EP0181587A2 - Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use - Google Patents
Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use Download PDFInfo
- Publication number
- EP0181587A2 EP0181587A2 EP85114008A EP85114008A EP0181587A2 EP 0181587 A2 EP0181587 A2 EP 0181587A2 EP 85114008 A EP85114008 A EP 85114008A EP 85114008 A EP85114008 A EP 85114008A EP 0181587 A2 EP0181587 A2 EP 0181587A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer
- copolymer
- polymers
- ethylene
- vinyl acetate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002959 polymer blend Polymers 0.000 title claims description 38
- 238000000034 method Methods 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000008569 process Effects 0.000 title claims description 10
- 229920000642 polymer Polymers 0.000 claims abstract description 105
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 30
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 15
- 239000000654 additive Substances 0.000 claims abstract description 10
- 229920000620 organic polymer Polymers 0.000 claims abstract description 5
- 229920001610 polycaprolactone Polymers 0.000 claims description 37
- 229920002647 polyamide Polymers 0.000 claims description 31
- 229920001577 copolymer Polymers 0.000 claims description 30
- 239000004632 polycaprolactone Substances 0.000 claims description 30
- -1 polyethylene Polymers 0.000 claims description 30
- 229920000573 polyethylene Polymers 0.000 claims description 30
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 29
- 229920002635 polyurethane Polymers 0.000 claims description 29
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 28
- 239000004952 Polyamide Substances 0.000 claims description 26
- 239000004814 polyurethane Substances 0.000 claims description 25
- 239000004698 Polyethylene Substances 0.000 claims description 23
- 239000004020 conductor Substances 0.000 claims description 20
- 229920002223 polystyrene Polymers 0.000 claims description 17
- 239000004800 polyvinyl chloride Substances 0.000 claims description 16
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 16
- 239000004793 Polystyrene Substances 0.000 claims description 15
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 14
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 14
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 14
- 239000012141 concentrate Substances 0.000 claims description 14
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 11
- 229920000515 polycarbonate Polymers 0.000 claims description 11
- 239000004417 polycarbonate Substances 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 7
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 claims description 6
- 229920002943 EPDM rubber Polymers 0.000 claims description 6
- 229920006218 cellulose propionate Polymers 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000004416 thermosoftening plastic Substances 0.000 claims description 6
- 238000007792 addition Methods 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000004709 Chlorinated polyethylene Substances 0.000 claims description 4
- 239000004971 Cross linker Substances 0.000 claims description 4
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 4
- 238000005809 transesterification reaction Methods 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 3
- 241000872198 Serjania polyphylla Species 0.000 claims description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 238000004132 cross linking Methods 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 230000032050 esterification Effects 0.000 claims description 2
- 238000005886 esterification reaction Methods 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920013730 reactive polymer Polymers 0.000 claims description 2
- 238000007127 saponification reaction Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N vinyl-ethylene Natural products C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 2
- HMZNNQMHGDXAHG-UHFFFAOYSA-N 1-cyanoethenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC(=C)C#N HMZNNQMHGDXAHG-UHFFFAOYSA-N 0.000 claims 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 229910002091 carbon monoxide Inorganic materials 0.000 claims 1
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 239000002482 conductive additive Substances 0.000 description 14
- 239000006229 carbon black Substances 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 11
- 229920001197 polyacetylene Polymers 0.000 description 11
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 10
- 239000004071 soot Substances 0.000 description 8
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 8
- 229920001940 conductive polymer Polymers 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 229920006324 polyoxymethylene Polymers 0.000 description 6
- 229930040373 Paraformaldehyde Natural products 0.000 description 5
- 229920001400 block copolymer Polymers 0.000 description 5
- 238000005325 percolation Methods 0.000 description 5
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 239000006057 Non-nutritive feed additive Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- 239000004349 Polyvinylpyrrolidone-vinyl acetate copolymer Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 235000019448 polyvinylpyrrolidone-vinyl acetate copolymer Nutrition 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 229920001897 terpolymer Polymers 0.000 description 2
- 238000007056 transamidation reaction Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241001136792 Alle Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QROGIFZRVHSFLM-QHHAFSJGSA-N [(e)-prop-1-enyl]benzene Chemical compound C\C=C\C1=CC=CC=C1 QROGIFZRVHSFLM-QHHAFSJGSA-N 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 229960002380 dibutyl phthalate Drugs 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000009717 reactive processing Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
Definitions
- thermoplastic polymers which are electrical insulators per se.
- Mainly non-polymeric additives such as in particular antistatic agents, can be used to provide statically easily chargeable polymers with antistatic properties.
- the surface resistance can be reduced from 10 12 to 10 16 ⁇ down to approx . Reach 10 8 to 1010 2 (see DE-PS 33 47 704.3).
- a further reduction in the specific resistance to approximately 1 0 1 to 10 ßcm (semiconducting to antistatic finish) can be achieved with the aid of conductive additives such as metal fibers or particles, carbon fibers, conductive carbon black (cf. A. Sternfield, Modern Plastics International, No. 7 , 48ff (1982)).
- conductive additives such as metal fibers or particles, carbon fibers, conductive carbon black (cf. A. Sternfield, Modern Plastics International, No. 7 , 48ff (1982)).
- These additives are used in amounts of approximately 10 to 30% by weight. They not only lead to a superficial antistatic finish, but also to
- the increase in the electrical conductivity from the initial value of the non-conductive polymer to a value characteristic of the conductive substance is not linearly dependent on the concentration of the substance added. Rather, a more or less steep increase in conductivity is observed at the breakthrough point (percolation point), which is due to the fact that the particles of the conductive substance are now sufficiently close or touching, thereby forming continuous current paths or conductor tracks.
- the breakthrough point depends on the geometry, in particular the ratio of length to diameter, and the surface of the added particles, the type of polymer and on the applied D ispergiermethode very heavily dependent.
- the percolation point is the turning point of the curve when the logarithm of the conductivity is plotted against the concentration of the conductive additive.
- DE-OS 29 01 758 and 29 01 776 describe the production of a network of conductive carbon black (through which the current flows) in a molding compound made of polyethylene as a matrix.
- the molding compound described is only suitable for the discontinuous production of plates in the pressing process, but not for continuous processing by extrusion or other conventional processing methods for thermoplastics, since the network and thus the conductivity are destroyed.
- DE-OS 32 08 841 and 32 08 842 disclose the two- to three-stage production of conductive black-containing polyvinyl chloride blends with other polymers, especially ethylene-vinyl acetate copolymers.
- the thermoplastic composition should contain 15% by weight of carbon black, the polymer components and the process serve to improve processability.
- DE-OS 25 17 358 mentions the addition of rubber to increase the impact strength without reducing the proportion of soot.
- the carbon black is added to a previously produced homogeneous polymer / rubber mixture.
- soot-containing polyethylene / polyamide blends that the soot is concentrated in the polyethylene phase and not in the polyamide islands. This can easily be explained by the large difference in the softening or melting ranges and the incompatibility of the two polymers.
- the polyamide behaves like a non-melting filler, so that there is no compatible blend good application properties is obtained.
- the soot contents required for sufficient conductivity are very high and even exceed the contents in homogeneous preparations based on one polymer or several fully compatible polymers which are common in industrial practice today.
- DE-AS 28 08 675 describes a process in which polyethylene with conductive carbon black is added to the polyoxymethylene resin. In this way, however, only surface resistances of more than 10 6 n can be achieved.
- the object of the invention is, therefore, olymerblends provide antistatic or electrically semiconducting thermoplastically processable P, which contain a significantly lower content of electrically conductive additives than hitherto usual, having can be but thermoplastic (at least substantial) to give the conductivity to process and good mechanical properties .
- the previously necessary to achieve the percolation added amounts are from about 10 to 20 wt.% R ow and about 30 to 50 wt.% Metal powder, depending on the geometry and surface of the particles, the interfacial tension of the polymer and the temperature (see FIG. Thereto also Miyasaka, aa0., whereby the theoretical values have so far not been achievable).
- the invention relates to antistatic or electrically semiconducting thermoplastic polymer blends based on organic polymers and electrically conductive substances, which are characterized in that they contain two partially compatible thermoplastic polymers A and B, of which the polymer A at a given temperature compared to the polymer B. has a lower melt viscosity and between which there is a solubility parameter difference of approximately 0.3 to 1.5 (cal / cm 3) 1/3, the polymer A forming the continuous phase essentially containing the electrically conductive substances.
- polymer A and / or polymer B can be mixtures of thermoplastic polymers which are fully compatible with one another.
- examples of such mixtures are styrene-acrylonitrile copolymer (SAN) with chlorinated polyethylene (PEC) and polyvinyl butyral (PVB) Polyvinylpyrrolidone-vinyl acetate copolymer (PVP-VA).
- the conductive additive is essentially in polymer A, which forms the continuous phase of the blend.
- polymer A is normally in a deficit, i.e. a weight ratio of polymer A: polymer B ⁇ 1: 1 is used.
- the proportion of polymer A in the mixture of polymers A and B is preferably about 20 to 40% by weight.
- the amount of polymer A depends on the amount of conductive additives present, since, based on the total blend, the amount of polymer A and conductive additives should preferably be less than 50% by weight, for example 10 to 49% by weight.
- electrically conductive auxiliary is preferably conductive carbon black with a BET surface area> 250 m 2 / g and with a dibutylphthalate absorption> 140 cm 3/100 g use.
- carbon fibers, metal powder or fibers, electrically conductive organic polymers or non-polymeric organic conductors are also suitable.
- Conductive polymers are understood to mean polyconjugated systems such as those found in polyacetylene (PAc), poly-1,3,5, ...
- n-substituted polyacetylenes, acetylene copolymers, and 1,3-tetramethylene-bridged polymers for example in from Polymerization of 1,6-heptadiin resulting polymers and similar derivatives of polyacetylene are present; these also include the different modifications of polyparaphenylenes (PPP), the different modifications of polypyrroles (PPy), the different modifications of polyphthalocyanines (PPhc) and other polymeric organic conductors.
- PPP polyparaphenylenes
- Py polypyrroles
- PPhc polyphthalocyanines
- These can be present as such or as polymers (“doped") complexed with oxidizing or reducing substances; the complexation generally leads to an increase in the electrical conductivity by several orders of magnitude down to the area of metallic conductors.
- Organic conductors are understood to mean conductive non-polymeric organic substances, in particular complex salts or charge transfer complexes, for example the different modifications of te
- Carbon black is preferably added to the polymer blends according to the invention in an amount of about 0.5 to 10, in particular 4 to 10,% by weight, based on the polymer blend.
- the required content may be higher and up to 30% by weight; however, it is regularly lower than in the previously known products, in which the conductive additive is present in the polymer in a uniformly dispersed manner.
- Surface resistance values of 10 to 10 6 ⁇ are achieved.
- polycaprolactone whereby single-phase microstructures (with styrene / acrylonitrile copolymer, polyvinyl chloride or polycarbonate as the polymer) can be used in the light microscope B), drop structures (with polyethylene or ethylene-vinyl acetate as polymer B) or also the particularly preferred conductor tracks (with polyether polyurethane or acrylonitrile / methacrylate / butadiene copolymer as polymer B). Even with an addition in the order of 1 to 3% by weight, a surface resistance of approximately 10 5 to 108 g is obtained.
- the polymer blends according to the invention can also contain conventional additives such as stabilizers, pigments, lubricants, etc.
- conventional additives such as stabilizers, pigments, lubricants, etc.
- chemical crosslinkers e.g. a preferably liquid peroxide, and thereby to achieve a crosslinking of the polymers during the subsequent processing of the blends with heating, which brings about a mechanical stabilization of the conductor tracks achieved according to the invention.
- the crosslinking agent is particularly preferably added to polymer A or to the conductivity concentrate consisting of polymer A and the conductive substances, in order to stabilize the conductor tracks in the matrix made of polymer B.
- the procedure can be followed in a first step by dispersing the conductive substances in a solution or melt of polymer A or a prepolymer for polymer A, if appropriate removing the solvent, and then in a second step prepared conductivity concentrate melted with the polymer B and polymerized using a prepolymer.
- suitable polymer combinations it is also possible to disperse the conductive substances directly into a melt of polymers A and B.
- the first-mentioned method of operation is particularly suitable, for example, for the combination of ethylene-vinyl acetate (polymer A) and polyvinyl chloride (polymer B), since the preparation of a conductivity concentrate from this polymer A and carbon black and subsequent melt mixing with the polymer B gives substantially better results, in particular one even lower soot content with the same electrical conductivity, obtained than with the one-step process.
- the mechanical properties of the polymer blends according to the invention are excellent. In particular, they show very good impact strength values ("without break").
- Conductivity concentrates which contain polymer A and a conductive substance are used for the production process described above.
- conductive carbon black in an amount of more than 15% by weight, preferably about 20% by weight, metal powder in an amount of more than 50% by weight, or an organic conductive polymer or a non-polymeric organic conductor in an amount of more than 10, preferably about 15,% by weight.
- These conductivity concentrates are preferably added directly to polymer B in the production of end products.
- crosslinking it may be desirable to crosslink the polymers to stabilize the structure. If chemical crosslinking agents are added to the polymer blend, this can be done by heating during the manufacture of the blend or during its processing. On the other hand, it is also possible to achieve crosslinking in a manner known per se by irradiation.
- a conductive, thermoplastically processable block copolymer is obtained in which the blocks derived from the prepolymer form a continuous conductor track in the matrix.
- L eitschreibsonne to 10 2 to 10 4 2cm at a content of prepolymer from 10 to 20 wt.%
- a carbon black content in the prepolymer of about 20% corresponding to a content of carbon black in the blend of 2 to 4 wt.%.
- the desired coupling reaction may have to be catalyzed, e.g. Transesterification or transamidation reactions with p-toluenesulfonic acid.
- the polymer blends according to the invention can, if appropriate, first be granulated and supplied as granules to further processors. On the other hand, they can also be processed directly into finished products.
- the blends are particularly suitable for the production of antistatic, electrically conductive coatings, foils, molded parts or moldings.
- the films or molded parts produced from the polymer blends are mechanically stretched, this leads to an alignment of the conductor tracks, with the result that the stretched materials show a preferred flow direction, which is particularly advantageous for various applications can.
- the granulate By extrusion, the granulate could be used to produce thermoformed sheets with a surface resistance of 0.5 to 5.10 4 ⁇ .
- the plates had an impact strength (DIN 53453) "without break” and a notched impact strength of 14 mJ / mm.
- Example 1 As described in Example 1, 79% by weight of ethylene-vinyl acetate copolymer (with a vinyl acetate content of 7%), in addition to conventional stabilizers and processing aids, were admixed with 20% by weight of carbon black and mixed with one another at 170.degree.
- the conductivity concentrate thus obtained (specific resistance according to the four-point method approx. 5 Qcm) was granulated in a second operation with stabilized polyvinyl chloride granules (K value 67 or 70) or immediately extruded to a finished product (for example a plate), the melt temperature was approx. 185 to 190 ° C.
- the semiconducting polymer blend obtained or the finished plate showed an impact strength "without break" and the electrical properties listed in Table 1 below.
- the polyacetylene concentrate was extruded on a single-screw extruder with the polymers B listed in the table below to form a polymer blend, with either a granulate or a finished product being produced.
- the product obtained can, for example, be made more conductive ("doped") by treatment with iodine. The results shown in the following table were obtained.
- a mixture of 1.2% TCNQ complex in PCL is mixed in an internal mixer with the same amount of EVA (30% VA) at 130-160 0 .
- the mass obtained is pressed out into a film. This is pressed at 190 ° C. for 30 seconds, the TCNQ complex dissolving.
- the film is then immediately annealed in hot water at 95 ° C. for 10 minutes and then quenched in water at 15 ° C. Tempering at 95 ° produces tuft-shaped, very long TCNQ complex crystal needles.
- the film has a surface resistance of 3 x 10 8 ⁇ (without TCNQ: approx. 10 12 ⁇ ).
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Conductive Materials (AREA)
Abstract
Description
Es ist bekannt, thermoplastischen Polymeren, die an sich elektrische Isolatoren sind, verschiedenartige elektrisch leitfähige Stoffe zuzusetzen. Mit vorwiegend nicht polymeren Zusatzstoffen, wie insbesondere Antistatika lassen sich statisch leicht aufladbare Polymere antistatisch ausrüsten. Man kann auf diese Weise eine Erniedrigung des Oberflächenwiderstandes von 1012 bis 1016 Ω bis auf ca. 10 8 bis 1010 2 erreichen (vergl. DE-PS 33 47 704.3). Eine weitere Erniedrigung des spezifischen Widerstandes auf ca. 10 1 bis 10 ßcm (halbleitende bis antistatische Ausrüstung) gelingt mit Hilfe von leitfähigen Zusätzen wie Metallfasern oder -partikeln, Kohlefasern, Leitruß (vergl. A. Sternfield, Modern Plastics International, Nr. 7, 48ff (1982)). Diese Zusätze finden in Mengen von etwa 10 bis 30 Gew.% Anwendung. Sie führen nicht nur zu einer oberflächlichen antistatischen Ausrüstung, sondern auch zu einer Erniedrigung des Durchgangswiderstandes.It is known to add various types of electrically conductive substances to thermoplastic polymers, which are electrical insulators per se. Mainly non-polymeric additives, such as in particular antistatic agents, can be used to provide statically easily chargeable polymers with antistatic properties. In this way, the surface resistance can be reduced from 10 12 to 10 16 Ω down to approx . Reach 10 8 to 1010 2 (see DE-PS 33 47 704.3). A further reduction in the specific resistance to approximately 1 0 1 to 10 ßcm (semiconducting to antistatic finish) can be achieved with the aid of conductive additives such as metal fibers or particles, carbon fibers, conductive carbon black (cf. A. Sternfield, Modern Plastics International, No. 7 , 48ff (1982)). These additives are used in amounts of approximately 10 to 30% by weight. They not only lead to a superficial antistatic finish, but also to a reduction in volume resistance.
Neuerdings ist es darüber hinaus gelungen, elektrisch nicht leitfähigen Polymeren elektrisch leitfähige Polymere oder nicht polymere organische Leiter zuzusetzen und auf diese Weise antistatische bis halbleitende Polymerblends herzustellen (vergl. EP-A 85107027.6 - noch nicht veröffentlicht).Recently, it has also been possible to add electrically non-conductive polymers to electrically conductive polymers or non-polymeric organic conductors and to produce antistatic to semiconducting polymer blends in this way (see EP-A 85107027.6 - not yet published).
In allen diesen Fällen ist die Erhöhung der elektrischen Leitfähigkeit vom Ausgangswert des nicht leitenden Polymers auf einen für den leitfähigen Stoff charakteristischen Wert von der Konzentration des zugesetzten Stoffes nicht linear abhängig. Vielmehr wird am Durchbruchspunkt (Perkolationspunkt) ein mehr oder weniger steiler Anstieg der Leitfähigkeit beobachtet, der darauf beruht, daß sich die Teilchen des leitfähigen Stoffes nun ausreichend nahekommen bzw. berühren und dadurch kontinuierliche Strompfade oder Leiterbahnen ausbilden. Der Durchbruchspunkt ist von der Geometrie, insbesondere dem Verhältnis von Länge zu Durchmesser, und der Oberfläche der zugesetzten Teilchen, von der Art des Polymeren, und von der angewendeten Dispergiermethode äußerst stark abhängig. Der Perkolationspunkt ist der Wendepunkt der Kurve, wenn man den Logarithmus der Leitfähigkeit gegen die Konzentration des leitfähigen Zusatzes aufträgt.In all of these cases, the increase in the electrical conductivity from the initial value of the non-conductive polymer to a value characteristic of the conductive substance is not linearly dependent on the concentration of the substance added. Rather, a more or less steep increase in conductivity is observed at the breakthrough point (percolation point), which is due to the fact that the particles of the conductive substance are now sufficiently close or touching, thereby forming continuous current paths or conductor tracks. The breakthrough point depends on the geometry, in particular the ratio of length to diameter, and the surface of the added particles, the type of polymer and on the applied D ispergiermethode very heavily dependent. The percolation point is the turning point of the curve when the logarithm of the conductivity is plotted against the concentration of the conductive additive.
Es ist bislang nicht möglich, den Leitfähigkeitsdurchbruch (die Perkolation) theoretisch genau zu beschreiben und insbesondere vorherzusagen. K. Miyasaka et al. (J. Mat. Sci. 17, 1610-1616 (1982)) haben eine Theorie auf der Basis der Grenzflächenspannung ausgearbeitet, die für qualitative Betrachtungen hilfreich ist. In der Praxis benötigt man jedoch wesentlich höhere Anteile an leitfähigen Zusätzen als von Miyasaka theoretisch ermittelt. Vermutlich beruht dies darauf, daß bei der Einarbeitung der Zusätze in Polymere und der Weiterverarbeitung der Polymerblends zu Endprodukten Leitfähigkeitsbrücken unterbrochen werden. Im Prinzip kann der leitfähige Zusatz drei Phasen durchlaufen: Vom undispergierten Agglomerat (max. Kohäsionskontakte) über eine Kettenstruktur (Gleichgewicht zwischen Kohäsion und Adhäsion) zur voll dispergierten Phase (max. Adhäsion).It is not possible so far, the conductivity breakthrough (P erkolation) theory to describe accurately and in particular to predict. K. Miyasaka et al. (J. Mat. Sci. 17, 1610-1616 (1982)) have developed a theory based on the interfacial tension that is helpful for qualitative considerations. In practice, however, much higher proportions of conductive additives are required than theoretically determined by Miyasaka. This is presumably due to the fact that conductivity bridges are interrupted when the additives are incorporated into polymers and the polymer blends are further processed into end products. In principle, the conductive additive can go through three phases: from the undispersed agglomerate (max. Cohesion contacts) to a chain structure (balance between cohesion and adhesion) to the fully dispersed phase (max. Adhesion).
Die Einarbeitung von hohen Anteilen von beispielsweise 10 bis 30 Gew.% Leitruß mit sehr großer Oberfläche erfordert viel Energie und beeinträchtigt die Verarbeitungseigenschaften (sehr starke Schmelzviskositätserhöhung), die Hitze-, Oxidations- und Langzeitstabilität sowie die mechanischen Eigenschaften der Polymeren in erheblichem Ausmaß. Darüber hinaus steigen mit dem Gehalt an leitfähigen Zusätzen die Materialkosten ganz beträchtlich, nämlich um etwa 10% je Steigerung des Anteils an leitfähigen Zusätzen um 1%. Es wurden daher immer wieder Versuche unternommen, den erfor- derlichen Zusatzgehalt durch Änderung der Oberfläche bzw. des Länge:Durchmesser-Verhältnisses oder durch Optimierung der Verarbeitungsverfahren zu senken. Andererseits wurde versucht, durch polymere Zusätze eine Erhöhung der Stabilität und eine Verbesserung der Verarbeitbarkeit der mechanischen Eigenschaften zu erreichen.The incorporation of high levels of, for example 10 to 30 wt.% Conductive carbon black with a very large surface area requires a lot of energy and adversely affect the processing properties (very strong melt viscosity increase), the heat, O xidations- and long term stability as well as the mechanical properties of the polymer to a considerable extent. In addition, the content of conductive additives increases material costs considerably, namely by about 10% for each increase in the proportion of conductive additives by 1%. There have therefore been repeatedly made attempts to require d variable Z usatzgehalt by changing the surface or the L ength: to reduce diameter ratio or by optimizing the processing methods. On the other hand attempts to increase the stability and improve the processability of the mechanical properties by means of polymeric additives.
So beschreiben die DE-OS 29 01 758 und 29 01 776 die Herstellung eines Netzwerkes aus Leitruß (durch das der Strom fließt) in einer Preßmasse aus Polyethylen als Matrix. Die beschriebene Preßmasse eignet sich nur zur diskontinuierlichen Herstellung von Platten im Preßverfahren, nicht aber zur kontinuierlichen Verarbeitung durch Extrudieren oder andere übliche Verarbeitungsverfahren für Thermoplaste, da dabei das Netzwerk und damit die Leitfähigkeit zerstört werden.DE-OS 29 01 758 and 29 01 776 describe the production of a network of conductive carbon black (through which the current flows) in a molding compound made of polyethylene as a matrix. The molding compound described is only suitable for the discontinuous production of plates in the pressing process, but not for continuous processing by extrusion or other conventional processing methods for thermoplastics, since the network and thus the conductivity are destroyed.
Die US-PS 42 65 789 (und die dort zum Stand der Technik genannten weiteren Veröffentlichungen) beschreiben Polymerblends mit einem sehr hohen Gehalt an Leitruß. Die DE-OS 32 08 841 und 32 08 842 offenbaren die zwei- bis dreistufige Herstellung von Leitruß enthaltenden Polyvinylchloridblends mit anderen Polymeren, insbesondere Ethylen-Vinylacetat-Copolymeren. Die thermoplastische Masse soll homogen verteilt 15 Gew.% Ruß enthalten, die Polymerbestandteile und das Verfahren dienen dabei der Verbesserung der Verarbeitbarkeit. Die DE-OS 25 17 358 erwähnt den Zusatz von Kautschuk zur Erhöhung der Schlagzugzähigkeit, ohne daß eine Verminderung des Rußanteils erreicht wird. Der Ruß wird dabei einer vorher hergestellten homogenen Polymer/Kautschukmischung zugesetzt.US Pat. No. 4,265,789 (and the other publications mentioned there relating to the prior art) describe polymer blends with a very high content of conductive carbon black. DE-OS 32 08 841 and 32 08 842 disclose the two- to three-stage production of conductive black-containing polyvinyl chloride blends with other polymers, especially ethylene-vinyl acetate copolymers. The thermoplastic composition should contain 15% by weight of carbon black, the polymer components and the process serve to improve processability. DE-OS 25 17 358 mentions the addition of rubber to increase the impact strength without reducing the proportion of soot. The carbon black is added to a previously produced homogeneous polymer / rubber mixture.
Die Autoren der DE-AS 24 35 418 beobachteten bei der Herstellung von rußhaltigen Polyethylen/Polyamidblends, daß der Ruß sich in der Polyethylenphase konzentriert und nicht in den Polyamidinseln aufhält. Dies läßt sich durch die große Differenz der Erweichungs- bzw. Schmelzbereiche sowie die Unverträglichkeit der beiden Polymeren leicht erklären. Im Prinzip verhält sich dabei das Polyamid wie ein nicht schmelzender Füllstoff, so daß kein verträglicher Blend mit guten Anwendungseigenschaften erhalten wird. Die für eine ausreichende Leitfähigkeit erforderlichen Rußgehalte sind sehr hoch und übertreffen noch die in der heutigen industriellen Praxis üblichen Gehalte in homogenen Zubereitungen auf Basis eines Polymeren oder mehrerer voll verträglicher Polymerer.The authors of DE-AS 24 35 418 observed in the production of soot-containing polyethylene / polyamide blends that the soot is concentrated in the polyethylene phase and not in the polyamide islands. This can easily be explained by the large difference in the softening or melting ranges and the incompatibility of the two polymers. In principle, the polyamide behaves like a non-melting filler, so that there is no compatible blend good application properties is obtained. The soot contents required for sufficient conductivity are very high and even exceed the contents in homogeneous preparations based on one polymer or several fully compatible polymers which are common in industrial practice today.
Zur Verbesserung der Wärmestabilität von Polyoxymethylen beschreibt die DE-AS 28 08 675 ein Verfahren, bei dem mit Leitruß versetztes Polyethylen dem Polyoxymethylenharz zugesetzt wird. Auf diese Weise erreicht man allerdings nur Oberflächenwiderstände von mehr als 106 n.To improve the thermal stability of polyoxymethylene, DE-AS 28 08 675 describes a process in which polyethylene with conductive carbon black is added to the polyoxymethylene resin. In this way, however, only surface resistances of more than 10 6 n can be achieved.
Es sind bislang keine Formulierung und kein Verfahren zur Herstellung von Polymercompounds bekannt, bei denen die Anteile an leitfähigen Stoffen zum Erreichen definierter Oberflächen- und/oder spezifischer Widerstände gegenüber den in der Praxis bislang üblichen Zusatzmengen deutlich, ggf. sogar bis in die Nähe oder unterhalb der für die jeweiligen Compounds geltenden Perkolationspunkte erniedrigt werden können.To date, no formulation and no process for the production of polymer compounds are known in which the proportions of conductive substances to achieve defined surface and / or specific resistances compared to the amounts customarily used in practice are significant, possibly even up to or near the percolation points applicable to the respective compounds can be reduced.
Aufgabe der Erfindung ist es daher, antistatische bzw. elektrisch halbleitende thermoplastisch verarbeitbare Polymerblends bereitzustellen, welche einen deutlich niedrigeren Gehalt an elektrisch leitfähigen Zusätzen als bislang üblich enthalten, sich aber thermoplastisch unter (zumindest weitgehendem) Erhalt der Leitfähigkeit verarbeiten lassen und gute mechanische Eigenschaften aufweisen. Die bislang zur Erreichung der Perkolation erforderlichen Zusatzmengen liegen bei etwa 10 bis 20 Gew.% Ruß bzw. etwa 30 bis 50 Gew.% Metallpulver, abhängig von der Geometrie und Oberfläche der Teilchen, der Grenzflächenspannung des Polymeren und der Temperatur (vergl. hierzu auch Miyasaka, a.a.0., wobei die theoretischen Werte praktisch bisher nicht erreichbar sind). Gegenstand der Erfindung sind antistatische bzw. elektrisch halbleitende thermoplastische Polymerblends auf Basis von organischen Polymeren und elektrisch leitfähigen Stoffen, welche dadurch gekennzeichnet sind, daß sie zwei teilverträgliche thermoplastische Polymere A und B enthalten, von denen das Polymer A bei gegebener Temperatur im Vergleich zum Polymer B eine niedrigere Schmelzviskosität aufweist und zwischen denen eine Löslichkeitsparameter-Differenz von etwa 0,3 bis 1,5 (cal/cm3)1/3 besteht, wobei das die kontinuierliche Phase bildende Polymer A im wesentlichen die elektrisch leitfähigen Stoffe enthält.The object of the invention is, therefore, olymerblends provide antistatic or electrically semiconducting thermoplastically processable P, which contain a significantly lower content of electrically conductive additives than hitherto usual, having can be but thermoplastic (at least substantial) to give the conductivity to process and good mechanical properties . The previously necessary to achieve the percolation added amounts are from about 10 to 20 wt.% R ow and about 30 to 50 wt.% Metal powder, depending on the geometry and surface of the particles, the interfacial tension of the polymer and the temperature (see FIG. Thereto also Miyasaka, aa0., whereby the theoretical values have so far not been achievable). The invention relates to antistatic or electrically semiconducting thermoplastic polymer blends based on organic polymers and electrically conductive substances, which are characterized in that they contain two partially compatible thermoplastic polymers A and B, of which the polymer A at a given temperature compared to the polymer B. has a lower melt viscosity and between which there is a solubility parameter difference of approximately 0.3 to 1.5 (cal / cm 3) 1/3, the polymer A forming the continuous phase essentially containing the electrically conductive substances.
Grundlagen der Löslichkeitsparameter-Theorie sowie Werte dazu findet man in
- a) 0. Olabisi u.a., Polymer-Polymer Miscibility, N.Y. 1979
- b) D. Paul, S. Newman, Polymer Blends, N.Y. 1978
- c) K. Solc, Polymer Compatibility, Chur/Schweiz 1980
- d) J. Brandrup u.a., Polymer Handbook, N.Y. 1975
- e) A. Barton, Handbook of Solubility Parameters, Boca Raton, 1985
- a) 0. Olabisi et al., Polymer-Polymer Miscibility, NY 1979
- b) D. Paul, S. Newman, Polymer Blends, NY 1978
- c) K. Solc, Polymer Compatibility, Chur / Switzerland 1980
- d) J. Brandrup et al., Polymer Handbook, NY 1975
- e) A. Barton, Handbook of Solubility Parameters, Boca Raton, 1985
Überraschenderweise gelingt es auf diese Weise, Polymerblends mit hervorragenden Verarbeitungseigenschaften und mechanischen Eigenschaften herzustellen, die bereits bei Zusatz von weniger als 10, vorzugsweise etwa 4 bis 8 Gew.% Leitruß eine Leitfähigkeit zeigen, welche bislang nur mit einem Rußanteil von mindestens 10 bis 15 Gew.% erreichbar war. Offenbar gelingt es, die leitfähigen Zusätze auf schmale, aber durchgehende Leiterbahnen zu konzentrieren und so eine zu starke Dispergierung des leitfähigen Zusatzstoffes zu vermeiden, wie sie bei der herkömmlichen Arbeitsweise auftritt. Gegenüber dem Stand der Technik ist eine erheblich genauere Einstellung der gewünschten Leitfähigkeit insbesondere in der Nähe des Perkolationspunktes möglich.Surprisingly, it is possible in this way to produce polymer blends with excellent processing properties and mechanical properties which, even when less than 10, preferably about 4 to 8% by weight of conductive carbon black are added, show a conductivity which has hitherto only been achieved with a carbon black content of at least 10 to 15% by weight .% was reachable. Apparently, it is possible to concentrate the conductive additives on narrow but continuous conductor tracks and thus avoid excessive dispersion of the conductive additive, as occurs in the conventional way of working. Compared to the prior art, it is possible to set the desired conductivity considerably more precisely, particularly in the vicinity of the percolation point.
Der Erfolg der Erfindung beruht anscheinend darauf, daß mindestens zwei Polymere verwendet werden, deren Löslichkeitsparameter sich um mindestens etwa 0,3, höchstens aber etwa 1,5 (cal/cm)1/3 unterscheiden und deren Schmelzviskosität ebenfalls unterschiedlich ist (dabei soll die Schmelzviskosität des Polymeren A ohne Zusatz der leitfähigen Stoffe niedriger sein als die des Polymeren B, jeweils gemessen bei derselben Temperatur). Dabei bilden sich offenbar zwei kontinuierliche Phasen, die sich gegenseitig durchdringen (interpenetrierende Netzwerke) und deren Phasengrenzen aufgrund der Teilverträglichkeit der Polymeren eine gute Adhäsion aufweisen. Besonders geeignete Kombinationen, welche den erfindungsgemäßen Bedingungen entsprechen, sind beispielsweise die folgenden:
- Ethylen-Vinylacetat-Copolymer(EVA)/Polyvinylchlorid(PVC), Ethylen-Vinylacetat-Copolymer(EVA)/Polyethylen(PE), chloriertes Polyethylen(PEC)/Acrylnitril-Butadien-Styrol-Copolymer(ABS), Styrol-Butadien-Styrol-Blockcopolymer(SBS)/Polyethylen(PE), Polystyrol(PS)/Styrol-Butadien-Styrol-Blockcopolymer(SBS), Polyamid-Copolymer(PA)/Polyamid(PA), Polyamid(PA)/Polyoxymethylen(POM), Ethylen-Vinylacetat-Copolymer(EVA)/Acrylnitril-Butadien-Styrol-Copolymer(ABS), a-Methylstyrol/Polyvinylchlorid(PVC), Ethylen-Vinylacetat-Kohlenmonoxid-Copolymer(EVA-C0»/Polyvinylchlorid(PVC), Ethylen-Vinylacetat-Kohlenmonoxid-Copolymer(EVA-CO))/Polyurethan(PUR), Polyurethan(PUR)/Polyamid(PA), Poly- urethan(PUR)/Polycarbonat(PC), Polycaprolacton(PCL)/Polyetherpoly- urethan(PUR-ether), Polyesterpolyurethan(PUR-ester)/Polyvinylchlorid(PVC), Polyurethan(PUR)/Acrylnitril-Butadien-Styrol-Copolymer(ABS), Polycaprolacton(PCL)/Acrylnitril-Methacrylat-Butadien-Copolymer, Polycaprolacton(PCL)/Polyurethan(PUR) oder Polycaprolacton(PCL)/Ethylen-Vinylacetat-Copolymer(EVA).
- Ethylene-vinyl acetate copolymer (EVA) / polyvinyl chloride (PVC), ethylene-vinyl acetate copolymer (EVA) / polyethylene (PE), chlorinated polyethylene (PEC) / acrylonitrile-butadiene-styrene copolymer (ABS), styrene-butadiene-styrene -Block copolymer (SBS) / polyethylene (PE), polystyrene (PS) / styrene-butadiene-styrene block copolymer (SBS), polyamide copolymer (PA) / polyamide (PA), polyamide (PA) / polyoxymethylene (POM), ethylene -Vinyl acetate copolymer (EVA) / acrylonitrile-butadiene-styrene copolymer (ABS), a-methylstyrene / polyvinyl chloride (PVC), ethylene-vinyl acetate-carbon monoxide copolymer (EVA-C0 »/ polyvinyl chloride (PVC), ethylene-vinyl acetate- carbon monoxide copolymer (EVA-CO)) / polyurethane (PUR), polyurethane (PUR) / polyamide (PA), P oly- urethane (PUR) / polycarbonate (PC), polycaprolactone (PCL) / Polyetherpoly- urethane (PUR-ether ), Polyester polyurethane (PUR ester) / polyvinyl chloride (PVC), polyurethane (PUR) / acrylonitrile butadiene styrene copolymer (ABS), polycaprolactone (PCL) / acrylonitrile methacrylate butadiene copolymer, polycaprolactone (PCL) / polyurethane ( PUR) or polycaprolacto n (PCL) / ethylene vinyl acetate copolymer (EVA).
Darüber hinaus ist es auch möglich, daß Polymer A und/oder Polymer B Mischungen von untereinander voll verträglichen thermoplastischen Polymeren sind. Beispiele für solche Mischungen sind Styrol-Acrylnitril-Copolymer(SAN) mit chloriertem Polyethylen(PEC) und Polyvinylbutyral (PVB) mit Polyvinylpyrrolidon-Vinylacetat-Copolymer(PVP-VA).In addition, it is also possible for polymer A and / or polymer B to be mixtures of thermoplastic polymers which are fully compatible with one another. Examples of such mixtures are styrene-acrylonitrile copolymer (SAN) with chlorinated polyethylene (PEC) and polyvinyl butyral (PVB) Polyvinylpyrrolidone-vinyl acetate copolymer (PVP-VA).
Der leitfähige Zusatz befindet sich im wesentlichen in dem die kontinuierliche Phase des Blends bildenden Polymer A. Bezogen auf das Polymer B liegt Polymer A normalerweise im Unterschuß vor, d.h. es findet ein Gewichtsverhältnis Polymer A:Polymer B < 1:1 Anwendung. Vorzugsweise liegt der Anteil an Polymer A in dem Gemisch der Polymeren A und B bei etwa 20 bis 40 Gew.%. In gewissem Umfang richtet sich die Menge an Polymer A nach der Menge der vorhandenen leitfähigen Zusatzstoffe, da bezogen auf den gesamten Blend die Menge an Polymer A und leitfähigen Zusatzstoffen vorzugsweise unter 50 Gew.%, beispielsweise bei 10 bis 49 Gew.% liegen sollte.The conductive additive is essentially in polymer A, which forms the continuous phase of the blend. Relative to polymer B, polymer A is normally in a deficit, i.e. a weight ratio of polymer A: polymer B <1: 1 is used. The proportion of polymer A in the mixture of polymers A and B is preferably about 20 to 40% by weight. To a certain extent, the amount of polymer A depends on the amount of conductive additives present, since, based on the total blend, the amount of polymer A and conductive additives should preferably be less than 50% by weight, for example 10 to 49% by weight.
Als elektrisch leitfähiger Zusatzstoff findet vorzugsweise Leitruß mit einer BET-Oberfläche > 250 m2/g und mit einer Dibutylphthalat-Absorption > 140 cm3/100 g Verwendung. Geeignet sind ferner Kohlenstoff-Fasern, Metallpulver oder -fasern, elektrisch leitfähige organische Polymere oder nicht polymere organische Leiter. Unter "leitfähigen Polymeren" werden polykonjugierte Systeme verstanden, wie sie in Polyacetylen (PAc), Poly-1,3,5,...n-substituierten Polyacetylenen, Acetlyencopolymeren, sowie 1,3-tetramethylen-überbrückten Polymeren, z.B. in aus der Polymerisation von 1,6-Heptadiin resultierenden Polymeren und ähnlichen Derivaten von Polyacetylen vorliegen; ferner gehören hierzu die unterschiedlichen Modifikationen von Polyparaphenylenen (PPP), die unterschiedlichen Modifikationen von Polypyrrolen (PPy), die unterschiedlichen Modifikationen von Polyphthalocyaninen (PPhc) und andere polymere organische Leiter. Diese können als solche oder als mit oxidierenden oder reduzierenden Stoffen komplexierte ("dotierte") Polymere vorliegen; die Komplexierung führt in der Regel zu einer Erhöhung der elektrischen Leitfähigkeit um mehrere Zehnerpotenzen bis in den Bereich metallischer Leiter hinein. Unter "organischen Leitern" werden leitende nicht-polymere organische Stoffe verstanden, insbesondere Komplexsalze bzw. Charge-Transfer-Komplexe, z.B. die unterschiedlichen Modifikationen von Tetracyanochinodimethan (TCNQ)-Salzen.As the electrically conductive auxiliary is preferably conductive carbon black with a BET surface area> 250 m 2 / g and with a dibutylphthalate absorption> 140 cm 3/100 g use. Also suitable are carbon fibers, metal powder or fibers, electrically conductive organic polymers or non-polymeric organic conductors. "Conductive polymers" are understood to mean polyconjugated systems such as those found in polyacetylene (PAc), poly-1,3,5, ... n-substituted polyacetylenes, acetylene copolymers, and 1,3-tetramethylene-bridged polymers, for example in from Polymerization of 1,6-heptadiin resulting polymers and similar derivatives of polyacetylene are present; these also include the different modifications of polyparaphenylenes (PPP), the different modifications of polypyrroles (PPy), the different modifications of polyphthalocyanines (PPhc) and other polymeric organic conductors. These can be present as such or as polymers ("doped") complexed with oxidizing or reducing substances; the complexation generally leads to an increase in the electrical conductivity by several orders of magnitude down to the area of metallic conductors. Under “Organic conductors” are understood to mean conductive non-polymeric organic substances, in particular complex salts or charge transfer complexes, for example the different modifications of tetracyanoquinodimethane (TCNQ) salts.
Auch Gemische von mehreren der vorstehend aufgeführten leitfähigen Zusatzstoffe können Verwendung finden. Leitruß wird den erfindungsgemäßen Polymerblends vorzugsweise in einer Menge von etwa 0,5 bis 10, insbesondere 4 bis 10 Gew.%, bezogen auf den Polymerblend, zugesetzt. Für andere Stoffe, z.B. Metallpulver kann der erforderliche Gehalt u.U. höher liegen und bis zu 30 Gew.% betragen; er ist jedoch regelmäßig niedriger als bei den bislang bekannten Erzeugnissen, bei denen der leitfähige Zusatzstoff in dem Polymer gleichmäßig dispergiert vorliegt. Man erreicht Obeflächenwiderstandswerte von 10 bis 106 Ω.Mixtures of several of the conductive additives listed above can also be used. Carbon black is preferably added to the polymer blends according to the invention in an amount of about 0.5 to 10, in particular 4 to 10,% by weight, based on the polymer blend. For other substances, eg metal powder, the required content may be higher and up to 30% by weight; however, it is regularly lower than in the previously known products, in which the conductive additive is present in the polymer in a uniformly dispersed manner. Surface resistance values of 10 to 10 6 Ω are achieved.
Besondere Vorteile werden bei Verwendung der oben erwähnten intrinsisch leitfähigen Polymeren oder nicht polymeren organischen Leiter erreicht, da sich hierbei im Vergleich zu allen anderen Zusätzen die Anteile nochmals erheblich senken lassen. Besonders überraschend ist dabei die Feststellung, daß sich leitfähige Polymere wie z.B. Polyacetylen bei Verwendung eines geeigneten Polymers A, z.B. Polycaprolacton, in nahezu alle Polymeren einarbeiten lassen, wobei sich im Lichtmikroskop einphasige Mikrostrukturen (mit Styrol/Acrylnitril-Copolymer, Polyvinylchlorid oder Polycarbonat als Polymer B), Tropfenstrukturen (mit Polyethylen oder Ethylen-Vinylacetat als Polymer B) oder auch die besonders bevorzugten Leiterbahnen (mit Polyetherpolyurethan oder Acrylnitril/Methacrylat/Butadien-Copolymer als Polymer B) ausbilden können. Schon mit einem Zusatz in der Größenordnung von 1 bis 3 Gew.% wird ein Oberflächenwiderstand von etwa 105 bis 108 ü erhalten.Particular advantages are achieved when using the above-mentioned intrinsically conductive polymers or non-polymeric organic conductors, since the proportions can be significantly reduced compared to all other additives. It is particularly surprising to find that conductive polymers such as polyacetylene can be incorporated into almost all polymers using a suitable polymer A, e.g. polycaprolactone, whereby single-phase microstructures (with styrene / acrylonitrile copolymer, polyvinyl chloride or polycarbonate as the polymer) can be used in the light microscope B), drop structures (with polyethylene or ethylene-vinyl acetate as polymer B) or also the particularly preferred conductor tracks (with polyether polyurethane or acrylonitrile / methacrylate / butadiene copolymer as polymer B). Even with an addition in the order of 1 to 3% by weight, a surface resistance of approximately 10 5 to 108 g is obtained.
Die erfindungsgemäßen Polymerblends können darüber hinaus übliche Zusatzstoffe wie Stabilisierungsmittel, Pigmente, Gleitmittel usw. enthalten. Gemäß einer besonderen Ausführungsform der Erfindung ist es möglich, chemische Vernetzer, z.B. ein vorzugsweise flüssiges Peroxid, zuzusetzen und dadurch bei der späteren Verarbeitung der Blends unter Erhitzen eine Vernetzung der Polymeren zu erreichen, welche eine mechanische Stabilisierung der erfindungsgemäß erzielten Leiterbahnen bewirkt.The polymer blends according to the invention can also contain conventional additives such as stabilizers, pigments, lubricants, etc. According to a particular embodiment of the invention it is possible to use chemical crosslinkers e.g. a preferably liquid peroxide, and thereby to achieve a crosslinking of the polymers during the subsequent processing of the blends with heating, which brings about a mechanical stabilization of the conductor tracks achieved according to the invention.
Besonders bevorzugt wird der Vernetzer dem Polymeren A bzw. dem aus Polymer A und den leitfähigen Stoffen bestehenden Leitfähigkeitskonzentrat zugesetzt, um die Leiterbahnen in der Matrix aus Polymer B zu stabilisieren. Es ist jedoch auch möglich, den Vernetzer in das Polymer B oder den Polymerblend einzuarbeiten und auf diese Weise eine Fixierung der sich ausbildenden Strukturen zu erreichen.The crosslinking agent is particularly preferably added to polymer A or to the conductivity concentrate consisting of polymer A and the conductive substances, in order to stabilize the conductor tracks in the matrix made of polymer B. However, it is also possible to incorporate the crosslinker into the polymer B or the polymer blend and in this way to achieve a fixation of the structures which form.
Zur Herstellung der erfindungsgemäßen Polymerblends kann man so vorgehen, daß man in einem ersten Schritt die leitfähigen Stoffe in einer Lösung oder Schmelze des Polymers A oder eines Präpolymers für das Polymer A dispergiert, ggf. das Lösungsmittel entfernt, und anschließend in einem zweiten Schritt das so hergestellte Leitfähigkeitskonzentrat mit dem Polymer B aufschmilzt und bei Verwendung eines Präpolymers polymerisiert. Andererseits ist es bei Verwendung geeigneter Polymer-Kombinationen auch möglich, die leitfähigen Stoffe direkt in eine Schmelze aus den Polymeren A und B einzudispergieren. Die erstgenannte Arbeitsweise eignet sich beispielsweise besonders für die Kombination aus Ethylen-Vinylacetat (Polymer A) und Polyvinylchlorid (Polymer B), da man bei Herstellung eines Leitfähigkeitskonzentrats aus diesem Polymer A und Ruß und anschließender Schmelzvermischung mit dem Polymer B wesentlich bessere Ergebnisse, insbesondere einen noch niedrigeren Rußgehalt bei gleicher elektrischer Leitfähigkeit, erhält als beim Einschrittverfahren. Andererseits ist es z.B. bei Verwendung von Styrol-Butadien-Styrol-Copolymer als Polymer B und Polystyrol als Polymer A möglich, beide Polymere gemeinsam zu schmelzen und in einem Schritt, z.B. in einem Banbury-Kneter oder einem Doppelschnecken-Knetextruder die leitfähigen Stoffe einzuarbeiten. Es ist auch möglich, daß 1-Schritt- und das 2-Schritt-Verfahren miteinander zu kombinieren, d.h. zunächst die Mischung aus Polymer A und dem Leitfähigkeitszusatz herzustellen und anschließend die Polymeren A und B miteinander zu mischen, wobei ein weiterer Teil des Leitfähigkeitszusatzes zugegeben wird.To produce the polymer blends according to the invention, the procedure can be followed in a first step by dispersing the conductive substances in a solution or melt of polymer A or a prepolymer for polymer A, if appropriate removing the solvent, and then in a second step prepared conductivity concentrate melted with the polymer B and polymerized using a prepolymer. On the other hand, if suitable polymer combinations are used, it is also possible to disperse the conductive substances directly into a melt of polymers A and B. The first-mentioned method of operation is particularly suitable, for example, for the combination of ethylene-vinyl acetate (polymer A) and polyvinyl chloride (polymer B), since the preparation of a conductivity concentrate from this polymer A and carbon black and subsequent melt mixing with the polymer B gives substantially better results, in particular one even lower soot content with the same electrical conductivity, obtained than with the one-step process. On the other hand it is possible, for example when using styrene-butadiene-styrene copolymer as polymer B and polystyrene as polymer A, to melt both polymers together and to incorporate the conductive substances in one step, for example in a Banbury kneader or a twin-screw kneading extruder. It is also possible to combine the 1-step and the 2-step processes with one another, ie firstly to prepare the mixture of polymer A and the conductivity additive and then to mix the polymers A and B with one another, with a further part of the conductivity additive being added becomes.
Die mechanischen Eigenschaften der erfindungsgemäßen Polymerblends sind hervorragend. Sie zeigen insbesondere sehr gute Schlagzähigkeitswerte ("ohne Bruch").The mechanical properties of the polymer blends according to the invention are excellent. In particular, they show very good impact strength values ("without break").
Zur Verwendung in dem vorstehend beschriebenen Herstellungsverfahren dienen Leitfähigkeitskonzentrate, welche das Polymer A und einen leitfähigen Stoff enthalten. In dem Leitfähigkeitskonzentrat kann Leitruß in einer Menge von mehr als 15 Gew.%, vorzugsweise etwa 20 Gew.%, Metallpulver in einer Menge von mehr als 50 Gew.%, oder ein organisches leitfähiges Polymer bzw. ein nicht polymerer organischer Leiter in einer Menge von mehr als 10, vorzugsweise etwa 15 Gew.% vorhanden sein. Vorzugsweise werden diese Leitfähigkeitskonzentrate bei der Herstellung von Endprodukten direkt dem Polymer B zugesetzt.Conductivity concentrates which contain polymer A and a conductive substance are used for the production process described above. In the conductivity concentrate, conductive carbon black in an amount of more than 15% by weight, preferably about 20% by weight, metal powder in an amount of more than 50% by weight, or an organic conductive polymer or a non-polymeric organic conductor in an amount of more than 10, preferably about 15,% by weight. These conductivity concentrates are preferably added directly to polymer B in the production of end products.
Wie oben bereits erwähnt, kann es u.U. erwünscht sein, zur Stabilisierung der Struktur eine Vernetzung der Polymeren durchzuführen. Bei Zusatz chemischer Vernetzer zu dem Polymerblend kann dies durch Erhitzen bei der Herstellung des Blends oder bei dessen Verarbeitung erfolgen. Andererseits ist es auch möglich, die Vernetzung in an sich bekannter Weise durch Bestrahlung zu erreichen.As mentioned above, it may be desirable to crosslink the polymers to stabilize the structure. If chemical crosslinking agents are added to the polymer blend, this can be done by heating during the manufacture of the blend or during its processing. On the other hand, it is also possible to achieve crosslinking in a manner known per se by irradiation.
In bestimmten Fällen kann es von Vorteil sein, während oder unmittelbar nach der Einarbeitung der leitfähigen Stoffe chemische Reaktionen stattfinden zu lassen, um die Gebrauchseigenschaften der leitfähigen Blends bzw. der daraus hergestellten Fertigteile weiter zu verbessern. Beispielsweise kann man in an sich bekannter Weise (J. Gabbert, Preprints of 3. Int. Conf. on Reactive Processing of Polymers in Straßburg vom 5. bis 7.9. 1984, Seite 137; J. van der Loos, a.a.O. Seite 149) ein bei Raumtemperatur flüssiges Präpolymer der folgenden Formel
in der R ein zweiwertiger Kohlenwasserstoffrest und n = 50 bis 5000 ist, leitfähige Stoffe wie Leitruß einarbeiten und dieses in an sich bekannter Weise mit Caprolactam (als Polymer B) und einem Katalysator vermischen. Beim Extrudieren der Mischung erhält man ein leitfähiges, thermoplastisch verarbeitbares Blockcopolymer, in dem die von dem Präpolymer abgeleiteten Blöcke eine kontinuierliche Leiterbahn in der Matrix bilden. Man erreicht so spezifische Leitfähigkeitswerte um 102 bis 104 2cm bei einem Gehalt an Präpolymer von 10 bis 20 Gew.% und einem Rußgehalt in dem Präpolymer von etwa 20% entsprechend einem Rußgehalt in dem Blend von 2 bis 4 Gew.%.In certain cases, it can be advantageous to allow chemical reactions to take place during or immediately after the incorporation of the conductive substances in order to further improve the performance properties of the conductive blends or of the finished parts produced therefrom. For example, in a manner known per se (J. Gabbert, Preprints of 3rd Int. Conf. On Reactive Processing of Polymers in Strasbourg from 5 to 7 September 1984, page 137; J. van der Loos, loc. Cit. Page 149) prepolymer of the following formula which is liquid at room temperature
in which R is a divalent hydrocarbon radical and n = 50 to 5000, incorporate conductive substances such as conductive carbon black and mix this with caprolactam (as polymer B) and a catalyst in a manner known per se. When the mixture is extruded, a conductive, thermoplastically processable block copolymer is obtained in which the blocks derived from the prepolymer form a continuous conductor track in the matrix. Can be reached so-specific L eitfähigkeitswerte to 10 2 to 10 4 2cm at a content of prepolymer from 10 to 20 wt.% And a carbon black content in the prepolymer of about 20% corresponding to a content of carbon black in the blend of 2 to 4 wt.%.
Es ist vorteilhaft, die Polypropylenoxidkette durch Poly-caprolacton zu ersetzen und daraus ein anderes Präpolymer zu erzeugen, wenn statt Leitruß z.B. Polyacetylen als leitfähiger Stoff eingearbeitet werden soll.It is advantageous to replace the polypropylene oxide chain with poly-caprolactone and to produce another prepolymer from it, if instead of carbon black e.g. Polyacetylene should be incorporated as a conductive substance.
In bestimmten Fällen kann zur Erzeugung der erfindungsgemäß notwendigen Teilverträglichkeit zwischen den Polymeren A und B eine chemische Reaktion stattfinden. Dabei entstehen an den Grenzflächen zwischen den Phasen A und B Copolymere aus A und B. Dies kann beispielsweise durch katalysierte oder unkatalysierte Additions-, Veresterungs-, Umesterungs-, Verseifungs-, Umamidierungs- oder Eliminierungsreaktionen und ähnliche geschehen. Voraussetzung ist, daß nicht-reaktive Polymere (wie Polyolefine oder Polystyrol) vorher (z.B. mit Maleinsäureanhydrid) in an sich bekannter Weise funktionalisiert werden bzw. daß reaktive Gruppen (z.B. Ester oder Hydroxylgruppen enthaltende Polymere) verwendet werden. Geeignete Polymerblends sind beispielsweise
- Maleinsäureanhydrid-modifiziertes Ethylen-Propylen-Dien-Terpolymer/Polyamid,
- Maleinsäureanhydrid-modifiziertes Polyethylen/Polyamid, Maleinsäureanhydrid-modifiziertes Polyethylen/Polystyrol, Maleinsäureanhydrid-modifiziertes Polystyrol/Polyethylen, Polycaprolacton/Maleinsäureanhydrid-modifiziertes Polyethylen, Polycaprolacton/Maleinsäureanhydrid-modifiziertes Ethylen-Propylen-Dien-Terpolymer,
- Polycaprolacton/Maleinsäureanhydrid-modifiziertes Polystyrol, Polyvinylalkohol/Ethylen-Vinylacetat-Copolymer, Cellulosepropionat/Ethylen-Vinylacetat-Copolymer, Cellulosepropionat/Polyethylenterephthalat, Cellulosepropionat/Polycarbonat,
- Ethylen-Vinylacetat-Copolymer/Polyethylenterephthalat, Ethylen-Vinylacetat-Copolymer/Polycarbonat.
- Maleic anhydride-modified ethylene-propylene-diene terpolymer / polyamide,
- Maleic anhydride-modified polyethylene / polyamide, maleic anhydride-modified polyethylene / polystyrene, maleic anhydride-modified polystyrene / polyethylene, polycaprolactone / maleic anhydride-modified polyethylene, polycaprolactone / maleic anhydride-modified ethylene-propylene-diene terpolymer,
- Polycaprolactone / maleic anhydride-modified polystyrene, polyvinyl alcohol / ethylene-vinyl acetate copolymer, cellulose propionate / ethylene-vinyl acetate copolymer, cellulose propionate / polyethylene terephthalate, cellulose propionate / polycarbonate,
- Ethylene-vinyl acetate copolymer / polyethylene terephthalate, ethylene-vinyl acetate copolymer / polycarbonate.
Die erwünschte Kopplungsreakation muß ggf. katalysiert werden, z.B. Umesterungs- oder Umamidierungsreaktionen mit p-Toluolsulfonsäure.The desired coupling reaction may have to be catalyzed, e.g. Transesterification or transamidation reactions with p-toluenesulfonic acid.
Auf die vorstehende Weise ist es möglich, eigentlich unverträgliche Polymerpaare, die nach dem erfindungsgemäßen Verfahren an sich keine Leiterbahnen ausbilden würden, teilverträglich zu machen. Besonders augenfällig ist dies bei den Polymerpaaren Polyethylen/Polyamid oder Ethylen-Propylen-Dien-Terpolymer/Polyamid. Ohne Kompatibilisierungs- reaktionen bilden sich je nach den Viskositätsverhältnissen rußhaltige oder rußfreie tropfenförmige eingeschlossene Phasen, nach der vorstehend beschriebenen Kompatibilisierung jedoch Leiterbahnen. Hierzu gibt man zum EPDM oder zum Polyethylen Maleinsäureanhydrid und ein Peroxid, läßt dies in der Schmelze reagieren und gibt dann den Ruß hinzu. Die gegebenenfalls granulierte Mischung verarbeitet man dann gemeinsam mit einem Polyamid.In the above manner, it is possible to actually incompatible P olymerpaare that would form at no conductor tracks by the inventive process to make partially compatible. This is particularly striking with the polymer pairs polyethylene / polyamide or ethylene-propylene-diene terpolymer / polyamide. Without K ompatibilisierungs- reactions are formed depending on the viscosity conditions soot-containing or soot-free drop-shaped enclosed phases, however, after the compatibility described above, conductor tracks. For this purpose, maleic anhydride and a peroxide are added to the EPDM or polyethylene, this is allowed to react in the melt and then the carbon black is added. The optionally granulated mixture is then processed together with a polyamide.
Auch bei bereits teilverträglichen erfindungsgemäßen Polymerpaaren kann die in-situ-Erzeugung von Copolymeren zur Stabilisierung der Grenzflächen vorteilhaft sein. In der EP-Patentanmeldung 85107027.6 wurde die Kristallisation von in Polycaprolacton gelöstem N-Methylchinolin-TCNQ beschrieben. Mit der vorliegenden Erfindung ist es möglich, eine z.B. 1 bis 3 Gew.% TCNQ in Polycaprolacton enthaltende Mischung in Ethylen-Vinylacetat-Copolymere einzuarbeiten, wobei sich Netzwerke ausbilden. Bei der Auskristallisation des TCNQ-Salzes separieren die Phasen jedoch teilweise wieder, da die Mischung längere Zeit ohne Scherung thermoplastisch gehalten werden muß und die Verträglichkeit zur Aufrechterhaltung der mikroskopisch feinen Netzwerkstruktur unter diesen Bedingungen nicht ausreicht. Die Zugabe von p-Toluolsulfonsäure stabilisiert durch katalytische Umesterung die Grenzflächen.Even with polymer pairs according to the invention that are already partially compatible, the in-situ production of copolymers can be advantageous for stabilizing the interfaces. EP patent application 85107027.6 describes the crystallization of N-methylquinoline-TCNQ dissolved in polycaprolactone. With the present invention it is possible to use e.g. Incorporate 1 to 3% by weight of TCNQ in a mixture containing polycaprolactone in ethylene-vinyl acetate copolymers, networks forming. When the TCNQ salt crystallizes out, however, some of the phases separate again, since the mixture must be kept thermoplastic for long periods without shearing and the compatibility is not sufficient to maintain the microscopic network structure under these conditions. The addition of p-toluenesulfonic acid stabilizes the interfaces by catalytic transesterification.
Die erfindungsgemäßen Polymerblends können ggf. zunächst granuliert und als Granulate an Weiterverarbeiter geliefert werden. Andererseits können sie auch direkt zu Fertigprodukten verarbeitet werden. Die Blends eignen sich insbesondere zur Herstellung von antistatischen, elektrisch leitfähigen Beschichtungen, Folien, Formteilen oder Formkörpern.The polymer blends according to the invention can, if appropriate, first be granulated and supplied as granules to further processors. On the other hand, they can also be processed directly into finished products. The blends are particularly suitable for the production of antistatic, electrically conductive coatings, foils, molded parts or moldings.
Wenn man die aus den Polymerblends hergestellten Folien oder Formteile mechanisch verstreckt, führt dies zu einer Ausrichtung der Leiterbahnen mit der Folge, daß die verstreckten Materialien eine Vorzugsstromrichtung zeigen, was für verschiedene Anwendungen besonders vorteilhaft sein kann.If the films or molded parts produced from the polymer blends are mechanically stretched, this leads to an alignment of the conductor tracks, with the result that the stretched materials show a preferred flow direction, which is particularly advantageous for various applications can.
Zur Erläuterung der Erfindung sollen die nachfolgenden Beispiele dienen, auf welche die Erfindung jedoch nicht beschränkt ist.The following examples are intended to explain the invention, but the invention is not restricted to these.
In einen Innenmischer wurden nacheinander 75 Gew.% Polystyrol, 15 Gew.% eines Styrol-Butadien-Styrol-Radialblockcopolymeren, 3,5 Gew.% übliche Stabilisatoren und Verarbeitungshilfsmittel sowie 6,5 Gew.% Leitruß (Ketjenblack EC® der Firma Akzo) gegeben und 4 bis 5 Min. lang bei ca. 180°C vermischt (das Füllvolumen des Mischers betrug 25 1). Anschließend wurde der gebildete Polymerblend granuliert. Nach Verpressen zu einer Platte wies das Material einen Oberflächenwiderstand (gemessen mit einer Ringelektrode nach DIN 53482) von 0,1 bis 2.103 2 auf. Durch Extrudieren konnten aus dem Granulat tiefziehfähige Platten hergestellt werden, die einen Oberflächenwiderstand von 0,5 bis 5.104 Ω aufwiesen. Die Platten besaßen eine Schlagzähigkeit (DIN 53453) "ohne Bruch" und eine Kerbschlagzähigkeit von 14 mJ/mm .75% by weight of polystyrene, 15% by weight of a styrene-butadiene-styrene radial block copolymer, 3.5% by weight of conventional stabilizers and processing aids and 6.5% by weight of conductive carbon black (Ketjenblack EC® from Akzo) were placed in an internal mixer. and mixed for 4 to 5 minutes at approx. 180 ° C (the filling volume of the mixer was 25 l). The polymer blend formed was then granulated. After being pressed into a plate, the material had a surface resistance (measured with a ring electrode according to DIN 53482) of 0.1 to 2.10 3 2. By extrusion, the granulate could be used to produce thermoformed sheets with a surface resistance of 0.5 to 5.10 4 Ω. The plates had an impact strength (DIN 53453) "without break" and a notched impact strength of 14 mJ / mm.
Wie in Beispiel 1 beschrieben wurden zu 79 Gew.% Ethylen-Vinylacetat-Copolymer (mit einem Vinylacetatgehalt von 7%) neben üblichen Stabilisatoren und Verarbeitungshilfsmitteln 20 Gew.% Leitruß gegeben und bei 170°C miteinander vermischt. Das so erhaltene Leitfähigkeitskonzentrat (spezifischer Widerstand nach der Vierpunktmethode ca. 5 Qcm) wurde in einem zweiten Arbeitsgang mit stabilisiertem Polyvinylchlorid-Granulat (K-Wert 67 bzw. 70) granuliert oder gleich zu einem Fertigprodukt (z.B. einer Platte) extrudiert, wobei die Massetemperatur bei ca. 185 bis 190°C lag. Der erhaltene halbleitende Polymerblend bzw die fertige Platte zeigte eine Schlagzähigkeit "ohne Bruch" sowie die in der unten folgenden Tabelle 1 aufgeführten elektrischen Eigenschaften.As described in Example 1, 79% by weight of ethylene-vinyl acetate copolymer (with a vinyl acetate content of 7%), in addition to conventional stabilizers and processing aids, were admixed with 20% by weight of carbon black and mixed with one another at 170.degree. The conductivity concentrate thus obtained (specific resistance according to the four-point method approx. 5 Qcm) was granulated in a second operation with stabilized polyvinyl chloride granules (K value 67 or 70) or immediately extruded to a finished product (for example a plate), the melt temperature was approx. 185 to 190 ° C. The semiconducting polymer blend obtained or the finished plate showed an impact strength "without break" and the electrical properties listed in Table 1 below.
In analoger Weise wurden Leitfähigkeitskonzentrate unter Verwendung von Styrol-Butadien-Styrol-Copolymer, chloriertem Polyethylen, Styrol-Acrylnitril-Copolymer, Polyamid-6,12 und Polycaprolacton hergestellt. Nach Extrudieren mit Polymer B wurden die in der nachfolgenden Tabelle enthaltenen Ergebnisse erhalten.
Von den nach Beispiel 1 bis 3 erhaltenen Polymerblends wurden mit Hilfe eines Mikrotoms für die lichtmikroskopische Untersuchung Schnitte angefertigt und bei tausendfacher Vergrößerung näher untersucht.
- Figur 1 zeigt das Bild, welches ein Polymerblend aus PEC/SAN und ABS im Verhältnis 3:7 lieferte. Man erkennt deutlich die Leiterbahnen aus rußhaltigem Polymer A in der Matrix aus Polymer B.
- Figur 2 zeigt den Polymerblend des Beispiels 1, während
- Figur 3 einen Ausschnitt aus der Figur 2 darstellt. Man erkennt deutlich, daß sich der Leitfähigkeitsruß weitgehend in der Polystyrolphase befindet, während das SBS-Radialblock-Copolymer in der Matrix dispergiert ist, ohne die Leitfähigkeitsbrücken zu unterbrechen.
- Figure 1 shows the image that a polymer blend of PEC / SAN and ABS in the ratio 3: 7. The conductor tracks made of soot-containing polymer A can clearly be seen in the matrix made of polymer B.
- Figure 2 shows the polymer blend of Example 1, while
- Figure 3 shows a section of Figure 2. It can clearly be seen that the conductivity carbon black is largely in the polystyrene phase, while the SBS radial block copolymer is dispersed in the matrix without interrupting the conductivity bridges.
In an sich bekannter Weise (vergl. die nicht vorveröffentlichte deutsche Patentanmeldung P 34 22 316.9) wurde Polyacetylen mit Polycaprolacton (Molekulargewicht ≈ 20.000) vermengt, wobei im Unterschied zur oben genannten Patentanmeldung ein Konzentrat mit einem Polyacetylengehalt von 15 Gew.% hergestellt wurde. Die fehlerfreie Dispergierung wurde überprüft, indem drei Teile des Polyacetylen-Polycaprolactonkonzentrats mit 100 Teilen Polycaprolacton auf einem Walzenstuhl vermischt und in einer Laborpresse dünn ausgepreßt wurden. Es zeigte sich eine tiefblaue Farbe und es waren keine schwarzen Punkte (Polyacetylenagglomerate) zu erkennen. Das Polyacetylenkonzentrat wurde auf einem Einschnecken-Extruder mit den in der folgenden Tabelle genannten Polymeren B zu einem Polymerblend extrudiert, wobei entweder ein Granulat oder ein Fertigprodukt hergestellt wurde. Das erhaltene Produkt kann beispielswweise durch Behandlung mit Jod leitfähiger gemacht ("dotiert") werden. Es wurden die in der folgenden Tabelle zusammengestellten Ergebnisse erhalten.
Aus den vorstehenden Polymerblends wurden wiederum Mikrotomschnitte angefertigt und lichtmikroskopisch bei tausendfacher Vergrößerung untersucht.
- Figur 4 zeigt das erhaltene Bild für die Leiterbahnen aus Polyacetylen/Polycaprolacton in Polyetherpolyurethan als Matrix (Polymer B).
- Figur 5 zeigt einen Schnitt durch einen Polymerblend derselben Art, jedoch mit Acrylnitril-Methacrylat-Butadien-Copolymer als Matrix bzw. Polymer B. Figuren
- 6 und 7 zeigen vergrößerte Ausschnitte der Figur 4 in denen man die Leiterbahnen deutlich erkennt. Diese liegen jedoch nicht in einer Ebene, sondern bilden ein dreidimensionales Netzwerk, von dem aufgrund der geringen Tiefenschärfe des Mikroskops jeweils nicht alle Teilchen des Leitfähigkeitskonzentrats scharf abgebildet werden; die nicht ausgefüllten Kreise stellen solche nicht scharf abgebildeten Teilchen dar.
- FIG. 4 shows the image obtained for the conductor tracks made of polyacetylene / polycaprolactone in polyether polyurethane as a matrix (polymer B).
- FIG. 5 shows a section through a polymer blend of the same type, but with acrylonitrile-methacrylate-butadiene copolymer as the matrix or polymer B. characters
- 6 and 7 show enlarged sections of FIG. 4 in which the conductor tracks can be clearly recognized. However, these are not in one plane, but form a three-dimensional network, from which not all particles of the conductivity concentrate are sharply imaged due to the shallow depth of focus of the microscope; the open circles represent such non-sharply represented particles.
Eine Mischung von 1,2% TCNQ-Komplex in PCL wird in einem Innenmischer mit der gleichen Menge EVA (30% VA) bei 130-1600 vermischt. Die erhaltene Masse wird zu einer Folie ausgepreßt. Diese wird 30 sec. lang bei 190°C gepreßt, wobei sich der TCNQ-Komplex auflöst. Die Folie wird danach sofort 10 Min. lang in 95°C heißem Wasser getempert und danach in 15° kaltem Wasser abgeschreckt. Bei der Temperung bei 95° enstehen büschelförmige, sehr lange TCNQ-Komplex-Kristallnadeln.A mixture of 1.2% TCNQ complex in PCL is mixed in an internal mixer with the same amount of EVA (30% VA) at 130-160 0 . The mass obtained is pressed out into a film. This is pressed at 190 ° C. for 30 seconds, the TCNQ complex dissolving. The film is then immediately annealed in hot water at 95 ° C. for 10 minutes and then quenched in water at 15 ° C. Tempering at 95 ° produces tuft-shaped, very long TCNQ complex crystal needles.
Die Folie hat einen Oberflächenwiderstand von 3 x 108 Ω (ohne TCNQ:ca.1012Ω).The film has a surface resistance of 3 x 10 8 Ω (without TCNQ: approx. 10 12 Ω).
ugs/Lschugs / Lsch
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT85114008T ATE43745T1 (en) | 1984-11-07 | 1985-11-04 | ANTISTATIC OR. ELECTRICAL SEMI-CONDUCTING THERMOPLASTIC POLYMER BLENDS, PROCESS FOR THEIR PRODUCTION AND THEIR USE. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3440617A DE3440617C1 (en) | 1984-11-07 | 1984-11-07 | Antistatic or electrically semiconducting thermoplastic polymer blends, processes for their production and their use |
DE3440617 | 1984-11-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0181587A2 true EP0181587A2 (en) | 1986-05-21 |
EP0181587A3 EP0181587A3 (en) | 1986-12-30 |
EP0181587B1 EP0181587B1 (en) | 1989-05-31 |
Family
ID=6249690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85114008A Expired EP0181587B1 (en) | 1984-11-07 | 1985-11-04 | Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use |
Country Status (4)
Country | Link |
---|---|
US (1) | US4929388A (en) |
EP (1) | EP0181587B1 (en) |
AT (1) | ATE43745T1 (en) |
DE (2) | DE3440617C1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0231068A2 (en) * | 1986-01-14 | 1987-08-05 | RAYCHEM CORPORATION (a Delaware corporation) | Conductive polymer composition |
EP0280173A2 (en) * | 1987-02-25 | 1988-08-31 | Showa Denko Kabushiki Kaisha | Radical polymerizable composition |
EP0296263A1 (en) * | 1987-06-23 | 1988-12-28 | The Dow Chemical Company | Electroconductive polymer-latex composites |
WO1989000755A1 (en) * | 1986-01-14 | 1989-01-26 | Raychem Corporation | Conductive polymer composition |
GB2214511A (en) * | 1988-01-29 | 1989-09-06 | Zipperling Kessler & Co | A method of preparing compositions with optimized conductivity behaviour |
EP0337487A1 (en) * | 1988-04-15 | 1989-10-18 | Showa Denko Kabushiki Kaisha | Electroconductive polymer composition |
WO1991006592A1 (en) * | 1989-10-24 | 1991-05-16 | Exxon Chemical Patents Inc. | Graft copolymer of polylactone on a polymer backbone |
DE3943420A1 (en) * | 1989-12-30 | 1991-07-04 | Zipperling Kessler & Co | METHOD FOR PRODUCING ANTISTATIC OR ELECTRICALLY CONDUCTED POLYMER COMPOSITIONS |
US5106538A (en) * | 1987-07-21 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
US5130371A (en) * | 1989-10-24 | 1992-07-14 | Exxon Chemical Patents Inc. | Crystalline polyolefin graft copolymers |
US5213736A (en) * | 1988-04-15 | 1993-05-25 | Showa Denko K.K. | Process for making an electroconductive polymer composition |
EP0658277A1 (en) * | 1992-09-04 | 1995-06-21 | Unisearch Ltd. | Flexible, conducting plastic electrode and process for its preparation |
US5476612A (en) * | 1989-12-30 | 1995-12-19 | Zipperling Kessler & Co., (Gmbh & Co.). | Process for making antistatic or electrically conductive polymer compositions |
FR2721324A1 (en) * | 1994-06-16 | 1995-12-22 | Tiag Ind | Antistatic organic or synthetic polymers |
EP0717418A2 (en) * | 1994-12-14 | 1996-06-19 | International Business Machines Corporation | Composition containing a polymer and conductive filler and use thereof |
WO1999050351A1 (en) * | 1998-03-31 | 1999-10-07 | Basf Aktiengesellschaft | Polyoxymethylene shaped bodies |
US6284832B1 (en) | 1998-10-23 | 2001-09-04 | Pirelli Cables And Systems, Llc | Crosslinked conducting polymer composite materials and method of making same |
US6315956B1 (en) | 1999-03-16 | 2001-11-13 | Pirelli Cables And Systems Llc | Electrochemical sensors made from conductive polymer composite materials and methods of making same |
EP1218176A1 (en) * | 1999-08-17 | 2002-07-03 | Pirelli Cables and Systems LLC | Stranded conductor filling compound and cables using same |
DE10242955A1 (en) * | 2002-09-17 | 2004-03-25 | Schütz GmbH & Co. KGaA | Plastic barrel and method of making the barrel |
US7148281B2 (en) | 2001-04-04 | 2006-12-12 | Premix Oy | Polymer blend and method of preparing same |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5045141A (en) * | 1988-07-01 | 1991-09-03 | Amoco Corporation | Method of making solderable printed circuits formed without plating |
US5498761A (en) * | 1988-10-11 | 1996-03-12 | Wessling; Bernhard | Process for producing thin layers of conductive polymers |
CA2004760C (en) * | 1988-12-09 | 1998-12-01 | Norio Mori | Composite temperature-sensitive element and face heat generator comprising the same |
JP2883128B2 (en) * | 1989-11-13 | 1999-04-19 | 三菱化学株式会社 | Conductive thermoplastic resin composition |
US5209872A (en) * | 1989-12-25 | 1993-05-11 | Shin-Etsu Chemical Co., Ltd. | Rubber composition and method for making |
US5217649A (en) * | 1991-01-31 | 1993-06-08 | Americhem, Inc. | Electrically conductive blends of intrinsically conductive polymers and thermoplastic polymers containing sulfonamide plasticizer and acidic surfactant |
JPH0826231B2 (en) * | 1991-08-16 | 1996-03-13 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Conductive polymer material and its use |
DE69229253T2 (en) * | 1991-10-08 | 1999-11-04 | Americhem, Inc. | Process for producing an intrinsically conductive polymer and articles containing it from a thermoplastic polymer mixture |
US5494609A (en) * | 1992-04-15 | 1996-02-27 | Kulkarni; Vaman G. | Electrically conductive coating compositions and method for the preparation thereof |
EP0578245A3 (en) * | 1992-07-10 | 1994-07-27 | Mitsubishi Petrochemical Co | Process for producing a resin compound |
DE4317010A1 (en) * | 1993-05-17 | 1994-11-24 | Zipperling Kessler & Co | Dispersible intrinsically conductive polymer and process for its manufacture |
US5597864A (en) * | 1993-06-02 | 1997-01-28 | Benecke-Kaliko Ag | Single-layer or multiple-layer surface foil for laminating on substrates |
DE9308242U1 (en) * | 1993-06-02 | 1993-08-05 | Benecke-Kaliko AG, 30419 Hannover | Single or multi-layer surface film for laminating onto substrates |
US5472639A (en) * | 1993-08-13 | 1995-12-05 | The Dow Chemical Company | Electroconductive foams |
US5464570A (en) * | 1993-10-25 | 1995-11-07 | Delco Electronics Corporation | THFA/PDP thermoset thick films for printed circuits |
EP0685527B1 (en) * | 1994-06-01 | 1997-03-05 | General Electric Company | Thermoplastic composition comprising a compatibilized polyphenylene ether- polyamide base resin and electroconductive carbon black |
US5595689A (en) * | 1994-07-21 | 1997-01-21 | Americhem, Inc. | Highly conductive polymer blends with intrinsically conductive polymers |
US5484837A (en) * | 1994-10-25 | 1996-01-16 | Far Eastern Textile, Ltd. | Black masterbatch |
US5606983A (en) * | 1994-12-02 | 1997-03-04 | Monty; Lawrence P. | Hair care appliance with thermochromic hair curlers and method of manufacturing same |
US5629050A (en) * | 1995-08-30 | 1997-05-13 | The Dow Chemical Company | Process for preparing coated articles |
US5844037A (en) * | 1996-07-24 | 1998-12-01 | The Dow Chemical Company | Thermoplastic polymer compositions with modified electrical conductivity |
US5733480A (en) * | 1996-09-24 | 1998-03-31 | Quantum Chemical Corporation | Semiconductive extrudable polyolefin compositions and articles |
US5902517A (en) * | 1996-10-28 | 1999-05-11 | Cabot Corporation | Conductive polyacetal composition |
US5843340A (en) | 1997-03-17 | 1998-12-01 | General Electric Company | Method for the preparation of conductive polyphenylene ether-polyamide compositions |
US5908898A (en) * | 1998-02-12 | 1999-06-01 | Monsanto Company | Intrinsically conductive polymer blends having a low percolation threshold |
US6277303B1 (en) | 1998-07-10 | 2001-08-21 | Pirelli Cable Corporation | Conductive polymer composite materials and methods of making same |
US6514608B1 (en) | 1998-07-10 | 2003-02-04 | Pirelli Cable Corporation | Semiconductive jacket for cable and cable jacketed therewith |
CA2347951C (en) * | 1998-10-23 | 2009-04-07 | Pirelli Cables And Systems Llc | Crosslinked conducting polymer composite materials and method of making same |
US6610773B1 (en) | 1998-12-09 | 2003-08-26 | General Electric Company | Conductive, low warp polyetherimide resin compositions |
US6441084B1 (en) | 2000-04-11 | 2002-08-27 | Equistar Chemicals, Lp | Semi-conductive compositions for wire and cable |
US6777496B2 (en) * | 2000-11-28 | 2004-08-17 | Honeywell International Inc. | Polymeric additives and polymeric articles comprising said additive |
JP2002173602A (en) * | 2000-12-05 | 2002-06-21 | Learonal Japan Inc | Antistatic resin composite material and method for producing the same |
US6455771B1 (en) * | 2001-03-08 | 2002-09-24 | Union Carbide Chemicals & Plastics Technology Corporation | Semiconducting shield compositions |
US6602974B1 (en) | 2001-12-04 | 2003-08-05 | Carnegie Mellon University | Polythiophenes, block copolymers made therefrom, and methods of forming the same |
KR101025868B1 (en) * | 2002-11-27 | 2011-03-30 | 스미토모 고무 고교 가부시키가이샤 | Conductive member for image forming apparatus |
US7316791B2 (en) * | 2003-12-30 | 2008-01-08 | E.I. Du Pont De Nemours And Company | Polyimide based substrate comprising doped polyaniline |
DE102004003784B4 (en) * | 2004-01-23 | 2011-01-13 | Ormecon Gmbh | Dispersion of intrinsically conductive polyaniline and their use |
CA2558147A1 (en) * | 2004-03-18 | 2005-09-29 | Ormecon Gmbh | A composition comprising a conductive polymer in colloidal form and carbon |
DE102004030388A1 (en) * | 2004-06-23 | 2006-01-26 | Ormecon Gmbh | An article with a coating of electrically conductive polymer and process for its preparation |
KR100646412B1 (en) | 2004-12-21 | 2006-11-14 | (주)켐텍솔루션 | Electrically conductive polyolefin resin composition and container and sheet for packaging electronic components using same |
US7569159B2 (en) * | 2005-02-10 | 2009-08-04 | Plextronics, Inc. | Hole injection/transport layer compositions and devices |
DE102005010162B4 (en) * | 2005-03-02 | 2007-06-14 | Ormecon Gmbh | Conductive polymers of particles with anisotropic morphology |
US7413684B2 (en) * | 2005-04-15 | 2008-08-19 | Sabic Innovative Plastics Ip B.V. | Poly(arylene ether)/polyamide composition |
EP1728822A1 (en) * | 2005-05-30 | 2006-12-06 | Nanocyl S.A. | Nanocomposite and process for producing the same |
DE102005039608A1 (en) * | 2005-08-19 | 2007-03-01 | Ormecon Gmbh | Composition with intrinsically conductive polymer |
JP2009526352A (en) * | 2006-02-06 | 2009-07-16 | ダウ グローバル テクノロジーズ インコーポレイティド | Semiconductor composition |
EP2049582B1 (en) | 2006-07-21 | 2019-02-27 | Nissan Chemical Corporation | Sulfonation of conducting polymers and oled, photovoltaic, and esd devices |
ATE546032T1 (en) * | 2006-09-13 | 2012-03-15 | Enthone | ARTICLES WITH A COATING MADE OF ELECTRICALLY CONDUCTIVE POLYMER AND PRECIOUS/SEMI-PRECIOUS METAL AND PRODUCTION PROCESS THEREOF |
EP2183796A2 (en) * | 2007-08-03 | 2010-05-12 | Battelle Memorial Institute | Thermoelectric device and thermoelectric material |
US7874674B2 (en) | 2007-12-12 | 2011-01-25 | Allred Lloyd G | Aberrometer having reduced noise |
WO2009111339A1 (en) | 2008-02-29 | 2009-09-11 | Plextronics, Inc. | Planarizing agents and devices |
EP2513187A2 (en) | 2009-12-18 | 2012-10-24 | Plextronics, Inc. | Copolymers of 3,4-dialkoxythiophenes and methods for making and devices |
DE102010025938A1 (en) | 2010-07-02 | 2012-01-05 | Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg | Release film with permanent antistatic effect |
US9083006B2 (en) | 2012-09-06 | 2015-07-14 | Solvay Usa, Inc. | Electroluminescent devices comprising insulator-free metal grids |
US9921526B2 (en) * | 2015-01-09 | 2018-03-20 | Ricoh Company, Ltd. | Semiconductive resin composition, member for electrophotography and image forming apparatus |
US10797314B2 (en) | 2016-07-29 | 2020-10-06 | Blue Current, Inc. | Compliant solid-state ionically conductive composite materials and method for making same |
US10079404B1 (en) | 2017-03-03 | 2018-09-18 | Blue Current, Inc. | Polymerized in-situ hybrid solid ion-conductive compositions |
US11581570B2 (en) | 2019-01-07 | 2023-02-14 | Blue Current, Inc. | Polyurethane hybrid solid ion-conductive compositions |
KR20220121243A (en) | 2019-12-20 | 2022-08-31 | 블루 커런트, 인크. | Composite electrolyte with binder |
US12166239B2 (en) | 2019-12-20 | 2024-12-10 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
US11394054B2 (en) * | 2019-12-20 | 2022-07-19 | Blue Current, Inc. | Polymer microspheres as binders for composite electrolytes |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4265789A (en) * | 1979-10-22 | 1981-05-05 | Polymer Cencentrates, Inc. | Conductive polymer processable as a thermoplastic |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3200056A (en) * | 1959-02-13 | 1965-08-10 | Minnesota Mining & Mfg | Stabilized polyethylene |
US3178384A (en) * | 1962-02-19 | 1965-04-13 | Du Pont | Semi-conductive fabric comprising an ethylene-vinyl acetate copolymer, wax and carbon black |
JPS533416B2 (en) * | 1973-07-23 | 1978-02-06 | ||
JPS59189142A (en) * | 1983-04-12 | 1984-10-26 | Ube Ind Ltd | Conductive thermoplastic resin composition |
US4510076A (en) * | 1983-11-23 | 1985-04-09 | Gte Laboratories, Inc. | Electrically conductive polymer blends of an acetylene polymer and a triblock thermoplastic elastomer |
US4622355A (en) * | 1984-07-16 | 1986-11-11 | The United States Of America As Represented By The United States Department Of Energy | Radiation-hardened polymeric films |
JPS6164739A (en) * | 1984-09-05 | 1986-04-03 | Nippon Yunikaa Kk | Semiconductive resin composition having both bondability and strippability |
-
1984
- 1984-11-07 DE DE3440617A patent/DE3440617C1/en not_active Expired
-
1985
- 1985-11-04 AT AT85114008T patent/ATE43745T1/en not_active IP Right Cessation
- 1985-11-04 DE DE8585114008T patent/DE3570796D1/en not_active Expired
- 1985-11-04 EP EP85114008A patent/EP0181587B1/en not_active Expired
- 1985-11-05 US US06/795,250 patent/US4929388A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4265789A (en) * | 1979-10-22 | 1981-05-05 | Polymer Cencentrates, Inc. | Conductive polymer processable as a thermoplastic |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0231068A3 (en) * | 1986-01-14 | 1987-09-16 | Raychem Corporation | Conductive polymer composition |
WO1989000755A1 (en) * | 1986-01-14 | 1989-01-26 | Raychem Corporation | Conductive polymer composition |
US5106540A (en) * | 1986-01-14 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
EP0231068A2 (en) * | 1986-01-14 | 1987-08-05 | RAYCHEM CORPORATION (a Delaware corporation) | Conductive polymer composition |
EP0280173A3 (en) * | 1987-02-25 | 1990-05-23 | Showa Denko Kabushiki Kaisha | Radical polymerizable composition |
EP0280173A2 (en) * | 1987-02-25 | 1988-08-31 | Showa Denko Kabushiki Kaisha | Radical polymerizable composition |
US5137993A (en) * | 1987-02-25 | 1992-08-11 | Showa Denko K.K. | Radical polymerizable composition |
EP0296263A1 (en) * | 1987-06-23 | 1988-12-28 | The Dow Chemical Company | Electroconductive polymer-latex composites |
US5106538A (en) * | 1987-07-21 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
GB2214511A (en) * | 1988-01-29 | 1989-09-06 | Zipperling Kessler & Co | A method of preparing compositions with optimized conductivity behaviour |
EP0337487A1 (en) * | 1988-04-15 | 1989-10-18 | Showa Denko Kabushiki Kaisha | Electroconductive polymer composition |
US5213736A (en) * | 1988-04-15 | 1993-05-25 | Showa Denko K.K. | Process for making an electroconductive polymer composition |
WO1991006592A1 (en) * | 1989-10-24 | 1991-05-16 | Exxon Chemical Patents Inc. | Graft copolymer of polylactone on a polymer backbone |
US5130371A (en) * | 1989-10-24 | 1992-07-14 | Exxon Chemical Patents Inc. | Crystalline polyolefin graft copolymers |
US5476612A (en) * | 1989-12-30 | 1995-12-19 | Zipperling Kessler & Co., (Gmbh & Co.). | Process for making antistatic or electrically conductive polymer compositions |
DE3943420A1 (en) * | 1989-12-30 | 1991-07-04 | Zipperling Kessler & Co | METHOD FOR PRODUCING ANTISTATIC OR ELECTRICALLY CONDUCTED POLYMER COMPOSITIONS |
EP0658277A4 (en) * | 1992-09-04 | 1995-12-20 | Unisearch Ltd | FLEXIBLE CONDUCTIVE PLASTIC ELECTRODE AND METHOD THEREOF. |
EP0658277A1 (en) * | 1992-09-04 | 1995-06-21 | Unisearch Ltd. | Flexible, conducting plastic electrode and process for its preparation |
FR2721324A1 (en) * | 1994-06-16 | 1995-12-22 | Tiag Ind | Antistatic organic or synthetic polymers |
US6015509A (en) * | 1994-12-14 | 2000-01-18 | International Business Machines Corporation | Composition containing a polymer and conductive filler and use thereof |
EP0717418A2 (en) * | 1994-12-14 | 1996-06-19 | International Business Machines Corporation | Composition containing a polymer and conductive filler and use thereof |
EP0717418A3 (en) * | 1994-12-14 | 1997-02-19 | Ibm | Composition containing a polymer and conductive filler and use thereof |
US5916486A (en) * | 1994-12-14 | 1999-06-29 | International Business Machines Corporation | Method for providing discharge protection or shielding |
US5922466A (en) * | 1994-12-14 | 1999-07-13 | International Business Machines Corporation | Composite comprising a metal substrate and a corrosion protecting layer |
US5997773A (en) * | 1994-12-14 | 1999-12-07 | International Business Machines Corporation | Method for providing discharge protection or shielding |
WO1999050351A1 (en) * | 1998-03-31 | 1999-10-07 | Basf Aktiengesellschaft | Polyoxymethylene shaped bodies |
US6284832B1 (en) | 1998-10-23 | 2001-09-04 | Pirelli Cables And Systems, Llc | Crosslinked conducting polymer composite materials and method of making same |
US6417265B1 (en) | 1998-10-23 | 2002-07-09 | Pirelli Cables And Systems Llc | Crosslinked conducting polymer composite materials and method of making same |
US6315956B1 (en) | 1999-03-16 | 2001-11-13 | Pirelli Cables And Systems Llc | Electrochemical sensors made from conductive polymer composite materials and methods of making same |
EP1218176A1 (en) * | 1999-08-17 | 2002-07-03 | Pirelli Cables and Systems LLC | Stranded conductor filling compound and cables using same |
EP1218176A4 (en) * | 1999-08-17 | 2003-08-20 | Pirelli Cables & Systems Llc | Stranded conductor filling compound and cables using same |
US7148281B2 (en) | 2001-04-04 | 2006-12-12 | Premix Oy | Polymer blend and method of preparing same |
DE10242955A1 (en) * | 2002-09-17 | 2004-03-25 | Schütz GmbH & Co. KGaA | Plastic barrel and method of making the barrel |
DE10242955B4 (en) * | 2002-09-17 | 2005-03-10 | Schuetz Gmbh & Co Kgaa | Kunststoffaß and method for producing the barrel |
Also Published As
Publication number | Publication date |
---|---|
EP0181587B1 (en) | 1989-05-31 |
EP0181587A3 (en) | 1986-12-30 |
US4929388A (en) | 1990-05-29 |
ATE43745T1 (en) | 1989-06-15 |
DE3440617C1 (en) | 1986-06-26 |
DE3570796D1 (en) | 1989-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0181587B1 (en) | Antistatic or electrically semiconductive polymer blends, process for their manufacture and their use | |
DE3855678T2 (en) | INTRINSICALLY CONDUCTIVE POLYMER IN THE FORM OF A DISPERSIBLE BODY, ITS PRODUCTION AND APPLICATION | |
DE69321673T2 (en) | Conductive plastic material and method of making it | |
DE69229253T2 (en) | Process for producing an intrinsically conductive polymer and articles containing it from a thermoplastic polymer mixture | |
DE3707503C2 (en) | PTC composition | |
DE69322094T2 (en) | HETEROGENEOUS MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF | |
DE2948350C2 (en) | ||
DE2652683C3 (en) | Anisotropic, electrically conductive plate or film-shaped body and method for its production | |
EP0168620A2 (en) | Method of producing mouldable polymer blends from electrically conductive organic polymers and use of said polymer blends | |
DE69213833T2 (en) | Solid ion-conducting material made from a polymer and an alkaline cation salt and used as an electrolyte | |
DE69033059T2 (en) | POLYMER COMPOSITION, CONTAINING CHLORIDATED CONDUCTIVE PARTICLES | |
DE2640059C2 (en) | ||
DE3242657C2 (en) | ||
DE3876709T2 (en) | METHOD FOR PRODUCING A SELF-HEALING PROTECTIVE OBJECT AGAINST OVERCURRENT BY DE-METHOD. | |
DE2901776A1 (en) | METHOD FOR PRODUCING SMALL-PIECE POLYOLEFIN MOLDING MATERIALS PROVIDED WITH CONDUCTIVE SOOT AND THE USE THEREOF FOR THE PRODUCTION OF MOLDED BODIES | |
DE3542231A1 (en) | ORGANIC POLYMERS WITH ELECTRICAL PROPERTIES | |
DE2755076A1 (en) | CONDUCTIVE POLYMER COMPOUNDS, METHODS OF MANUFACTURING IT, AND DEVICES CONTAINING THESE COMPOUNDS | |
DE2530810B2 (en) | Polymer mixture of an ionically cross-linked polymer with a preferred plasticizer | |
DE2422914C2 (en) | High or extra high voltage electrical cable | |
DE2737729A1 (en) | METHOD OF DISTRIBUTING ANTIOXIDAN IN A CROSS-LINKABLE POLYMER | |
EP0144600B1 (en) | Manufacture of a plastic material | |
DE69112558T2 (en) | METHOD FOR PRODUCING A CONDUCTIVE POLYMER. | |
EP0071862B1 (en) | Polystyrene with high electrical conductivity | |
DE2220147C3 (en) | Process for the production of crosslinked, stabilized ethylene polymers | |
DE1939926A1 (en) | Thermoplastic compositions and processes for their production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19861203 |
|
17Q | First examination report despatched |
Effective date: 19870826 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 43745 Country of ref document: AT Date of ref document: 19890615 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3570796 Country of ref document: DE Date of ref document: 19890706 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19921021 Year of fee payment: 8 Ref country code: LU Payment date: 19921021 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19921027 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19921119 Year of fee payment: 8 |
|
EPTA | Lu: last paid annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19931104 Ref country code: AT Effective date: 19931104 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19931105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19931130 Ref country code: CH Effective date: 19931130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 85114008.7 Effective date: 19940610 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20041102 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20041112 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20041122 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20041123 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050124 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20051103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20051104 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
BE20 | Be: patent expired |
Owner name: *ZIPPERLING KESSLER & CO (G.M.B.H. & CO) Effective date: 20051104 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20051104 |
|
BE20 | Be: patent expired |
Owner name: *ZIPPERLING KESSLER & CO (G.M.B.H. & CO) Effective date: 20051104 |