt-iron-vanadium alloy with 4 to 14% vanadium. Periodic twisting gives the wire a magnetically hard sheath and a magnetically soft core, so that the sheath and core can be magnetized in the same direction and also opposite to one another. If a certain reverse magnetization value is selected, it can be achieved that a magnetic reversal occurs in each case during magnetization.

Weiterhin ist es aus DE-PS 31 52 008 bekannt, einen Schaltdraht aus zwei verschiedenen Werkstoffen herzustellen. zum Schalten wird wieder eine Kobalt-Eisen-Vanadium-Legierung mit 4 bis 14 % Vanadium vorgeschlagen, die zusammen mit einer Hülle kaltverformt wird. Hülle und Kern besitzen dabei eine unterschiedliche thermische Ausdehnung, so daß eine Verspannung zwischen Hülle und Kern nach dem letzten Abkühlen der Anordnung vorliegt. Diese Verspannung führt ebenfalls dazu, daß bestimmte Bereiche der Magnetisierungsschleife nur sprungartig durchlaufen werden, so daß auch bei langsamer Ummagnetisierung Ummagnetisierungssprünge entstehen und damit Spannungsimpulse in einer das Material umgebenden Spule erzeugt werden.Furthermore, it is known from DE-PS 31 52 008 to produce a jumper wire from two different materials. For switching, a cobalt-iron-vanadium alloy with 4 to 14% vanadium is again proposed, which is cold-worked together with a casing. Shell and core have a different thermal expansion, so that a tension between the shell and core after last cooling of the arrangement. This bracing also means that certain areas of the magnetization loop are only jumped through suddenly, so that even with slow reversal of magnetization jumps occur and voltage pulses are generated in a coil surrounding the material.

Mit einem weiteren Verfahren, wie es in DE-OS 29 33 337 A 1 beschrieben ist, wird ebenfalls eine Eisen-Kobalt-Vanadium-Legierung von einer Hülle aus weichem Stahl umgeben und gegenüber dieser Hülle verspannt. Hierzu wird nach einer Kaltverformung des Drahtes mit der Hülle eine Wärmebehandlung zwischen 800 und 1100 °C unter Schutzgas durchgeführt und die Zugspannung derartiger Eisen-Kobalt-Vanadium-Legierungen durch Recken des Drahtes erzeugt. Die Reckspannung wird dabei so gewählt, daß sich die äußere Hülle plastisch verformt, während die innen angeordnete Eisen-Kobalt-Vanadium-Legierung nur elastisch verformt wird. Dies hat zur Folge, daß nach dem Reckvorgang die Hülle unter Druck und der Kern unter Zugspannung steht. Wiederum erhält man bei langsamer Ummagnetisierung durchaus meßbare Impusle in einer den Draht umgebenden Spule, die eine Größenordnung größer als die erzielbaren Impulse mit einer Nickel-Eisen-Legierung sind. Mit derartigen Anordnungen lassen sich bei hohen Zugspannungen und entsprechenden Windungszahlen Spannungsimpulse von einigen Volt Spitzenspannung erzielen.With another method, as described in DE-OS 29 33 337 A1, an iron-cobalt-vanadium alloy is also surrounded by a shell made of soft steel and braced against this shell. For this purpose, after cold forming of the wire with the sheath, a heat treatment between 800 and 1100 ° C. is carried out under a protective gas and the tensile stress of such iron-cobalt-vanadium alloys is generated by stretching the wire. The stretching tension is chosen so that the outer shell deforms plastically, while the iron-cobalt-vanadium alloy arranged on the inside is only elastically deformed. As a result, the casing is under pressure and the core is under tension after the stretching process. Again, with slow magnetic reversal, measurable impulses are obtained in a coil surrounding the wire, which are an order of magnitude larger than the impulses that can be achieved with a nickel-iron alloy. With such arrangements, voltage pulses of a few volts peak voltage can be achieved at high tensile stresses and corresponding number of turns.

Aus der US-PS 34 22 407 ist ein Verfahren zur Wärmebehandlung einer hochkobalthaltigen Legierung mit 78 bis 95 Gew.-% Kobalt, 4,5 bis 11 Gew.-% Vanadium, Rest Eisen, bekannt, bei dem eine Wärmebehandlung im Temperaturintervall zwischen 150 und 800 °C für mindestens 1/2 Minute vorgenommen wird. Die Legierungen weisen eine stufenförmige Hysteresekurve auf.From US-PS 34 22 407 a method for the heat treatment of a high cobalt alloy with 78 to 95 wt .-% cobalt, 4.5 to 11 wt .-% vanadium, the rest iron, is known, in which a heat treatment in the temperature interval between 150 and 800 ° C for at least 1/2 minute. The alloys have a stepped hysteresis curve.

Aufgabe der vorliegenden Erfindung ist es nun, ein Verfahren zur Herstellung eines magnetischen Schaltelementes anzugeben, mit dem besonders hohe Ummagnetisierungsgeschwindigkeiten reproduzierbar erhalten werden können, so daß Spitzenspannungen von mehr als 10 Volt in einer Spule mit 1000 Windungen schon bei Zugspannungen ab 130 N/mm² erzielbar sind. Es ist erkannt worden, daß eine Kobalt-Eisen-Vanadium-Legierung mit einem Vanadiumanteil von mehr als 1 Gewichts-% zur Gewährleistung der mechanischen Verarbeitbarkeit und mit weniger als 6 Gewichts-% zur Vermeidung von Ausscheidungen bei der Wärmebehandlung und durch eine extrem kurze Schlußwärmebehandlung wesentlich höhere und industriell gut ausnutzbare Ummagnetisierungsgeschwindigkeiten aufweisen. Ein derartig hergestelltes Material erfährt nach Erreichen einer kritischen Feldstärke (Sprungfeldstärke) nahezu eine vollständige, sprungartige Ummagnetisierung mit gemessenen Ummagnetisierungsgeschwindigkeiten von 4 km/sec, so daß definierte Spannungsimpulse ausreichender Höhe erzielt werden können.The object of the present invention is to provide a method for producing a magnetic switching element with which particularly high magnetic reversal speeds can be obtained reproducibly, so that peak voltages of more than 10 volts in a coil with 1000 turns can be achieved even with tensile stresses from 130 N / mm² are. It has been recognized that a cobalt-iron-vanadium alloy with a vanadium content of more than 1% by weight to ensure the mechanical workability and with less than 6% by weight to avoid precipitations in the heat treatment and by an extremely short final heat treatment have significantly higher and industrially usable remagnetization speeds. A material produced in this way experiences, after reaching a critical field strength (jump field strength), almost complete, abrupt magnetic reversal with measured magnetic reversal speeds of 4 km / sec, so that defined voltage pulses of sufficient height can be achieved.

Die Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.The object is achieved by a method according to claim 1.

Nachstehend werden Ausführungsbeispiele und erzielbare Ergebnisse anhand der Figuren 1 bis 7 näher erläutert.Exemplary embodiments and achievable results are explained in more detail below with reference to FIGS. 1 to 7.

Figur 1a zeigt schematisch eine an sich bekannte Meßeinrichtung zur Bestimmung der Ummagnetisierungsgeschwindigkeit. Ein Draht 1 aus je 49 Gewichts-% Kobalt und Eisen und 2 Gewichts-% Vanadium wird in einer Wand 2 eingespannt und mit einer Kraft Z in Richtung des Pfeiles 3 gezogen. Der Draht ist von einer Feldspule 4 umgeben. Innerhalb der Feldspule 4 befindet sich mit einem Abstand von 200 mm voneinander je eine Sensorspule 5 und 6, die je 200 Windungen besitzen. Links von der Sensorspule 5 ist eine Startspule 7 angeordnet. Die Feldspule 4 wird zur Messung auf einen Wert erregt, der oberhalb der Koerzitivfeldstärke des nicht eingespannten Drahtes 1 liegt, aber noch niedriger ist als die Sprungfeldstärke, die bei dem gespannten Draht eine Ummagnetisierung einleiten würde.Figure 1a shows schematically a known measuring device for determining the magnetic reversal speed. A wire 1 made of 49% by weight cobalt and iron and 2% by weight of vanadium is clamped in a wall 2 and pulled with a force Z in the direction of arrow 3. The wire is surrounded by a field coil 4. Within the field coil 4 there is a sensor coil 5 and 6, each with 200 turns, at a distance of 200 mm from one another. A start coil 7 is arranged to the left of the sensor coil 5. The field coil 4 is excited for measurement to a value which lies above the coercive field strength of the wire 1 which is not clamped, but is still lower than the jump field strength which would induce a reversal of magnetism in the tensioned wire.

In gleicher Richtung wie die Feldspule 4 erhält dann die Startspule 7 einen Stromimpuls, der links von der Sensorspule 5 in dem Draht 1 eine Feldstärke erzeugt, die oberhalb der Sprungfeldstärke liegt. Hierdurch bildet sich eine Ummagnetisierungsfront, wie in dem Draht in Figur 1b dargestellt ist. Diese Ummagnetisierungsfront breitet sich nun innerhalb des Drahtes 1 aus, wie Figur 1c zeigt, und erzeugt nacheinander in den Sensorspulen 5 und 6 einen Spannungsimpuls. Die an die Startspule 7 angelegte Spannung ist in Figur 1d mit V7 bezeichnet. Figur 1d zeigt dabei ein Diagramm der Spannung U über der Zeit T. Man sieht, daß kurze Zeit nach Anlegen des Spannungsimpulses an die Startspule 7 ein Spannungsimpuls V5 in der Sensorspule 5 und anschließend ein Spannungsimpuls V6 in der Sensorspule 6 gemessen werden kann. Der zeitliche Abstand dieser Spannungsimpulse ist zusammen mit dem gegebenen Abstand der Sensorspulen 5 und 6 voneinander ein Maß für die Ummagnetisierungsgeschwindigkeit.In the same direction as the field coil 4, the starting coil 7 then receives a current pulse which, to the left of the sensor coil 5, generates a field strength in the wire 1 which is above the jump field strength. This creates a magnetic reversal front, as shown in the wire in FIG. 1b. This magnetic reversal front now spreads out within the wire 1, as shown in FIG. 1c, and successively generates a voltage pulse in the sensor coils 5 and 6. The voltage applied to the starting coil 7 is designated V7 in FIG. 1d. FIG. 1d shows a diagram of the voltage U over time T. It can be seen that a short time after the voltage pulse has been applied to the starting coil 7, a voltage pulse V5 in the sensor coil 5 and subsequently a voltage pulse V6 in the sensor coil 6 can be measured. The time interval between these voltage pulses, together with the given distance of the sensor coils 5 and 6 from one another, is a measure of the magnetic reversal rate.

In Figur 2 ist die Feldstärke H über der Zugspannung Z dargestellt, und zwar sind für die genannten Kobalt-Eisen-Vanadium-Legierungen sowohl die Kurven der Koerzitivfeldstärke Ho als auch der Sprungfeldstärke HSp, bei der eine Ummagnetisierung eingeleitet wird, eingetragen. Die Differenz ist als Kurve HSp-Ho bezeichnet. Sie erreicht bei einer Zugspannung von 300 N/mm² bereits einen Wert von 8 A/cm.FIG. 2 shows the field strength H over the tensile stress Z, namely the curves of the coercive field strength H o and the spring field strength H Sp , at which a reversal of magnetization is initiated, are entered for the cobalt-iron-vanadium alloys mentioned. The difference is referred to as curve H Sp -H o . With a tensile stress of 300 N / mm² it already reaches a value of 8 A / cm.

Die Sprungfeldstärke HSp wurde ohne Impuls in der Startspule ermittelt, indem allein mit der Feldspule 4 der Ummagnetisierungsvorgang eingeleitet wurde.The jumping field strength H Sp was determined without a pulse in the starting coil by initiating the remagnetization process with the field coil 4 alone.

Die Koerzitivfeldstärke Ho beschreibt dagegen die kleinste Feldstärke in der Feldspule 4, bei der unter Verwendung eines ausreichend großen Impulses in der Startspule 7 der Ummagnetisierungsvorgang noch abläuft.The coercive field strength H o , on the other hand, describes the smallest field strength in the field coil 4, at which the magnetic reversal process still takes place using a sufficiently large pulse in the starting coil 7.

Für den Fall, daß das durch die Feldspule 4 erzeugte Feld oberhalb der Koerzitivfeldstärke Ho und unterhalb der Sprungfeldstärke HSp liegt, ist die Differenz des Feldes H zu Ho maßgebend für die Geschwindigkeit des durch die Startspule 7 eingeleiteten Ummagnetisierungsimpulses. Dieser Zusammenhang ist in Figur 3 dargestellt. Für verschiedene Zugbelastungen Z = 15, Z = 60, Z = 160 und Z = 310 N/mm² zeigt Figur 3 die Abhängigkeit der Geschwindigkeit v in km/sec von dem treibenden Feld H - Ho.In the event that the field generated by the field coil 4 lies above the coercive field strength H o and below the jump field strength H Sp , the difference between the field H and H o is decisive for the speed of the magnetic reversal pulse initiated by the starting coil 7. This relationship is shown in FIG. 3. For various tensile loads Z = 15, Z = 60, Z = 160 and Z = 310 N / mm², FIG. 3 shows the dependence of the speed v in km / sec on the driving field H - Ho .

Von dieser Geschwindigkeit v ist nun der Spannungsimpuls in einer den Draht umgebenden Spule bei langsamer Ummagnetisierung abhängig. Figur 4 zeigt die Spitzenspannung in einer derartigen Spule mit W=1000 Windungen und einer Zugspannung Z = 310 N/mm² bei einer Kobalt-Eisen-Vanadium-Legierung und einem Drahtdurchmesser von 0,2 mm.The voltage pulse in a coil surrounding the wire with slow magnetic reversal is now dependent on this speed v. Figure 4 shows the peak voltage in such a coil with W = 1000 turns and one Tensile stress Z = 310 N / mm² with a cobalt-iron-vanadium alloy and a wire diameter of 0.2 mm.

Es hat sich herausgestellt, daß besonders hohe Impulse bei relativ geringen Zugspannungen nur erzielbar sind, wenn ganz bestimmte Glühzeiten im Temperaturbereich von etwa 630 bis 900°C eingehalten werden.It has been found that particularly high impulses can only be achieved with relatively low tensile stresses if very specific annealing times in the temperature range from approximately 630 to 900 ° C. are observed.

Figur 5 zeigt die Meßergebnisse einer Legierung mit je 49 Gewichts-% Kobalt und Eisen und 2 Gewichts-% Vanadium abhängig von verschiedenen Wärmebehandlungen.FIG. 5 shows the measurement results of an alloy with 49% by weight cobalt and iron and 2% by weight vanadium depending on different heat treatments.

In Figur 5 ist die Spitzenspannung Û, gemessen an einer Spule mit 1000 Windungen über der Zugspannung Z dargestellt. Die Kurven sind von links nach rechts mit K1 bis K5 bezeichnet. In Klammern hinter den Kurvenbezeichnungen sind die Glühzeiten und die Glühtemperaturen angegeben. Die Glühung erfolgt vorzugsweise in einer Stickstoffatmosphäre, die eine besonders genaue Einhaltung der Temperatur gestattet, da Stickstoff nicht abgefackelt wird und so keine ungewollten Temperaturänderungen auftreten.FIG. 5 shows the peak voltage Û, measured on a coil with 1000 turns above the tensile stress Z. The curves are labeled K1 to K5 from left to right. The annealing times and the annealing temperatures are given in brackets after the curve names. Annealing is preferably carried out in a nitrogen atmosphere, which allows the temperature to be maintained particularly precisely, since nitrogen is not flared and there are therefore no undesired changes in temperature.

Die Kurve K5 ist ein Beispiel für eine zu geringe Glühbehandlung (15 Sekunden bei 650°C), hier sind noch Eigenspannungen im Draht verblieben; der Draht ist noch gekrümmt mit der Folge, daß Impulse nennenswerter Größe nur bei Zugspannungen oberhalb 400 N/mm² auftreten.Curve K5 is an example of insufficient annealing treatment (15 seconds at 650 ° C), residual stresses remain in the wire; the wire is still curved, with the result that pulses of significant size only occur at tensile stresses above 400 N / mm².

Schon bei halber Glühzeit (8 Sekunden) bei höherer Temperatur (750°C) ergeben sich bei niedrigeren Zugspannungen höhere Spannungsimpulse, die bei 480 N/mm² 12 V erreichen (Kurve K3).Even with half the glow time (8 seconds) at a higher temperature (750 ° C), higher tension pulses result at lower tensile stresses, which reach 12 V at 480 N / mm² (curve K3).

Verlängert man bei dieser Temperatur die Glühzeit wiederum auf 15 Sekunden, so erhält man entsprechend der Kurve K2 einen höheren Spannungsimpuls bei noch niedrigerer Zugspannung, erreicht aber bei 400 N/mm² nur noch 11 Volt Spitzenspannung. Das Schliffbild dieser Probe zeigt eine beginnende Rekristallisation mit kleinem Korndurchmesser von 1,5 bis 2 µm. Eine weitere Verlängerung der Glühzeit auf 30 Sekunden (Kurve K1) verbessert die Werte bei kleinen Zugspannungen weiter erheblich. Es wurden bei 310 N/mm² Spitzenspannungen von 14 Volt gemessen. Das Schliffbild dieser Probe zeigt eine deutliche Rekristallisation mit feinem Korn im Bereich von 2 bis 3 µm.If the glow time is extended again to 15 seconds at this temperature, a higher voltage pulse is obtained in accordance with curve K2 with an even lower tensile stress, but only reaches 11 volt peak voltage at 400 N / mm². The micrograph of this sample shows the beginning of recrystallization with a small grain diameter of 1.5 to 2 µm. A further extension of the glow time to 30 seconds (curve K1) further improves the values for small tensile stresses. Peak voltages of 14 volts were measured at 310 N / mm². The micrograph of this sample shows a clear recrystallization with fine grain in the range of 2 to 3 µm.

Eine weitere Verlängerung der Glühzeit entsprechend Kurve K4 mit 60 Sekunden bei 750°C verschlechtert wiederum die Werte, da die Rekristallisation weiter fortschreitet und im Schliffbild eine mittlere Korngröße von 10 µm gemessen wird. Es gibt also bei einer Glühtemperatur von 750°C und bei dem verwendeten Material einen optimalen Bereich von etwa 20 bis 40 Sekunden Glühzeit, der bei niedrigen Zugspannungen besonders hohe Zugspannungswerte ergibt. Wesentlich ist es, abhängig von Temperatur und von der verwendeten Legierung diejenige Glühzeit zu bestimmen, die deutlich eine Rekristallisation des Gefüges erkennen läßt, aber so kurz bemessen ist, daß noch kein wesentliches Kornwachstum erfolgt.A further extension of the annealing time according to curve K4 with 60 seconds at 750 ° C in turn worsens the values, since the recrystallization continues and an average grain size of 10 µm is measured in the micrograph. At an annealing temperature of 750 ° C and the material used, there is an optimal range of about 20 to 40 seconds of annealing time, which results in particularly high tensile stress values at low tensile stresses. It is essential, depending on the temperature and the alloy used, to determine the annealing time which clearly reveals a recrystallization of the structure, but is dimensioned so short that there is still no significant grain growth.

Diese optimale Glühzeit wird sich bei höheren Temperaturen gegenüber dem genannten Beispiel vermindern und bei niedrigeren Temperaturen verlängern. Allerdings sind Temperaturen über 900°C nicht geeignet, da sich dann der Draht ungleichmäßig erwärmt und sich darüberhinaus eine Phasenumwandlung ergeben kann. Das dabei entstehende Martensit würde das Kristallgitter stören und die erzielbaren Werte weiter verschlechtern.This optimum glow time will decrease at higher temperatures compared to the example mentioned and will increase at lower temperatures. However, temperatures above 900 ° C are not suitable, since the wire will then heat up unevenly and furthermore Phase conversion can result. The resulting martensite would disrupt the crystal lattice and further deteriorate the values that could be achieved.

Zu niedrige Temperaturen, wie z.B. unterhalb 630°C, bewirken eine Versprödung des Materials, außerdem können sich Ausscheidungen ergeben und es können innere Spannungen wieder aufgebaut werden. Aus diesem Grunde sind Glühzeiten von oberhalb 120 Sekunden zur Erzielung guter Ergebnisse, d.h. hohen Impulsspannungen, nicht mehr geeignet.Temperatures too low, e.g. below 630 ° C, embrittlement of the material, excretions can occur and internal tensions can be built up again. For this reason, glow times of over 120 seconds are necessary to achieve good results, i.e. high pulse voltages, no longer suitable.

Da das Material neben einer hohen Magnetostriktion eine niedrige Kristallanisotropie besitzen muß, sollte der Kobaltgehalt zwischen 30 und 60 % schwanken. Der Vanadiumgehalt sollte deutlich unter10 % liegen. Versuche mit dem bekannten Material Co₅₂V₁₀Fe₃₈ haben bei der extrem kurzen Glühzeit zu Ausscheidungen geführt, die das Impulsverhalten eindeutig verschlechterten. Außer Vanadium kann die Legierung noch andere Komponenten enthalten, beispielsweise Nickel, Niob oder Molybdän, allerdings darf Chrom möglichst nicht oder nur in sehr geringen Mengen unter 1 % vorhanden sein, da hierdurch die magnetischen Eigenschaften (Permeabilität) erheblich verschlechtert werden.Since the material must have low crystal anisotropy in addition to high magnetostriction, the cobalt content should fluctuate between 30 and 60%. The vanadium content should be well below 10%. Experiments with the known material Co₅₂V₁₀Fe₃₈ have led to excretions in the extremely short glow time, which clearly worsened the pulse behavior. In addition to vanadium, the alloy can also contain other components, for example nickel, niobium or molybdenum, but chromium may not be present or only in very small amounts below 1%, since this significantly deteriorates the magnetic properties (permeability).

Nach der Wärmebehandlung darf das Material nicht mehr auf sehr hohe Temperaturen (oberhalb 400°C) erhitzt werden, um das eingestellte optimale Gefüge zu bewahren. Aus diesem Grunde sollte der Draht entweder durch Einspannen in eine Haltevorrichtung oder im Falle einer Hülle oder eines Kerns mit unterschiedlicher Streckgrenze durch Recken elastisch verformt und damit unter Zugspannung gehalten werden.After the heat treatment, the material must no longer be heated to very high temperatures (above 400 ° C) in order to maintain the optimal structure. For this reason, the wire should be elastically deformed either by clamping it in a holding device or, in the case of a sheath or a core with different yield strength, by stretching and thus held under tension.

Die kurzen Glühzeiten sind vorzugsweise in einem Durchlaufofen durchführbar, bei dem die Geschwindigkeit des Drahtes und die Länge des Drahtabschnittes in dem Ofen die Wärmebehandlungszeit bestimmt.The short annealing times can preferably be carried out in a continuous furnace in which the speed of the wire and the length of the wire section in the furnace determine the heat treatment time.

Da im wesentlichen ein bestimmtes, nach einem bestimmten Verfahren wärmebehandeltes Material unter Zugspannung maßgebend für den erzielbaren Effekt ist, ist die Erfindung nicht auf einen kreisförmigen Drahtquerschnitt beschränkt. Es können beliebige, langgestreckte Materialformen sein, z.B. gewalztes Band mit rechteckförmigem oder quadratischem Querschnitt.Since essentially a certain material heat-treated according to a certain method under tensile stress is decisive for the effect that can be achieved, the invention is not restricted to a circular wire cross-section. It can be any elongated material shape, e.g. rolled strip with rectangular or square cross-section.

Claims (5)

  1. A process for the production of a magnetic switch element in wire- or strip form comprising an alloy, substantially containing 30 to 60% by weight cobalt, 1 to 6% by weight vanadium and the remainder iron, by cold working of the switch element and subsequent thermal treatment in the presence of a shield gas for a period of between 3s and 120s at a temperature of between 900 and 630°C wherein, in order to obtain a fine-crystalline structure, the high temperatures are used for shorter periods and vice versa.
  2. A process as claimed in Claim 1, characterised in that for the thermal treatment the magnetic switch element is drawn through a continuous furnace in wire- or strip form.
  3. A process as claimed in Claim 1, characterised in that nitrogen or another, non-combustible gas is used as shield gas.
  4. A process as claimed in Claim 1, characterised in that the thermal treatment is carried out for a period of 8 to 60s at a temperature of 800 to 650°C.
  5. A process as claimed in Claim 1, characterised in that the thermal treatment is carried out for a period of between 20 and 40s at 730 to 770°C.
EP85113068A 1984-11-09 1985-10-15 Process for the manufacture of a magnetic switch element which will demagnetize fast also in a slowly changing magnetic field Expired - Lifetime EP0184637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85113068T ATE65640T1 (en) 1984-11-09 1985-10-15 PROCESS FOR MANUFACTURING A MAGNETIC SWITCHING ELEMENT THAT QUICKLY REMAGNETIZES EVEN IF THE FIELD CHANGES SLOWLY.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843440918 DE3440918A1 (en) 1984-11-09 1984-11-09 METHOD FOR PRODUCING A MAGNETIC SWITCHING ELEMENT, WHICH RE-MAGNETIZES FAST, EVEN WITH SLOW FIELD CHANGE
DE3440918 1984-11-09

Publications (3)

Publication Number Publication Date
EP0184637A2 EP0184637A2 (en) 1986-06-18
EP0184637A3 EP0184637A3 (en) 1988-03-23
EP0184637B1 true EP0184637B1 (en) 1991-07-24

Family

ID=6249864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113068A Expired - Lifetime EP0184637B1 (en) 1984-11-09 1985-10-15 Process for the manufacture of a magnetic switch element which will demagnetize fast also in a slowly changing magnetic field

Country Status (3)

Country Link
EP (1) EP0184637B1 (en)
AT (1) ATE65640T1 (en)
DE (2) DE3440918A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124776A1 (en) * 1991-07-26 1993-01-28 Schaeffler Waelzlager Kg Mfr. of pulse source with alternating magnetisable and non-magnetisable fields - involves deformation process subjecting source made of austenitic steel having face-centred cubic lattice
JPH08138919A (en) * 1994-11-04 1996-05-31 Nhk Spring Co Ltd Method and device for manufacture of magnetism-sensitive wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3364449A (en) * 1963-12-18 1968-01-16 Bell Telephone Labor Inc Magnetically actuated switching devices
US3422407A (en) * 1964-10-20 1969-01-14 Bell Telephone Labor Inc Devices utilizing a cobalt-vanadium-iron magnetic material which exhibits a composite hysteresis loop
MX148825A (en) * 1977-05-03 1983-06-24 Echlin Mfg Co IMPROVEMENTS IN MAGNETIC WIRE SWITCH

Also Published As

Publication number Publication date
DE3440918A1 (en) 1986-05-15
EP0184637A2 (en) 1986-06-18
ATE65640T1 (en) 1991-08-15
EP0184637A3 (en) 1988-03-23
DE3583589D1 (en) 1991-08-29

Similar Documents

Publication Publication Date Title
EP2697399B1 (en) Alloy, magnet core and process for producing a strip made of an alloy
DE2721788A1 (en) MAGNETIC COMPONENTS WITH AMORPHIC ALLOYS AND THEIR PRODUCTION
DE2654702C3 (en) Method for improving the strength and toughness properties of an austenitic steel alloy
DE19519769C2 (en) Magnetostrictive shaft usable for a magnetostrictive type torque sensor and method of manufacturing the same
DE3705893C2 (en)
DE3824075C2 (en)
DE3751439T2 (en) Torque detector devices.
EP0885445B1 (en) Process for manufacturing tape wound core strips and inductive component with a tape wound core
DE19650710A1 (en) Magnetic composite body with ferromagnetic section and weak or non-magnetic section e.g. for car fuel or oil control device
DE3721641C1 (en) Process for the production of hot strip
EP0871945A2 (en) Display element for use in a magnetic theft-prevention system
EP0184637B1 (en) Process for the manufacture of a magnetic switch element which will demagnetize fast also in a slowly changing magnetic field
EP0702096A1 (en) Use of an amorpheus Fe-Co based alloy for a surveillance system based on mechanical resonance
CH628460A5 (en) Ferromagnetic changeover device
DE69023814T2 (en) Hot rolled electrical steel sheets.
DE3152008C1 (en) Elongated magnetic switching core
DE2933337A1 (en) Pulse generator with two-layer ferromagnetic wire - having specified composition with change in magnetisation producing electric pulses
DE2920084A1 (en) Pulse generator for interrogating by magnetisation change - detects position of rotating magnet using sensor coil around amorphous soft-magnetic alloy
DE69703090T2 (en) METHOD FOR PRODUCING A MAGNETIC OBJECT FROM A FERROMAGNETIC DUPLEX ALLOY
DE3741290C2 (en) Application of a process for the treatment of glass-like alloys
DE68911223T2 (en) Soft magnetic, iron-based alloy.
EP0156016B1 (en) Core for an inductive, frequency-independent switching device
EP0557689B1 (en) Method for manufacturing a magnetic pulse generator
DE19700681A1 (en) Object or liquid level physical displacement ascertainment device
EP0022471B1 (en) Position transducer for a body, particularly a vehicle pedal

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19880211

17Q First examination report despatched

Effective date: 19900607

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910724

REF Corresponds to:

Ref document number: 65640

Country of ref document: AT

Date of ref document: 19910815

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3583589

Country of ref document: DE

Date of ref document: 19910829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19911015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911031

Ref country code: CH

Effective date: 19911031

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920701

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85113068.2

Effective date: 19920510